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Abstract 

Defining clusters of epidemiologically related infections is a common problem in the surveillance of infectious disease. A popular 
method for generating clusters is pairwise distance clustering, which assigns pairs of sequences to the same cluster if their genetic 
distance falls below some threshold. The result is often represented as a network or graph of nodes. A connected component is a set 
of interconnected nodes in a graph that are not connected to any other node. The prevailing approach to pairwise clustering is to map 
clusters to the connected components of the graph on a one-to-one basis. We propose that this definition of clusters is unnecessarily 
rigid. For instance, the connected components can collapse into one cluster by the addition of a single sequence that bridges nodes in the 
respective components. Moreover, the distance thresholds typically used for viruses like HIV-1 tend to exclude a large proportion of new 
sequences, making it difficult to train models for predicting cluster growth. These issues may be resolved by revisiting how we define 
clusters from genetic distances. Community detection is a promising class of clustering methods from the field of network science. A 
community is a set of nodes that are more densely inter-connected relative to the number of their connections to external nodes. Thus, 
a connected component may be partitioned into two or more communities. Here we describe community detection methods in the 
context of genetic clustering for epidemiology, demonstrate how a popular method (Markov clustering) enables us to resolve variation in 
transmission rates within a giant connected component of HIV-1 sequences, and identify current challenges and directions for further 
work.
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This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction
Identifying groups of closely related infections is a common prob-
lem in epidemiology. The distribution of infections in space or 
time is often used as proxy for their epidemiological relationships. 
In other words, infections that were sampled in a similar loca-
tion, at a similar time, or both, may share a common source. 
The genetic similarity of infections can be a more convenient or 
informative proxy than space or time, particularly for infections 
that can establish a persistent, chronic infection; that can remain 
undiagnosed as an asymptomatic infection; and/or with a rela-
tively low rate of transmission. For instance, there is an abundance 
of genetic clustering studies characterizing patterns of transmis-
sion of HIV-1 (Grabowski and Redd 2014) and hepatitis C virus 
(Lamoury et al. 2015). Moreover, genetic sequences are often rou-
tinely collected as a part of public health surveillance and the 
clinical management of infections.

There is now an extensive literature on the use of ‘molec-
ular’ or ‘genetic’ clusters to characterize patterns of transmis-
sion in a population (Poon 2016; Hassan et al. 2017). Clustering 
on the basis of the pairwise distances among sequences (Balfe 
et al. 1990; Aldous et al. 2012), as measured by a genetic dis-
tance (d) is especially popular in part because these distances 

can be relatively fast to compute. Moreover, pairwise distances 

are immutable quantities; unlike phylogenies, they do not change 
with the addition of sequences to the database. Any pair of 
sequences that have a distance below some threshold are assigned 

to the same cluster. We can describe this process more formally 
as follows: consider a complete graph 𝐺 = (𝑉 ,𝐸), where each ver-

tex 𝑣 ∈ 𝑉 represents a sequence or an individual infection. Every 

edge 𝑒(𝑣,𝑢) ∈ 𝐸 between vertices 𝑣,𝑢 ∈ 𝑉 is weighted by the genetic 

distance between the respective sequences, 𝑑(𝑣,𝑢). Applying a dis-

tance threshold 𝑑max yields a subgraph of G that retains the full 

set of vertices and a reduced set of edges, 𝐺′ = (𝑉 ,𝐸′), where

𝐸′ = {𝑒(𝑣,𝑢) ∈ 𝐸 ∶ 𝑑(𝑣,𝑢) ≤ 𝑑max}.

A connected component is a maximal subgraph 𝐺𝑐 = (𝑉𝑐,𝐸𝑐) of 
G such that any vertex 𝑣 ∈ 𝑉𝑐 can be reached from any other ver-
tex 𝑢 ∈ 𝑉𝑐 through a path of edges in 𝐸𝑐 ⊆ 𝐸. Any given Gc cannot 
be contained within a larger connected component. Although it is 
seldom stated explicitly, studies that use pairwise genetic clus-
tering almost always define clusters as connected components 
of at least two or more vertices. Thus, even though a single ver-
tex is considered a component in graph theory, it is generally not 
interpreted as a cluster of size one in the context of infectious 
disease. Indeed, these ‘non-clustered’ vertices are often excluded 

mailto:apoon42@uwo.ca
https://creativecommons.org/licenses/by/4.0/


2 Virus Evolution

Figure 1. Visualizations of the graphs generated by applying thresholds of 𝑑max = 0.015 (left) and 𝑑max = 0.03 (right) to the pairwise distance matrix for 
𝑛 = 2,915 HIV-1 sequences from Dennis et al. (2018). The graph layouts were generated using the ‘neato’ algorithm in GraphViz (Ellson et al. 2001). Each 
point represents an HIV-1 infection, with its area scaled in proportion to its year of sampling. Points are colored red (non-blue) if the infection was 
sampled in the most recent year of the study (2015), and blue otherwise.

from visualizations of the connected components. This separa-
tion of vertices into clustered and non-clustered categories is 
frequently used as a surrogate binary variable to assess poten-
tial transmission risk factors through logistic regression (Aldous 
et al. 2012; Poon et al. 2015; Ragonnet-Cronin et al. 2019). The size 
and composition of the connected components are determined 
by the distance threshold. With increasing values of 𝑑max, the 
vertices gradually coalesce into one giant connected component. 
Conversely, as 𝑑max approaches zero, each vertex becomes isolated 
into its own component. Thus, clustering studies employ interme-
diate thresholds that yield a number of connected components of 
moderate size. This also tends to result in a substantial number of 
unclustered vertices.

The cross-sectional and prospective analyses of genetic clus-
ters are a rapidly developing area of molecular epidemiology. For 
instance, several studies have developed models to predict the 
addition of newly diagnosed people to pre-existing clusters in 
a population database (Ragonnet-Cronin et al. 2016a; Wertheim 
et al. 2018; Bachmann et al. 2020). The ability to predict where 
the next cases will appear in the population would have tangi-
ble public health applications (Billock et al. 2019), providing more 
timely and actionable information than the retrospective charac-
terization of cluster growth in the past. It also provides a statistical 
basis for optimizing 𝑑max to given population (Chato, Kalish and 
Poon 2020). In our previous work, however, we also observed that 
a substantial fraction (> 50%) of sequences representing new diag-
noses did not become connected to any clusters at typical distance 
thresholds, making them impossible to predict.

Our postulate is that the conventional practice of defining clus-
ters from connected components is a limiting and unnecessary 
constraint on this predictive application of molecular epidemiol-
ogy. Specifically, there are several studies in network science that 
have developed algorithms that can further partition connected 
components into smaller clusters (Fortunato 2010; Leskovec et al. 
2009; Karrer and Newman 2011). These are known as community 
detection methods. For example, the Louvain algorithm (Blondel 
et al. 2008) employs a ‘bottom-up’ heuristic to search for the 
assignment of vertices to clusters that maximizes the modularity 

of the graph. Modularity is a statistic that compares the observed 
number of edges within clusters to a random graph (Newman 
2006). Community detection methods are predominantly associ-
ated with the analysis of large social networks (Bedi and Sharma 
2016), particularly in relation to social media (Papadopoulos et al. 
2012). However, they have also been applied to biological clus-
tering problems, e.g., predicting protein function from sequence 
homology (Enright, Van Dongen and Ouzounis 2002), protein inter-
action networks (Gulbahce and Lehmann 2008), and gene expres-
sion networks (Treviño III et al. 2012). In sum, this abundant litera-
ture on community detection represents an untapped resource for 
improving applications of genetic clustering for infectious disease 
epidemiology.

2. Example application to HIV-1 sequences
To demonstrate the use of community detection for genetic 
clustering, we obtained 2,915 anonymized HIV-1 pol sequences 
from GenBank (accession numbers MH352627–MH355541). These 
sequences were used in a retrospective study of HIV-1 transmis-
sion patterns among people attending the Vanderbilt Comprehen-
sive Care Clinic in middle Tennessee, USA (Dennis et al. 2018). 
We generated a multiple sequence alignment using MAFFT ver-
sion 7.3.10 (Katoh and Standley 2013) and used the program TN93 
(https://github.com/veg/tn93) to calculate the pairwise genetic 
distances using the Tamura and Nei (1993) formula. The resulting 
graphs at thresholds of 𝑑max = 0.015 and 0.03 are displayed in Fig. 1. 
At the 1.5 per cent threshold used in the original study, only 65 
(40.1 per cent) of 162 ‘new’ nodes sampled in the last year of the 
study were connected to clusters of sequences sampled prior to 
2015. Increasing the threshold to 3.0 per cent augments this num-
ber from 62 to 118 (72.8 per cent). However, this also causes the 
graph to coalesce around a giant connected component of 1,752 
nodes. The number of connected components of size 2 or greater 
decreases from 253 to 73.

Next, we used the Poisson regression method that we previ-
ously developed (Chato, Kalish and Poon 2020) to determine the 
optimal 𝑑max threshold for these data. The underlying concept 
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Figure 2. ΔAIC profiles for connected component (red/non-blue) and 
Markov clustering (MCL, blue) methods under a range of Tamura–Nei 
(TN93) distance thresholds. More negative ΔAIC values indicate less 
information loss when incorporating additional predictor variables into 
a Poisson regression of new nodes among clusters (Chato, Kalish and 
Poon 2020). Each point represents one of 420 parameter combinations, 
specifically the distance threshold (𝑑max) and the expansion (k) and 
inflation (r) parameters of the MCL method. Solid lines correspond to 
cubic smoothing splines fit to each set of points.

is that the optimal threshold should yield a distribution of new 
nodes among connected components (as clusters) that we can pre-
dict the most accurately, based on measurable characteristics of 
those clusters. This is quantified by the difference in the Akaike 
information criteria (AIC) of two Poisson regression models. The 
null model uses only the size of a cluster as a predictor variable, 
which is equivalent to assuming that every infection has the same 
probability of being the most closely related to a new infection (at 
a distance below 𝑑max). An alternate model incorporates additional 
predictor variables, in this case the mean time since sampling for 
nodes in a cluster (Chato, Kalish and Poon 2020). We calculated 
the AIC of both models under a range of thresholds to yield a pro-
file. In short, the ΔAIC for connected components was minimized 
at 𝑑max = 0.0134 (Fig. 2), which was fairly similar to the threshold 
used in the original study (0.015). 

Finally, we applied a community detection method known as 
the Markov cluster algorithm (Van Dongen 2008) to the graphs 
obtained under varying thresholds, using the implementation of 
this method in the R package MCL (https://CRAN.R-project.org/
package=MCL). MCL acts on a transition matrix (P) derived from 
the graph. In our case, we start from the adjacency matrix (A) 
of the undirected graph, where: 𝐴𝑖𝑗 = 1 if there exists an edge 
between vertices i and j, and 0 otherwise; 𝐴𝑖𝑖 = 0; and 𝐴𝑖𝑗 =
𝐴𝑗𝑖 ∀ 𝑖 ≠ 𝑗. To derive P from A, we normalize the entries so that 
each column sums to 1, i.e., 𝑃𝑖𝑗 = 𝐴𝑖𝑗/∑𝑘 𝐴𝑘𝑗. Next, two different 
matrix operations are iteratively applied to P. The inflation oper-
ation takes the rth Hadamard (entry-wise) power of P, such that 
(𝑃𝑖𝑗)𝑟 = 𝑃 𝑟

𝑖𝑗 and then rescales the result so that its columns each 
sum to 1. The expansion operation takes the kth power of P by 
matrix multiplication; for example, 𝑃 𝑘 = 𝑃 𝑃 for k = 2. These oper-
ations are analogous to simulating a random diffusion process 
through the graph (Van Dongen 2008). This iterative algorithm is 
applied until it converges to an equilibrium state where the matri-
ces before and after operations are identical, or up to a maximum 
number of iterations.

We used Latin hypercube sampling to generate a uniform sam-
ple of 500 points in the space of all three parameters over the 
respective continuous ranges: 0 ≤ 𝑑max ≤ 0.6; 2 ≤ 𝑘 ≤ 25; and 2 ≤ 𝑟 ≤
25. Out of these MCL analyses, 80 (16 per cent) failed to converge to 
an equilibrium matrix after 100 iterations. These failures tended 
to be associated with 𝑑max < 0.025 or 𝑑max > 0.04. We repeated 
the Poisson regression analysis on clusters produced by the MCL 
method to generate a ΔAIC profile with respect to 𝑑max (Fig. 2). To 
minimize the effect of varying k and r on estimating the optimal 
distance threshold, we located the minimum of a cubic smoothed 
spline fit to these ΔAIC values, resulting in 𝑑max = 0.0276. This 
turned out to be very close to the threshold associated with the 
parameter combination with the lowest ΔAIC, 𝑑max = 0.028. 

The most conspicuous effect of MCL is that it partitions the 
largest connected component, which comprises 1,860 sequences 
at 𝑑max = 0.028, into 403 clusters (Fig. 3A). At this threshold, the 
largest component grows by 73 new nodes. These nodes become 
redistributed among 25 (6.2 per cent) of the clusters (Fig. 3B). 
We can also see that the clusters within this largest component 
that accumulated one or more new nodes in 2015 tended to have 
more recent sampling dates than inactive clusters of the same 
size. Thus, even though the majority of nodes have become sub-
sumed into a single giant component, we are still able to resolve 
the epidemiological variation among clusters of nodes within this 
component. Furthermore, these effects of cluster size and mean 
sampling dates on the distribution of cluster growth within the 
largest connected component can be shown to be dependent on 
𝑑max (Supplementary Fig. S2).

3. Challenges and future directions
The use of connected components has become so routine for inter-
preting the graphs defined by the pairwise distances among virus 
sequences that the term ‘clusters’ have become synonymous with 
connected components. Community detection methods provide a 
useful extension of the connected components approach because 
‘giant’ components can be broken down into more informative 
clusters. This confers greater scalability; for instance, clusters are 
sometimes used as foci for computationally intensive analyses 
(e.g., Lewis et al. 2008). As we have demonstrated above, commu-
nity detection also enables the user to relax the distance thresh-
old and thereby capture a larger proportion of observed cluster 
‘growth’ for analysis. Otherwise, an excessive number of new 
sequences become excluded from training models for forecasting 
cluster growth.

One basic challenge to incorporating community detection 
methods into the molecular epidemiology toolkit is that there 
are numerous and diverse methods to choose from. In addition 
to MCL and the Louvain algorithm, for instance, there is also 
stochastic blockmodeling (Karrer and Newman 2011), convolu-
tional neural networks (Jin et al. 2021a), and methods based on 
random fields (He et al. 2018); see Jin et al. (2021b) for a recent 
review. This may engender confusion in the field of molecular epi-
demiology, where many different genetic clustering methods have 
already been developed (e.g., McCloskey and Poon 2017; Villan-
dré et al. 2018; Han et al. 2019; Volz et al. 2020). Some public 
health agencies have already committed to a specific method of 
genetic clustering, such as the US Centers for Disease Control and 
Prevention and HIV-TRACE (Oster et al. 2018; Kosakovsky Pond 
et al. 2018). Thus, there would doubtless need to be some demon-
strable superiority of community detection over the status quo for 
these methods to see application in the public health domain. 
In addition, none of these community detection methods were 
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Figure 3. (A) Visualization of the largest connected component of HIV-1 sequences when 𝑑max = 0.028. The vertices are colored with respect to the 20 
largest clusters as determined by the MCL algorithm and gray otherwise. Unlike Fig. 1, we used the scaleable force directed placement algorithm (sfdp
in GraphViz; Hu 2005) to generate a layout of this subgraph that emphasizes the separation of clusters. A more color-accessible version with varying 
node shapes and a different layout algorithm is provided as Supplementary Fig. S1. (B) Bubble plot summarizing the number of new cases among MCL 
clusters in the largest connected component. Each point represents a cluster, with its area scaled in proportion to the number of new nodes added to 
the cluster in 2015. The smallest points, drawn in blue, represent clusters with zero new nodes. We added a random ‘jitter’ to cluster size to reduce 
overlap.

designed specifically for infectious disease epidemiology. Indeed 
we have not found any example in the literature of such methods 
being used to characterize viral transmission dynamics by clus-
tering genetic sequences—at best, there is limited prior work for 
potential users to reference.

Another potential challenge of applying community detection 
to genetic clustering studies is that the resulting clusters may 
be unstable to the addition of new data. One of the useful fea-
tures of connected components derived from pairwise distances 
is that they can only increase in size; it is not possible for a con-
nected component to decrease in size with additional data. On 
the other hand, the addition of nodes to a connected component 
may change how a community detection method partitions the 
component into clusters (network communities). The number of 
clusters within the component may even increase or decrease as a 
result. However, this problem is not exclusive to community detec-
tion methods. Connected components can become merged by the 
addition of one or more sequences that fall between the two com-
ponents, i.e., within the distance threshold to members of both 
components. Even a single new edge between two clusters is suf-
ficient to merge them into a single component. In contrast, com-
munity detection methods should be more robust to the addition 
of these intermediate nodes, since edges between the communi-
ties will remain relatively sparse. Clusters that are derived from 
phylogenies, i.e. subtree clustering methods, are also not robust to 
the addition of sequences (Chato et al. 2022). Nevertheless, char-
acterizing the sensitivity of community detection methods to the 
addition of data in the context of molecular epidemiology will be 
an important area for research.

Incorporating community detection to a clustering analysis 
can introduce more parameters to be calibrated by the user, in 
addition to distance or phylogenetic bootstrap thresholds (Hassan 
et al. 2017). The MCL method, for example, adds two parameters 
for the matrix inflation (r) and expansion (k) operations, respec-
tively. However, we found that the ΔAIC profile that we used to 

optimize the distance threshold was relatively insensitive to vari-
ation in r and k (Fig. S3). These results suggest that our ability to 
predict the distribution of new infections may be more robust to 
differences in community detection methods, although we have 
only evaluated a small number of such methods in this context. 
In addition, community detection methods may be too computa-
tionally complex to apply to large sequence data sets. For instance, 
it is not uncommon to use genetic clustering to analyze a popula-
tion database comprising tens of thousands of HIV-1 sequences or 
more (Poon et al. 2015; Ragonnet-Cronin et al. 2016b). Fortunately, 
community detection methods are often designed to handle very 
large networks (Harenberg et al. 2014), and some have already 
been adapted to distributed computing environments (e.g., Azad 
et al. 2018).

Genetic clustering can play an important role in tracking vari-
ation in virus transmission rates in near real-time (Little et al. 
2014; Poon et al. 2016). However, this emerging practice of ‘molec-
ular surveillance’ has also raised significant concerns over ethics, 
consent, and data privacy (Coltart et al. 2018). This is espe-
cially controversial for HIV-1, which remains a highly stigmatized 
infectious disease where people are criminally prosecuted for 
virus transmission. In this context, the phrase ‘community detec-
tion’ may be problematic, since it can be misinterpreted as an 
act of surveillance targeting actual communities. In many set-
tings, communities are an important source of support, infor-
mation and advocacy for people living with HIV-1 (Campbell, 
Nair and Maimane 2007). When communicating findings from 
applications of these methods to infectious disease epidemiology, 
we recommend making it clear that while community detec-
tion methods were largely developed for the analysis of social 
networks, they are being applied to networks where connec-
tions represent levels of genetic similarity between infections—
not social links. Although networks are being used in both 
contexts, they are abstractions of completely different sets of
relationships.
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Community detection methods may be especially well-suited 
for pathogens with a higher transmission rate than HIV-1, such 
as SARS-CoV-2. When the rate of transmission exceeds the rate 
of molecular evolution, there is a low probability that an infec-
tion transmitted to the next host will have accumulated one or 
more mutations. Consequently, the distribution of pairwise dis-
tances will be shifted towards zero. In the case of SARS-CoV-2 
genome sequences, setting the pairwise distance threshold to 
the equivalent of two nucleotide substitutions (about 6.7×10−5

expected substitutions per site) or more tends to result in giant 
connected components. Even at the lowest possible threshold of 
one mutation, we have found that pairwise distance clustering of 
SARS-CoV-2 genome sequences tends to yield enormous, densely 
connected components, making it difficult to identify associations 
between individual- and group-level characteristics and trans-
mission patterns. Thus, community detection may provide an 
important mechanism enabling investigators to resolve transmis-
sion patterns from genetic sequences for a much wider range of 
viruses than HIV-1 and hepatitis C virus.

Data availability
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publicly available at GenBank (accession numbers MH352627–
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org/10.5281/zenodo.7020457.
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