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COMMENTARY

Phylogenetic profiling in eukaryotes comes of age
David Moia,b,1 and Christophe Dessimoza,b,1

As sequencing efforts uncover more and more of the stag-
gering diversity of our biomes, we face the challenge of 
ascribing biological functions to many uncharacterized 
genes. Phylogenetic profiling exploits the coevolutionary pat-
terns of genes involved in the same biological processes and 
interactions. In 1999, the pioneering work of Pellegrini et al. 
(1) introduced this analytical method in PNAS, demonstrating 
that correlated presence or absence of a gene will often point 
to metabolic, regulatory, or physical interaction between dif-
ferent proteins. Twenty-four years later, in this issue of 
PNAS, Dembech et al. (2) show how far phylogenetic profiling 
has come. The work embodies advances both at the meth-
odological level and in the way phylogenetic profiling drives 
new hypotheses and directs confirmatory experiments.

Here, we recap some of the key biological and methodo-
logical milestones culminating in the contribution by 
Dembech et al. (2) and share some thoughts on open chal-
lenges to drive progress beyond it.

Revealing Increasingly Complex Eukaryotic 
Networks

Sequencing efforts from projects such as the Darwin Tree of 
Life and the European Reference Genome Atlas have resulted 
in a proliferation of quality eukaryotic genomes. Thanks to 
these mounting data, we are progressing from the initial 
success of relatively simple prokaryotic pathways to resolving 
interactions between individual proteins in large modular 
complexes with fuzzier network boundaries often found in 
eukaryotes.

Four studies stand out for demonstrating the potential of 
large-scale profiling in eukaryotes. In a landmark study pub-
lished in 2013, Tabach et al. (3) profiled 86 eukaryotes and 
identified and experimentally validated 80 factors of the 
RNAi machinery. Scaling up to 177 eukaryotes, Dey et al. (4) 
inferred a larger set of interacting genes (“modules”), iden-
tifying and validating missing components of the actin-nu-
cleating WASH complex and cilia/basal body genes. Next, 
van Hoeff et al. (5) showed that individual modules of the 
kinetochore can be resolved using comparative genomics 
and profile comparisons. Their carefully curated dataset 
shows the clear signal of coevolution between parts of a 
known complex. This complex structure underwent modular 
addition and deletion of components that are peripheral to 
the core machinery, with each submodule reflecting a 
clade-specific adaptation. Equally striking is the example of 
ciliary genes from Nevers et al. (6), where all genes in ciliated 
and nonciliated lineages followed different evolutionary tra-
jectories, showing interesting neofunctionalization and loss 
patterns.

In line with these studies, Dembech et al. focused their pro-
filing efforts on characterizing a specific system: the animal 
purine degradation pathway. The last step of the pathway, 

which involves the formation of glyoxylate and urea from 
ureidoglycolate, was known to exist, but the enzyme respon-
sible for catalyzing this step was unknown in animals. Their 
search led them to interesting candidates, which were then 
experimentally validated. This illustrates the usefulness of pro-
filing in filling gaps in our knowledge and revealing unknown 
biology that may have evaded other screening methods.

Improving Methods for the Era of Big Data
At a methodological level, profiling techniques have steadily 
progressed since their inception (Fig. 1). In Pellegrini et al.’s 
original approach, the term “phylogenetic profiling” was argu-
ably a misnomer, since there was no phylogeny involved: The 
profiles of gene presence/absence in each species were con-
structed without accounting for any phylogenetic relation-
ships among the species. Simplifying assumptions are 
needed to strike a balance between the level of detail in the 
representation of protein families’ evolutionary histories and 
computational feasibility of comparing or searching among 
profiles. Simple presence and absence of each homologous 
family in extant species remain commonly used today, par-
ticularly with prokaryotes, where rampant horizontal gene 
transfer challenges tree-based models. Presence–absence 
robustly represents the co-occurence of the different clusters 
of functionally related genes but is vulnerable to bias when 
the input set of genomes used for the analysis is highly unbal-
anced in terms of taxonomic representation.

By contrast, encoding trees as vectors allows for compu-
tational tractability in tree comparisons while integrating 
features that can only be represented on a taxonomic tree. 
For example, in addition to considering the presence or 
absence of a family, we could also incorporate information 
on copy number, duplications, and the gain or loss of paral-
ogous subfamilies. Further refinements can be made to vec-
tor representations by projecting them to spaces where 
comparison or retrieval of profiles is highly efficient (7). Other 
methods such as using a truncated singular value decompo-
sition of the profiling vector can also project the data to a 
lower dimensional space and attenuate redundant signals 
coming from clades that are overrepresented in an input 
dataset of profiles (8).
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Dembech et al.'s method of profiling is centered around 
a cotransition (“cotr”) score and focuses on the signal of loss 
and gain throughout evolutionary history. Unlike other pro-
file representations that will categorize all “housekeeping” 
genes together based solely on their ubiquitous presence, 
the cotr score considers only changes in the presence and 
absence signal over the tree of life, revealing potentially 

sparse patterns of tandem losses or gains that would other-
wise be insignificant. The approach is also effective for iden-
tifying proteins that neofunctionalize during the evolution of 
a clade and enter new subnetworks. Such emerging proteins 
often have largely uncorrelated patterns throughout much 
of the tree but show informative coevolutionary signals after 
the neofunctionalization event when compared using this 
approach.

Other recent papers have proposed more computationally 
intensive models that consider annotated taxonomies with 
the events represented on different branches (e.g., ref. 9). 
Tree topology can also provide valuable insights, with corre-
lated branch lengths or sequence dissimilarity indicating 
selective pressures acting on multiple genes simultaneously 
(10). Finally, using the vector or tree representations as input 
for machine learning approaches is starting to take off. Stupp 
et al. (11) reported that when considering the interactions 
within a specific clade of the species tree, gradient-boosted 
decision tree–based regression is able to outperform explicit 
vector distances and vector distances projected using singu-
lar value decomposition.

Each of these profile representations and the associated 
comparison techniques presents a tradeoff between speed 
and precision. Each approach has varying suitability for 
answering specific biological questions and describing net-
work evolution at particular time scales, and each has differ-
ent limits on the number of genomes that can be included 
in the analysis.

Profiling across Time and Space to 
Reconstruct Ancestral and Environmental 
Networks
Looking ahead, open questions regarding eukaryotic biology 
range widely in their evolutionary time scales. The debate 
on what biological processes the last eukaryotic common 
ancestor was endowed with is still largely open (12). The 
same can be said of ancestral taxa such as fungi and meta-
zoa. Finally, we can consider more recent phenomena such 
as the evolution of diverse clades such as birds or beetles, 
retrace the evolution of their phenotypes, and attempt to 
match transitions at the phenotypic level to a particular evo-
lutionary signature at the genetic level. Profiling allows us to 
consider all of these questions that would be prohibitive to 
carry out considering the combinatorial possibilities of inter-
actions of thousands of protein families within thousands of 
nonmodel organisms.

Furthermore, metagenomics has opened up new avenues 
for studying microbial diversity and understanding their met-
abolic capabilities. However, a significant proportion of the 
genomes of microbes in the environment remain uncharac-
terized, making it even more difficult to understand the inter-
actions and relationships between them. These “dark 
networks” represent a treasure trove of novel biology waiting 
to be described.

By studying the relative abundances of organisms in 
metagenomic samples, it is possible to reconstruct ecological 
networks in much the same way phylogenetic profiling 
detects proteomic interactions (13). These ecological rela-
tionships can be explored further at the proteome level, by 
finding the evolutionary signatures of the metabolically 
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Fig. 1. Timeline of selected phylogenetic profiling advances with a focus on 
eukaryotes. Since Pellegrini et al.’s pioneering paper, advances in phylogenetic 
profiling have been made in terms of method development (and in particular 
profile representation), size of the datasets processed, and the kinds of 
systems studied—from genome-wide enrichment of known associations to 
reconstructing complex systems such as protein complexes and interaction 
networks. Novel milestones in terms of profiler, size, and system are depicted 
where applicable. Owing to space limitations, this list is necessarily incomplete 
and subjective; we apologize to authors whose valuable work is not included.
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complementary roles that organisms assume in their eco-
logical niche. With improvements in profiling methods’ scal-
ability, we may soon be able to deal with large-scale 
interaction networks at this scale. We may begin to under-
stand the metabolic flows throughout an entire ecosystem 
and adapt conservation and bioremediation approaches in 
concert with these dynamics. A deeper understanding of 
dark networks also has great potential in industrial applica-
tions such as new enzymes or the repurposing of natural 
products as drugs. However, all of these potential applica-
tions are dependent on knowing what the constituents of 
the networks are and who they interact with.

The Need for Usability, Standards, and 
Community
Methodological advances should result in new biological dis-
coveries. To see widespread adoption of cutting-edge tech-
niques, we must also focus on the usability of our methods. 
So far, profiling efforts have largely been one-shot affairs, 
with little in the way of command-line tools, software pack-
ages, and web servers. The availability of profiling databases 
and easy-to-use and interoperable tools will greatly acceler-
ate the pace of adoption of these methods. Serving predic-
tions online will also increase their visibility but presents its 

own set of challenges. Notably, the STRING database system-
atically includes co-occurrence scores produced by the 
Singular Value Decomposition-phy (SVD-phy) method as part 
of the potential evidence channels supporting the interac-
tions in their database (8). OrthoInspector (14) and the OMA 
orthology database from our lab (7) also offer phylogenetic 
profiling search functionality.

Furthermore, there is a noticeable absence of a cohesive 
community centered on phylogenetic profiling research. Other 
communities often rely on benchmarking datasets and com-
petitions to compare performance across different tasks but 
these standards are not yet established in phylogenetic pro-
filing. As this technique gains recognition and proves its value, 
it is essential to establish clear standards, practices, and com-
munity competitions similar to the Critical Assessment of pro-
tein Structure Prediction (CASP) (15), the Critical Assessment 
of Functional Annotation (CAFA) (16), or the Quest for Orthologs 
benchmarking efforts (17). This will facilitate the comparison 
of performance across different methods and tasks as well as 
helping a community to form around the methods, ultimately 
advancing the field.
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