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A B S T R A C T

Tendon-bone insertion injuries (TBI), such as anterior cruciate ligament (ACL) and rotator cuff injuries, are
common degenerative or traumatic pathologies with a negative impact on the patient's daily life, and they cause
huge economic losses every year. The healing process after an injury is complex and is dependent on the sur-
rounding environment. Macrophages accumulate during the entire process of tendon and bone healing and their
phenotypes progressively transform as they regenerate. As the “sensor and switch of the immune system”,
mesenchymal stem cells (MSCs) respond to the inflammatory environment and exert immunomodulatory effects
during the tendon-bone healing process. When exposed to appropriate stimuli, they can differentiate into different
tissues, including chondrocytes, osteocytes, and epithelial cells, promoting reconstruction of the complex tran-
sitional structure of the enthesis. It is well known that MSCs and macrophages communicate with each other
during tissue repair. In this review, we discuss the roles of macrophages and MSCs in TBI injury and healing.
Reciprocal interactions between MSCs and macrophages and some biological processes utilizing their mutual
relations in tendon-bone healing are also described. Additionally, we discuss the limitations in our understanding
of tendon-bone healing and propose feasible ways to exploit MSC-macrophage interplay to develop an effective
therapeutic strategy for TBI injuries.
The Translational potential of this article: This paper reviewed the important functions of macrophages and
mesenchymal stem cells in tendon-bone healing and described the reciprocal interactions between them during
the healing process. By managing macrophage phenotypes, mesenchymal stem cells and the interactions between
them, some possible novel therapies for tendon-bone injury may be proposed to promote tendon-bone healing
after restoration surgery.
1. Introduction

The tendon-bone insertion (TBI, enthesis), a site where tendons or
ligaments attach to bones, plays an indispensable role in movement. Its
main function is to transfer complex and variable mechanical stress from
the muscle to the bone or between bones [1]. As the focal aperture point
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of stress, the enthesis is susceptible to traumatic lesions. The incidence of
enthesis injury is increasing as the interest in sporting activities grows.
Anterior cruciate ligament (ACL) injuries and rotator cuff tears are the
most prevalent enthesis injuries sustained in daily life and at work [2].
The incidence of full-thickness rotator cuff tears is estimated to be 20.7%,
with a higher prevalence in older populations [3]. In the United States,
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Fig. 1. Transitional structure of the enthesis.
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over twomillion ACL injuries occur yearly, accounting for more than half
of all knee injuries [4].

Surgical reconstruction has always been considered the standard
therapy for enthesis injuries in the past few decades, with most patients
achieving full recovery after the operation. However, undesirable out-
comes such as retear, stiffness, and pain occur in some cases [5,6].
Tendon-bone healing, a complex biological process, is the most signifi-
cant part of recovery from enthesis injuries. Satisfactory tendon-bone
healing determines the final success of the reconstruction operation
[7]. Therefore, it is important to identify promising ways to augment
tendon-bone healing for successful restoration of tendon and bone
functionality. Nonetheless, tendon-bone healing is a much slower pro-
cess, and once formed, the enthesis's natural complex composition and
structure cannot be reformed. The lack of blood vessels and bone loss at
the junction site impedes the growth of the bone into the fibrovascular
tissue regenerated between the tendon and bone after surgical repair.
Instead, a mass of scar tissue with an inferior biomechanical structure,
which is susceptible to retear, is formed due to excessive inflammation
[8]. Hence, improving and augmenting tendon-bone healing remains a
key challenge in clinical practice [9].

Over the last few decades, various biological strategies have emerged
to facilitate and improve tendon-bone healing. These therapeutic options
biologically reconstruct the complex structure and composition of the TBI
using growth factors [10], stem cell therapies [2,11], platelet-rich plasma
[12], and biodegradable scaffolds [13].

Mesenchymal stem cells (MSCs) have been explored for their thera-
peutic potential in the treatment of tendon-bone injury [2,13–16]. MSCs
are a heterogeneous group of multipotent cells that can differentiate into
bone, cartilage, and fat cells [16,17]. Besides expediting angiogenesis,
MSCs can regulate the inflammatory process after injury due to their
immunomodulatory properties [18,19]. Furthermore, owing to their
multipotent properties, MSCs have been widely applied in animal model
studies to facilitate biological tendon-bone healing in vivo after recon-
struction. However, the mechanisms by which MSCs accelerate
tendon-bone healing are not fully understood.

MSCs are known as “sensors” and “modulators” of the immune system
[20,21]. After injury, including muscle and skin injuries, MSCs gather in
the injured site and interact with immune cells to initiate the repair
process. As the tendon-bone healing process progresses, macrophages
undergo phenotypic changes. Researchers have demonstrated that
M1-type macrophages are dominant at the early stage of tendon-bone
healing, whereas M2-type macrophages increasingly accumulate at the
injury site over time [22]. This alteration of macrophage phenotype
illustrate the fact that macrophages may play a crucial role in the healing
process. In addition, it has been proven that macrophages can influence
the viability and growth of MSCs [23]. The interactions between MSCs
and macrophages described earlier exert a critical effect on the outcome
of tendon-bone healing.

Both MSCs and macrophages are indispensable during the tendon-
bone healing process. In this review, the contribution of MSCs and
macrophages and their mutual interactions during tendon-bone healing
after injury are discussed. A clearer understanding of the functions of
these two cells and their relationship can help us develop more effective
repair strategies for TBI injuries. Possible ways to utilize their reciprocal
interactions will also be described.

1.1. The natural structure of enthesis

An enthesis is a unique layered transitional tissue that connects the
tendon and bone, and it has two components with completely different
structures, compositions, and mechanical properties. Entheses transfer
the force of muscle contraction to the bone to facilitate joint movement
[24] and maintain the stability of the joint [25]. As a rule, TBIs are
classified into two types: direct and indirect insertions. An example of
indirect insertion is the tibial insertion of the medial collateral ligament,
with dense fibrous tissue connecting the ligaments to the periosteum. In
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comparison, direct insertions, such as the rotator cuff and anterior crucial
ligament insertions, connect the fibrocartilage tissue to deeper layers of
the bone [7]. The transition of direct insertion consists of four different
types of tissue: tendon/ligament (I), uncalcified fibrocartilage (II),
calcified fibrocartilage (III), and bone (IV) (Fig. 1) [26]. Each tendon is
mainly populated by fibroblasts, with linearly arrayed type I collagen
fibers as its primary component [27]. Uncalcified fibrocartilage is made
up of proteoglycan aggrecan as well as types I, II, and III collagen.
Fibrochondrocytes are the dominant cells in this avascular region [27,
28]. Calcified fibrocartilage primarily consists of type II collagen and
aggrecan as well as types I and X collagen. It is also an avascular zone that
is populated by fibrochondrocytes [27–29]. The last zone is the bone,
comprising osteocytes, osteoclasts, and osteoblasts in a matrix of
mineralized type I collagen [1,28,30]. In a classical system, enthesis is
divided into four dramatically different, unseparated but structurally
uninterrupted structures. The transition in structure promotes a gradual
change in the mechanical properties from tendon to bone, thus pre-
venting stress concentration during mechanical conduction [31].

Zone I is comprised of the ligament or tendon. Zone II is composed of
uncalcified fibrocartilage. Zone III contains calcified fibrocartilage. Zone
IV is the bone. The tidemark is shown as the blue line between Zone II
and Zone III.
1.2. Development of the tendon-bone insertion

The transition structure of the TBI has important biological signifi-
cance that requires a developmental process to form. With the growth
and development of the fetus, the TBI arises between the bone and
tendon/ligament [27]. In early entheseal development, TGF-β regulates
the formation of the Scxþ/Sox9þ progenitor pool that forms the bone
eminence where the enthesis develops. Induced by bone morphogenic
protein 4 (BMP-4), Scxþ/Sox9þ cells differentiate into chondrocytes and
bone eminences, forming the original connection between the tendon
and the bone—the immature enthesis. With the increasing number of
entheseal progenitor cells, the length of the enthesis increases, accom-
panied by the secretion of type I collagen. As proliferation progresses,
unmineralized fibrochondrocytes are formed at the base of the
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developing enthesis through a mechanism regulated by BMP-4 and In-
dian hedgehog (Ihh). Subsequently, collagen type I and II levels start to
increase. After birth, Ihh stimulates the hypertrophic differentiation of
fibrochondrocytes, beginning at the bottom of the enthesis. As matrix
mineralization begins, fibrochondrocytes transform into hypertrophic
mineralizing fibrochondrocytes, which synthesize both type X collagen
and alkaline phosphatase (ALP) (Fig. 2). [32,33] A subset of type II col-
lagen–expressing cells undergo endochondral ossification, performing
the mineralization process, which establishes a mineralized fibro-
cartilage region connected to the unmineralized tissue [34]. Subse-
quently, a mature, well-organized, transitional tissue is formed between
the tendon and bone with the remodeling of the collagen fibers and
minerals. After a complex developmental process, the natural structure of
the enthesis is formed. An analogous process has been described for rat
Achilles tendon enthesis, bovine ACL enthesis, and the deltoid-humeral
tuberosity attachment [35–37].

Scxþ/Sox9þ progenitor cells form an immature enthesis connecting the
tendon and bone. Their continuous proliferation extends the length of the
enthesis as they secrete type I collagen. Under the regulation of BMP-4 and
Indian hedgehog (Ihh), the progenitor cells differentiate into unmineralized
fibrochondrocytes from the bottom of the developing tendon-bone insertion and
express type I and II collagen. After birth, Ihh begins to promote hypertrophic
differentiation of fibrochondrocytes from the base of the enthesis. The fibro-
chondrocytes transform into hypertrophic mineralizing fibrochondrocytes and
start to synthesize type X collagen and alkaline phosphatase (ALP) as soon as
matrix mineralization begins.
1.3. Interface healing process

The unique structure of the TBI is destroyed after injury. Surgical
reconstruction is recommended for the repair of TBI injuries because it is
nearly impossible for the enthesis to recover by itself. Tendon-bone
healing is a restorative process after injury in which inflammation plays
an important role. Using the dog tendon-bone healing model, Rodeo et al.
[38] demonstrated that the tendon-bone interface differentiates into a
vascular, highly cellular, fibrous tissue after two weeks. Compared with
the interface at two-weeks, there was an increased proportion of extra-
cellular matrix (ECM) but decreased vascularization at four weeks. From
eight to twelve weeks, the interface tissue became more mature and
increasingly organized, with collagen fibers becoming aligned in the di-
rection of the load. At twenty-six weeks, continuous collagen fibers were
formed in the transitional zone between the bone and tendon. The healing
process includes four phases: (1) inflammatory phase, (2) proliferative
phase, (3) matrix synthesis phase, and (4) matrix remodeling phase [2,39].
Fig. 2. Development of te
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After injury, hemorrhage occurs following the rupture of vessels,
causing local hematoma [40]. Inflammatory cells and marrow-derived
stem cells are recruited and infiltrate the tendon-bone interface, TGF-β,
and PDGF. In addition, many other growth factors and cytokines are also
released. Spurred by these growth factors or the hypoxic environment,
the blood vessels and nerves begin to grow. After the temporary matrix is
broken down by matrix metalloproteinases (MMPs) and serine proteases,
a new ECM and progressive bone ingrowth are formed. TGF-β plays an
important role during the matrix synthesis stage. Upon exposure to
TGF-β, recruited fibroblasts initiate the synthesis of collagen I, III, and V,
proteoglycans, fibronectin, and other ECM components. Finally, during
the remodeling phase, the structure of the newly formed tissue is reor-
ganized. Specifically, collagen fibers are remodeled into scar tissue by
attaching to each other via molecular crosslinking [39,41]. However,
excessive and continuous inflammation gives rise to superfluous scar
tissue with mechanical properties inferior to those of the normal
four-layered transitional structure, resulting in undesirable tendon-bone
healing [8]. Therefore, maintaining the balance of the inflammatory
response at the injury site and reestablishing the complex structure of the
natural TBI may be a promising research direction in this area.
1.4. Key points for healing augmentation

To reestablish the natural structure of the enthesis during the inter-
face healing process, scientists have conceived many therapeutic solu-
tions to accelerate the healing process and validated some in practice.
These ideas can be divided into four categories: anti-inflammation,
osteogenesis, angiogenesis, and chondrogenesis.

2. Anti-inflammation

Inflammation is a natural response to injury and the initiation of the
repair process. However, the tendon-bone healing response is usually
dysregulated and chronic, which can result in pathological fibrosis and
scarring [42,43]. As mentioned earlier, inflammation would produce a
biomechanically weak scar if not well managed. Nonetheless, it serves a
fundamental function in the tendon-bone healing process, suggesting
that controlling excessive inflammation during the healing process may
reduce scar formation and improve biomechanical strength during
tendon-bone healing. In recent research, based on a hedging immune
strategy, a microfibrous membrane (Him-MFM) carrying relevant risk
receptors was fabricated that successfully mitigated inflammatory teno-
cyte responses, protected tenocytes in situ, and restored hierarchically
arranged collagen fibers, thereby yielding a regenerative outcome rather
ndon-bone insertion.



Table 1
Molecular mediators involved in MSC functions.

MSC function Molecular mediators Reference

Multi-Lineage
Differentiation

Osteogenesis
Chondrogenesis
Adipogenesis
Immune-modulation
Pro-inflammation
Anti-inflammation
Angiogenesis

Ascorbic acid,
Dexamethasone, BMPs, WNTs, FGFs,
RUNX1
Ascorbate, Insulin, Transferrin, Selenic
acid, Kartogenin, TGF-β
Dexamethasone, Indomethacin,
Insulin,
Isobutylmethylxanthine
TLR ligands, TLR4
TLR ligands, TLR3
VEGF, bFGF, FGF-2, Ang-1, MCP-1, IL-6,
PLGF

[64,65,
71–73]
[56,64,74]
[64,75]
[21,68,76]
[21,68,76]
[18,19]

BMPs, bone morphogenic proteins; FGFs, fibroblast growth factor; RUNX1, Runt-
related transcription factor 1; TGF-β, transforming growth factor-β; TLR, toll-like
receptor; VEGF, vascular endothelial growth factor; bFGF, basic fibroblast
growth factor; FGF-2, fibroblast growth factor-2; Ang-1 angiopoietin-1; MCP-1,
monocyte chemoattractant protein-1; IL-6, interleukin-6; PLGF, placental growth
factor
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than scarring [44]. Golman et al. demonstrated that inhibiting IKKβ can
suppress undue inflammatory responses and improve tendon-bone
healing after rotator cuff repair in a rat model [45]. Utilizing
anti-inflammatory and pro-differentiation effects, Chen et al. developed
an injectable hydrogel that enhanced tendon-bone healing [46]. The
investigations mentioned above and many other in vitro or in vivo ex-
periments have emphasized the significant role of anti-inflammation in
tendon-bone healing. Therefore, anti-inflammation has been a promising
research direction in tendon-bone healing and is an ideal and viable
strategy for controlling inflammatory responses in the future.

3. Osteogenesis

During healing, fibrovascular interface tissue arises between the
tendon and bone, and the bone gradually grows into this fibrous interface
tissue. Finally, with the ingrowth of bone into the tendon, eventual
reconstruction of collagen fiber continuity between the tendon and bone
is achieved [47]. Several investigations have shown that the eventual
result of tendon-bone healing is partly dependent on bone ingrowth, and
the induction of osteogenesis is beneficial to the restoration process [7–9,
48]. Magnesium (Mg) ions can significantly facilitate the release of
relevant osteoinductive cytokines. Wang et al. obtained satisfactory re-
covery results after wrapping the tendon graft with Mg-pretreated peri-
osteum, and the osteointegration of the tendon graft into the bone tunnel
increased, whereas peri-tunnel bone loss decreased [49]. Tie et al.
affirmed that utilizing dedifferentiated bone marrow mesenchymal stem
cells (BMSCs) could significantly promote bone formation at the
tendon-bone junction and increase the maximal biomechanical strength
[14]. The list of biological factors that induce osteogenesis in
tendon-bone healing is not limited to the factors discussed here.

4. Angiogenesis

The special structure and function of the TBI makes it susceptible to
damage. An adequate blood supply provides essential nutrients, min-
erals, and oxygen for the synthesis and mineralization of the bone matrix
and maturation of the tendon matrix. However, a lack of blood supply to
the TBI reduces the concentration of oxygen, growth factors, and other
essential nutrients that are required for metabolism, slowing down
tendon-bone healing or leading to nonunion. Therefore, there is
increasing interest in promoting angiogenesis in the tendon–bone area to
boost tendon–bone healing [8,15,50]. To promote restoration, Liao et al.
confirmed that fabricated amorphous calcium phosphate (ACP) nano-
particles could promote angiogenesis in vitro. Furthermore, using the RCT
rat model, they demonstrated that ACP nanoparticles could boost the
formation of bone and blood vessels at the tendon-bone junction in vivo
[8]. After the discovery of its function in facilitating angiogenesis and
osteogenesis, icariin was shown to enhance tendon-bone healing by Ye
et al. [51] Currently, physical treatment is widely used in medical
practice to yield good curative effects. For example, low-intensity pulsed
ultrasound stimulation (LIPUS) is an ideal tool for the augmentation of
tendon-bone healing. One of the therapeutic mechanisms involves the
promotion of angiogenesis [52]. Many animal experiments have
confirmed that stimulating the formation of blood vessels is a favorable
and promising idea for tendon-bone healing. However, vascularization
typically decreases in the later period of the healing process [39], sug-
gesting that angiogenesis may not always be successful and could even
result in a worse outcome. Rodeo et al. [38] reported that the
tendon-bone interface differentiated into vascular tissue after two weeks,
but there was decreased vascularization after four weeks. Similarly, Fealy
et al. [53] demonstrated that blood supply increased early after rotator
cuff reconstruction, but then decreased gradually over time. In addition,
they deemed that increased blood supply at the fixation point or bone
groove could enhance the quality of tendon-bone healing. Consequently,
inducing angiogenesis is essential for the healing process, but the timing
and position are factors that should be taken into consideration.
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5. Chondrogenesis

Surgical reconstruction is currently the most effective treatment for
enthesis injury. During the operation, both sides of the TBI are refreshed
by removing residual fibrocartilage. However, it is difficult to achieve the
formation of fibrocartilage in tendon-bone healing because of its low
regenerative ability [54]. Scars, instead of fibrocartilage, are produced in
situ, causing a weaker junction between the tendon and the bone. It has
been confirmed that the terminal biomechanical strength is increased in
experimental animals treated with the appropriate methods for boosting
chondrogenesis after reconstruction [54–58]. The TBI consists of four
different layers: the tendon, uncalcified fibrocartilage, calcified fibro-
cartilage, and bone. Fibrocartilage is only a part of the complex structure,
which may not be completely reestablished by expediting chondro-
genesis. Moreover, the reestablishment of the intricate transitional
structure of the TBI is influenced by several other factors. Therefore,
promoting chondrogenesis is partly responsible for tendon-bone healing.
In other words, facilitating cartilage regeneration is a promising research
direction that is yet to be explored.
5.1. MSCs in tendon-bone healing

In recent years, to achieve a favorable treatment outcome, various
strategies have been proposed to accelerate and promote tendon-bone
healing. Among them, MSCs have attracted much attention as an ideal
and superior therapeutic tool [2,11,16,59]. Friedenstein et al. firstly
isolated MSCs from colonies in vitro and described them as
plastic-adherent fibroblast-like cells [60]. These cells express CD105,
CD73, and CD90, but not CD45, CD34, CD11b, CD19, or HLA-DR surface
molecules [61,62]. Most MSCs arise from bone marrow, although other
organs including the placenta, umbilical cord, amniotic fluid and mem-
brane, skeletal muscle, adipose tissue, lung, heart, liver, and kidneys can
also produce them [61,63]. MSCs have abundant sources and are
multifunctional (Table 1):

First, MSCs can self-renew. Secondly, as multipotent cells, they can
differentiate into tissue-specific cells, such as osteoblasts, chondrocytes,
and adipocytes, under different physiological environments, making
them ideal seed cells for regenerative medicine [64]. Utilizing a lentiviral
vector with upregulated RUNX1, Kang et al. successfully fabricated
RUNX1-upregulated BMSCs and injected them into the periphery of the
tunnel surrounding the tendon graft after ACL reconstruction. Improved
tendon-bone healing was observed, confirmed through histological
analysis, biomechanical analysis, and micro-CT assessment [65]. It has
been explained that Kartogenin can induce cartilage formation by pro-
moting chondrogenesis of mesenchymal stem cells [56]. Liu et al. devised
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a biomimetic tendon ECM composite gradient scaffold and transplanted
it into the bone tunnel to enhance tendon-bone healing. They attributed
the augmentation in healing to the enhanced expression of chondro-
genesis- and osteogenesis-associated genes in MSCs that were induced by
the scaffold [66]. Given the great significance of osteogenesis and
chondrogenesis in tendon-bone healing, MSC therapy is a feasible and
potentially effective treatment; however, its differentiation mechanism
needs to be elucidated to make it a viable therapeutic option in the
future.

Second, the immune-modulating function of MSCs is another ad-
vantageous property, which makes them the “sensor and switch of the
immune system”. [20]. Toll-like receptors (TLRs) in MSCs can recognize
damage signals and activate MSCs and immune cells. Once MSCs are
activated, they respond to TLR ligands and secrete anti-inflammatory
factors, thereby inhibiting inflammation [67]. Furthermore, MSCs can
facilitate inflammatory responses during the early stages of inflamma-
tion. Pro-inflammatory MSCs can release macrophage inflammatory
protein-1 (MIP-1), C–C motif ligand 5 (CCL5), C-X-C motif ligand 9
(CXCL9), and C-X-C motif ligand 10 (CXCL10) to activate T-cells and
recruit more lymphocytes [20,68]. In fact, the inflammation suppressing
effect of MSCs has been applied in the augmentation of tendon-bone
healing. For example, Xu et al. stated in their recent research that
infrapatellar fat pad mesenchymal stromal cell-derived exosomes can
exert an immunomodulatory effect on macrophages to regulate their
polarization and accelerate tendon-bone healing and intra-articular graft
remodeling after ACLR [69]. Based on current knowledge of tendon-bone
healing, inflammatory response, which is a key process, significantly
contributes to the progress. However, undue and continuous inflamma-
tion produces substantial scar tissue with poor biomechanical strength.
We believe that the immune-modulating function of MSCs contributes to
the augmentation of tendon-bone healing.

Lastly, several reports have claimed that MSCs contribute to angio-
genesis. Many categories of cytokines and growth factors, including
vascular endothelial growth factor （VEGF）, bFGF, FGF-2, angiopoie-
tin-1 (Ang-1), monocyte chemoattractant protein-1 (MCP-1), interleukin-
6 (IL-6), and placental growth factor (PLGF), have been discovered in the
secretome of MSCs. These cytokines are released by MSCs through
paracrine signaling to stimulate angiogenesis [18,19]. Recent research
indicated that overexpressed P311 could significantly improve their
ability to promote angiogenesis by increasing VEGF production, which
partly accelerates skin wound closure and improves healing quality [70].
For tendon-bone healing, the angiogenic effect of MSCs has already been
exploited and utilized. Exosomes derived from BMSC have been
confirmed to augment tendon-bone healing after surgical reconstruction.
This augmentation is accomplished by promoting angiogenesis through
the VEGF and Hippo signaling pathways [15]. In addition to their para-
crine effects, MSCs have multi-differentiation potential, allowing them to
differentiate into cells of the mesenchymal lineage, including osteocytes,
chondrocytes, adipocytes, and hematopoiesis-supporting stromal cells.
Pankajakshan et al. treated porcine MSCs with EGM-2 and 50 ng/ml
VEGF, and discovered, through functional assays and mRNA and protein
expression analysis of epithelial cell markers, that MSCs can differentiate
into epithelial cells [62]. Promotion of angiogenesis is achieved using
appropriate strategies to manage MSCs during tendon-bone healing. As
blood vessels form, the blood supply increases, which means that more
oxygen, growth factors, and other essential nutrients would reach the
healing interface. In such advantageous conditions, the healing process of
the injured enthesis would be accelerated.

In summary, there are four noteworthy points in expediting tendon-
bone healing: anti-inflammation, osteogenesis, angiogenesis, and chon-
drogenesis. As multi-potent seed cells, MSCs have drawn intense research
interest because of their multi-lineage differentiation ability, immune-
modulating function, paracrine effect, and many other advantages.
Their superior multipotency offers MSCs the possibility of providing
these four effects simultaneously (Fig. 3). In other words, the discovery of
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an ideal application method would make MSC an optimal choice for
treating RCT, ACL injuries, and other TBI injuries.

MSCs are mostly acquired from bone marrow and other organs like
the placenta, umbilical cord, amniotic fluid and membrane, skeletal
muscle, adipose tissue, lung, heart, liver, and kidneys. Because of their
self-renewal ability, multi-lineage differentiation, immune-modulating
function, paracrine effect, and many other advantages, MSCs can
enhance anti-inflammation, osteogenesis, angiogenesis, and chondro-
genesis, simultaneously benefiting tendon-bone healing.

5.2. Phenotypes of macrophages

In addition to MSCs, macrophages also play an important role in
tendon-bone healing after injury. In recent years, macrophages have been
increasingly characterized as multifunctional and plastic cells [77].
Macrophages can transform their phenotype according to the cellular and
molecular compositional changes in their surrounding microenviron-
ment, a phenomenon called “polarization.” [78] After transformation,
macrophages with different phenotypes exhibit different expression
levels of genes to secrete appropriate cytokines and express necessary
receptors to adapt to the changing environment (Table 2). Most scholars
agree that regarding the polarization of macrophages, two research di-
rections should be explored: research on pro-inflammatory M1-type
macrophages and anti-inflammatory M2-type macrophages [79]. Polar-
ization occurs when macrophages are stimulated by specific signals such
as microbial products and cytokines. For example, M1 macrophages are
activated when exposed to activation stimuli such as LPS and IFNγ. They
secrete inflammatory cytokines, including interleukin (IL) 1β, 6, and 12,
tumor necrosis factor alpha (TNFα), and interferon-gamma (IFN-γ), and
promote the Th1 response. The characteristics of M2-type macrophages
contrast with those of the M1 type. Because M2 macrophages (M2-EXO)
differ phenotypically from M1 macrophages, their activation is induced
by interleukins (IL) 4, 13, 10, and 33 and macrophage colony-stimulating
factor (M-CSF). The secretome of M2-EXO express anti-inflammatory
molecules, such as IL4, IL10, and transforming growth factor beta
(TGF-β), and growth factors that induce tissue remodeling and are
responsible for their anti-inflammatory and reparative effects on the
healing process after injury [79,80]. In summary, macrophages undergo
phenotypic transformation through polarization. When polarized into
type M1, they become pro-inflammatory and cytotoxic, whereas when
polarized into type M2, they become anti-inflammatory and reparative.

Classifying macrophages into M1 and M2 types is now a well-
accepted and widely applied method for macrophage polarization
typing. However, macrophages can be further subclassified into more
subtypes. M2-EXO can be further divided into M2a, M2b, M2c, and M2d
phenotypes based on stimulation from the surrounding environment [81,
82]. M2amacrophages contribute to tissue repair and are induced by IL-4
and IL-13. They highly express CD206, decoy IL-1 receptor, and CCL17
and secrete reparative factors such as TGF-β, insulin-like growth factor
(IGF), and fibronectin [42,82,83]. M2b macrophages are induced by
co-exposure to immune complexes (IC) and IL1β or lipopolysaccharide
and have regulatory functions in vivo. As regulatory macrophages, M2b
macrophages are unique among M2-EXO because they additionally
secrete proinflammatory cytokines such as IL-1β, IL-6, and TNF-α,
whereas all M2-EXO express anti-inflammatory molecules as stated
above [83,84]. M2c macrophages are induced by IL-10 and glucocorti-
coids, and they release large amounts of IL-10 to inhibit inflammation.
They can also secrete TGF-β to promote fiber proliferation [83–85].
Furthermore, M2c macrophages highly express Mer receptor tyrosine
kinase (MerTK), which gives them the ability to phagocytose the
apoptotic cells efficiently [83,86]. The M2d phenotype of macrophages,
also known as tumor-associated macrophages (TAMs), has emerged as a
novel M2 subset in recent years [87,88]. These cells are induced by IL-6
or TLR agonists through the adenosine receptor [81,88]. It has been
proven that they contribute to angiogenesis and lymphagiogenesis in



Fig. 3. Origin of MSCs and their functions in tendon-bone healing.

Table 2
Molecular mediators involved in macrophage polarization [42,79–85,87,88].

Phenotype Inducing mediators Released molecules Functions

M1 LPS, IFN-γ IL-1β, 6, 12, TNF-α,
IFN-γ

Proinflammation

M2 M2a
M2b
M2c
M2d

IL-4, IL-13
IC, IL1β, LPS
IL-10,
Glucocorticoids
IL-6, TLR agonists

TGF-β, IGF, Fibronectin
IL-1β, IL-6, and TNF-α
…

IL-10, TGF-β
VEGF

Tissue repair
Regulation
Anti-
inflammation
Tumor-associated

LPS, lipopolysaccharide; IFN-γ, interferon-γ; IL-1β, interleukin-1β; IL-6, inter-
leukin-6; IL-12 interleukin-12; IL-4, interleukin-4; IL-13, interleukin-13; TNF-α,
tumor necrosis factor-α; TGF-β, transforming growth factor-β; IGF, insulin-like
growth factor; IC, immune complex; IL-10, interleukin-10; TLR, toll-like recep-
tor; VEGF, vascular endothelial growth factor
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gastric cancer because of the up-regulation of VEGF and VEGF-C [89].
Subtyping macrophages helps us better understand the features and
functions of macrophages. For the convenience of narration in this re-
view, their common name—M2-EXO—is used.
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5.3. Macrophages in tendon-bone healing

Inflammation is the primary response to tissue injury. Neutrophils are
the classical inflammatory cells that first reach the damaged site, fol-
lowed by monocytes, macrophages, and lymphocytes. In the earliest
phase, neutrophils at the wound site secrete cytokines that simulta-
neously recruit other types of immune cells, such as macrophages, and
promote their proliferation. Kawamura et al. discovered that M1 mac-
rophages homed to the injured site early and remained for four weeks,
whereas M2-EXO could not be detected until 11 days after surgery [22].
Subsequently, the essential function of macrophages in the tendon-bone
healing process was demonstrated in a number of animal experiments
[15,22,90,91]. (Fig. 4) In 2008, Hays et al. administered liposomal
clodronate to Sprague–Dawley rats that had undergone ACL recon-
struction with a flexor tendon autograft to decrease macrophages and
TGF-β accumulation at the tendon-bone interface. They found that
macrophages and TGF-βwere significantly diminished at the healing site,
improving the morphological and biomechanical properties at the heal-
ing tendon-bone interface [92]. More researchers have carried out ex-
periments to uncover latent relations between tendon-bone healing and



Fig. 4. Phenotypes of macrophages and their temporal distribution during tendon-bone healing.
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polarized macrophages. Dagher et al. showed that SD rats undergoing
early immobilization after ACL reconstruction exhibited fewer M1 mac-
rophages at the healing site but had more M2-EXO compared to the
control group. They demonstrated that this kind of shift between M1 and
M2-EXO contributed to the augmentation of tendon-bone healing [93].
Similarly, Gulotta et al. treated rats with TNF-α blockade after surgery to
improve tendon-bone healing and found that the number of M1 macro-
phages decreased in the experimental group [94]. In a recent study,
disulfiram (DSF) was administered to experimental animals to promote
the transition of macrophages from the M1 to M2 phenotype and
decrease the macrophage pro-inflammatory phenotype. The results
indicated less peritendinous fibrosis and more regenerated bone and
fibrocartilage at the healing sites [95]. Based on previous results, accel-
erating the transition of macrophages from M1 type to M2 type has
clinically significant benefits for the healing process.

Two directions of polarization for macrophages: (1) Pro-
inflammatory M1-type macrophages and (2) anti-inflammatory M2-
type macrophages.

During the tendon-bone healing process, macrophages transform
their phenotype into M1 in the early phase but polarize into M2 in the
late phase.

Due to deficient blood supply, the necessary oxygen, growth factors,
and other essential nutrients cannot be provided, thus slowing down
tendon-bone healing. We believe that the induction of angiogenesis is
essential for the healing process, and this view has been verified in many
studies [8,15,50]. Macrophages play an important role in tendon-bone
healing; in addition to clearing cell debris and activating and resolving
inflammation, they also have a proangiogenic function [96,97]. Macro-
phages can secrete a variety of angiogenic factors including basic fibro-
blast growth factor (b-FGF), transforming growth factor-alpha (TGF-α),
insulin-like growth factor-I (IGF-1), and human angiogenic factor
(HAF) [98]. Jetten et al. demonstrated that macrophages that polarized
towards an M2 phenotype have a higher angiogenic potential [99]. In a
recent report, researchers isolated exosomes from M2-EXO (M2-EXO)
and proved that M2-EXO could be utilized as a facilitator of angiogenesis
and regeneration in vivo [100]. The proangiogenic function of macro-
phages, especially M2-EXO, could greatly help in promoting tendon-bone
healing if used properly.

Most neutrophils undergo apoptosis and form apoptotic aggregates
that contain numerous autoantigens and cytotoxic compounds. These
substances induce an inflammatory response, causing excessive forma-
tion of tissue scars [101]. However, it has been reported that apoptotic
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cells can be endocytosed and cleared by macrophages through a process
named efferocytosis. This process can terminate apoptosis and reduce the
secretion of pro-inflammatory cytokines. This implies that macrophages
can modulate inflammatory responses after tissue injury [102]. The role
of efferocytosis in the healing process has been investigated extensively.
In a recent study, SD rats that underwent ACL reconstruction were
treated with milk fat globulin protein E8 (MFG-E8), a protein that can
bridge macrophages and apoptotic cells during efferocytosis. MFG-E8
promoted tendon-bone healing histologically and biomechanically.
This was ascribed to macrophage efferocytosis and M2 polarization
[103].
5.4. Interactions between mesenchymal stem cells and macrophages

5.4.1. MSCs affect macrophages
As a sensor and switch in the immune system, MSCs play an important

role in immune regulation. These cells prevent the activation and over-
activation of immune and inflammatory responses [20]. Similar to the
phenotypic transformation of macrophages, MSCs respond to molecules
or signals in the surrounding microenvironment to acquire a polarized
phenotype. Their polarization is mediated by TLRs expressed by MSCs
[68]. TLRs can recognize “danger signals” released from injured cells or
sites of inflammation [67]. Activation of TLRs induces the transformation
of MSCs into MSC1 (pro-inflammatory phenotype) or MSC2 (anti-in-
flammatory phenotype) based on the type of TLRs expressed on macro-
phages. TLR4 recognizes pro-inflammatory signals to mediate the switch
to the MSC1 phenotype. In contrast, TLR3 triggers a switch to an MSC2
phenotype in response to anti-inflammatory signals [21,68,76]. By virtue
of their plasticity, MSCs communicate with the inflammatory environ-
ment to modulate immune function. Studies have shown that the
macrophage phenotype is regulated by MSCs. For instance, MSCs
inhibited the activation of mouse peritoneal macrophages following LPS
stimulation but did not affect phagocytosis [104]. Similarly, Maggini
et al. demonstrated that MSCs markedly suppressed the secretion of the
pro-inflammatory cytokines TNF-α, IL-6, and IL-12p70, but increased the
secretion of the anti-inflammatory cytokines IL-12p40 and IL-10 from
macrophages after LPS stimulation [105]. Specifically, PGE2 released
from MSCs interacts with the EP2 and EP4 receptors on macrophages,
promoting the production and secretion of IL-10 and reducing inflam-
mation. The production of PGE2 is induced by iNOS and the cyclo-
oxygenase 2 (COX2) dependent pathway [106].

Some studies have shown that MSCs influence the polarization
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process of macrophages and stimulate the release of anti-inflammatory
cytokines, including TGF-β, IDO, NO, TNF-inducible gene-6 (TSG-6),
and prostaglandin-E2 (PGE2), which moderate macrophage metabolism.
These cells also induced the transformation of macrophages into the anti-
inflammatory phenotype, M2-EXO [107–112]. Previously, co-culture of
macrophages with pMSCs resulted in the transition of macrophages from
the inflammatory M1 phenotype to the anti-inflammatory M2 phenotype
[110]. Deng et al. isolated exosomes from adipose-derivedMSCs (ADSCs)
and used them to alleviate cardiac damage associated with myocardial
infarction. The results showed that exosomes promote M2 polarization to
prevent cardiac muscle injury [113]. A recent study reported that exo-
somes isolated from murine MSCs (βMSCs) pretreated with inter-
leukin-1β (IL-1β) induced the M2-like polarization of macrophages
[114]. This implies that MSCs can promote the polarization of macro-
phages to the M2 type and inhibit the M1 type. It has been proven that
the shift from M1 to M2 contributes to the augmentation of tendon-bone
healing [93–95]. Therefore, this kind of interaction between MSCs and
macrophages can control dysregulated inflammatory responses, thus
augmenting tendon-bone healing.

As a “sensor and switch of the immune system”, MSCs can facilitate
inflammatory responses in the early stages of inflammation, and most
macrophages are polarized into the M1 phenotype to induce an inflam-
matory response. However, if the inflammatory response is over-
activated, MSCs would act as inflammation suppressors, and the
induction of M2-type polarization of macrophages is one of their anti-
inflammatory effects. Several studies have shown that MSCs can influ-
ence macrophage polarization to promote tendon-bone healing. For
instance, BMSC-derived exosomes were isolated and injected into the tail
vein after rotator cuff reconstruction in rats to promote tendon-bone
healing. The results of flow cytometry and immunohistochemistry
showed that the exosomes inhibited inflammation by regulating M1
macrophages, thereby accelerating the healing process [15]. In the same
year, Shi et al. found that exosomes delivered using hydrogels promoted
the formation of fibrocartilage by increasing M2 macrophage polariza-
tion to promote tendon-to-bone healing in an Achilles tendon recon-
struction model [91]. Two years later, Xu et al. successfully extracted
exosomes from infrapatellar fat pad mesenchymal stromal cells and
injected them into a graft-to-bone interface. This resulted in high
biomechanical strength, thin graft-to-bone healing interface, and gener-
ation of more fibrocartilage and new bone ingrowth than that in the sham
and control groups. These beneficial effects were ascribed to the pro-
motion of macrophage polarization by the exosomes [69]. These findings
demonstrate a complex relationship betweenMSCs andmacrophages and
that exosomes derived from MSCs may serve as an effective tool for MSC
and macrophage cross-communication during the tendon-bone healing
process. However, the mechanism by which exosomes modulate
macrophage polarization has not been clearly defined. This calls for
further research into the pathways through which MSC-derived exo-
somes affect the phenotypic transformation of macrophages.
5.5. Macrophages regulate MSCs

Studies have shown that MSCs are activated by cytokines and factors
secreted by immune cells under inflammatory conditions. Macrophages
participate in the priming of MSCs, as an important factor involved in the
inflammatory response. Moreover, TNF-α released by M1 pro-
inflammatory macrophages triggers MSC activation, and this effect can
be augmented by the anti-inflammatory cytokine IL-10 secreted by M2-
EXO [115]. The effect of macrophages on MSCs varies with the pheno-
type. Macrophages of different phenotypes and their associated cytokines
have been reported to affect the survival and function of hMSCs. For
example, M1 macrophages and their secretome inhibit the growth and
survival of MSCs. In contrast, M2-EXO and their secretome do not alter
the growth and survival of MSCs, but they may promote these outcomes
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in some circumstances [23]. However, Vall�es et al. demonstrated that M1
pro-inflammatory macrophages promoted the attachment and migration
of MSCs by secreting TNF-α. Their results indicated that IL-10 released
from M2 anti-inflammatory macrophages enhances the progression of
MSC osteogenesis [116]. In conclusion, it seems more likely that M2-EXO
enhance the growth and survival of MSCs, whereas M1 macrophages
inhibit these processes.

Macrophages regulate the MSC differentiation process. Cell-to-cell
contact between macrophages and MSCs promotes the production of
PGE2 and COX2, both of which enhance osteogenesis. PGE2 binds to its
EP2/4 receptors on macrophages, triggering the production of a soluble
factor, oncostatin M (OSM). This factor interacts with the OSM and LIF
receptors on MSCs to enhance the expression of osteogenic genes by
activating STAT3 phosphorylation [117]. (Fig. 5) Gong et al. reported
that macrophage polarization can affect MSC to osteoblast differentia-
tion. For example, co-culture of MSC with M1 macrophages decreased
the levels of osteogenic markers, alkaline phosphatase (ALP), and bone
mineralization, but the opposite results were obtained forM2-EXO [118].
Similarly, Zhang et al. showed that M2-EXO stimulate the proliferation
and osteogenic differentiation of MSCs. They attributed this stimulatory
effect to the secretion of BMP-2, OSM, and other osteogenic factors by the
M2-EXO [119]. The function of extracellular vesicles secreted by mac-
rophages in MSC osteogenic differentiation has been investigated in
numerous studies [120,121]. Findings from such studies have shown that
M2 anti-inflammatory macrophages can modulate BMSC chondrogenic
differentiation. This effect may be attributed to the enhanced survival of
BMSCs with a high chondrogenic capacity that is induced by M2-EXO in
the co-culture system [122]. It has been reported that M1-phenotype
macrophages inhibit MSC chondrogenesis in osteoarthritis
synovium-conditioned medium [123]. However, contradictory results
were reported in another study, where M1-like macrophages promoted
chondrogenesis [124]. In summary, it is clear that macrophages regulate
MSC differentiation, but how macrophages with different phenotypes
affect MSCs remains controversial. According to most studies, more re-
searchers hold the view that M2-EXO promote MSC differentiation while
M1 macrophages do not.

Therefore, strategies to promote the effects of macrophages on MSC
differentiation may be effective in enhancing tendon-bone healing in the
future. However, the recovery of the naturally complex structure of TBI is
affected by many complex factors, and simply applying the effect of M2-
EXO on MSC differentiation to reestablish the transitional zone is far
from being advocated. Further research should be conducted to reveal
the mechanisms by which macrophages modulate the MSC differentia-
tion process.

Cytokines (PGE2, TGFβ，TSG-6) and exosomes released from MSC
can promote the polarization of macrophages to the M2 type and inhibit
the M1 type. In turn, M2-EXO enhance the growth and survival of MSCs
whereas M1 macrophages inhibit these processes. Moreover, macro-
phages affect the differentiation process of MSCs. For instance, cell–cell
contact results in the production of COX2 and PEG2. By acting on EP2/4
receptors, PGE2 induces the production of OSM from macrophages,
which interact with OSM and LIF receptors on the MSC to activate STAT3
phosphorylation and induce the expression of osteogenic genes.

6. Conclusion and future perspectives

The healing process of TBI injuries is complicated. Numerous
microenvironmental factors are involved in this process. The formation
of scars, due to excessive inflammation, instead of the natural transitional
structure weakens the biomechanical properties of the enthesis. Several
approaches that inhibit inflammation and promote angiogenesis, osteo-
genesis, and chondrogenesis have been proposed to improve the outcome
of tendon-bone healing. Notably, both MSCs and macrophages play an
important role in the tendon-bone healing process, and several links have



Fig. 5. Interactions between MSCs and macrophages during tendon-bone healing.
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been reported between these two types of cells. MSCs have been widely
applied in regenerative medicine because of their multidirectional dif-
ferentiation potential and immunomodulatory function, especially in the
tendon-bone healing field. In addition, macrophages with different
phenotypes secrete diverse cytokines, molecules, and extracellular vesi-
cles that mediate communication within the inflammatory environment,
thereby influencing the healing process of tendon-bone injury. Moreover,
MSCs can promote the polarization of macrophages to the M2 anti-
inflammatory phenotype, thereby suppressing excessive inflammatory
responses at the injury site and reducing scar formation. This theory has
been applied to promote tendon-bone healing in previous studies.
Additionally, M2-type macrophages can stimulate the proliferation and
differentiation of MSCs. Therefore, strategies that suppress inflammation
and enhance osteogenesis, chondrogenesis, and angiogenesis by utilizing
the interactions between macrophages and MSCs can be effective in
inducing the reestablishment of the transitional structure of the enthesis
to some extent. In the future, investigation of the interactions between
macrophages and MSCs to generate ideas for developing macrophage
activators to promote tendon-bone healing is required.
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