
INTRODUCTION

Cholesterol is the main component of the cell membrane; it aids 
cellular influx and efflux by interacting with transmembrane mol-
ecules and regulates membrane homeostasis, such as permeability 
and rigidity [1]. Cholesterol contributes to cellular trafficking and 
transmembrane signal transduction [1]. Additionally, cholesterol is 
a precursor of steroid hormones and bile acids [2, 3]. Cholesterol is 
derived from dietary sources or de novo synthesis [1, 2]. The cho-
lesterol balance is maintained by cholesterol ingestion, absorption 
in the gastrointestinal tract, synthesis, storage, and excretion [4]. 

Excessive cholesterol is stored as cholesteryl esters in lipid droplets 
(LDs) and released into the circulation as cholesterol-containing 
lipoprotein particles, including chylomicrons and very-low-densi-
ty lipoproteins (VLDL) [4, 5]. LDs are consumed by lipolysis or au-
tophagic degradation of lipids, termed as lipophagy; therefore, LDs 
regulate the intracellular cholesterol level and prevent lipotoxicity 
[5]. Dysregulated cholesterol metabolism and overload can initiate 
cellular toxicity and cell death [6]. Ectopic LDs are associated with 
the development of metabolic disorders [7]. Deficits in cholesterol 
synthesis result in cholesterol deficiency and the generation of 
toxic sterol precursors [8]. Alterations in lipid metabolism have 
also been observed in neurological diseases [9]. 

Neuropsychiatric disorders are leading causes of disability and 
morbidity and are a global burden [10, 11]. Patients with neuro-
psychiatric disorders have homeostatic imbalance [11]; therefore, 
there is a high prevalence of metabolic syndrome (MetS) due to 
obesity, dyslipidaemia, hypertension, or dysglycaemia among these 
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patients [12]. In particular, central obesity and dyslipidaemia are 
highly associated with mental illness [13]. A previous study dem-
onstrated that hypercholesterolaemia, induced by a high-choles-
terol diet, promotes cognitive impairment, including learning dis-
abilities, triggers cerebrovascular dysfunction, and induces white 
matter inflammation by astrogliosis and microgliosis [14]. Patients 
with familial hypercholesterolaemia have an increased incidence 
of mild cognitive impairment [15]. Animal models of familial 
hypercholesterolaemia manifest cognitive impairment with im-
paired blood-brain barrier (BBB) and neuroinflammation [16, 17]. 
Animal models of hypercholesterolaemia have been reported to 
present with depression and anxiety [18, 19]. Additionally, animals 
with hypocholesterolaemia display depression-like behaviours 
[20]. In a clinical study, abnormal cholesterol levels were observed 
in patients with depression, and patients with anxiety exhibited 
high cholesterol levels [21]. In the case of patients with mental ill-
ness accompanied by impaired cholesterol metabolism, improve-
ment in symptoms may be expected by restoring it. Therefore, this 
review focuses on the relationship between impaired cholesterol 
metabolism and neuropsychiatric conditions with regard to neu-
ronal dysfunction. 

Cholesterol metabolism in the brain and brain diseases

Cholesterol plays a pivotal role in the brain, where cholesterol 
levels are higher than those in other organs [2]. Unlike other pe-
ripheral organs, the brain has limited cholesterol uptake owing to 
the presence of the BBB [9]. In the brain, cholesterol supply mainly 
depends on de novo  synthesis [9]. Several enzymes, including 
3-hydroxy-3-methyglutaryl coenzyme-A reductase (HMGCR), 
synthesise cholesterol [22]. Cholesterol synthesis is controlled by 
the sterol regulatory element-binding protein (SREBP) [22]. Spe-
cifically, SREBP2 is responsible for cholesterol synthesis [22]. Resi-
dent brain cells, such as astrocytes, microglia, oligodendrocytes, 
and neurons, can regulate cholesterol metabolism [23]. During 
brain development, neurons produce large amounts of cholesterol 
[24]. However, cholesterol synthesis in neurons gradually declines 
and cholesterol produced by glial cells is supplied [23]. In particu-
lar, myelin-forming oligodendrocytes, which play an important 
role in the transmission of nerve impulses by insulating axons, 
contain higher amounts of cholesterol than other cell types in the 
brain [25]. Cholesterol is an essential constituent of the cellular 
membrane and is essential for the maintenance of lipid rafts [26]. 
Cholesterol regulates cell morphology, ion permeability, and cell-
to-cell interactions [27]. 

Impaired cholesterol metabolism is relevant to a wide spectrum 
of brain disorders and diseases [9, 26]. Abnormal brain cholesterol 
metabolism causes neurological diseases, including Alzheimer’s 

disease (AD), Parkinson’s disease (PD), and Huntington’s disease 
(HD) [27]. Low-density lipoprotein cholesterol (LDL-C) is linked 
to the neuropathology of AD [28]. Therefore, neurofibrillary 
tangles, β-amyloid, and cerebral angiopathy are significantly asso-
ciated with LDL-C levels [28]. Similarly, increased brain β-amyloid 
levels are caused by hypercholesterolaemia [29]. It has been ob-
served that in statin-free patients with PD, low LDL-C levels tend 
to be associated with a high occurrence of PD [30]. In a meta-
analysis, high levels of cholesterol and triglycerides in the serum 
had protective properties in PD [31]. Furthermore, higher plasma 
24(S)-hydroxycholesterol levels are consistent with a better olfac-
tion, and loss of smell is one of the symptoms preceding the onset 
of PD [32]. α-Synuclein-containing Lewy bodies are pathologi-
cal hallmarks of PD [22]. Cholesterol can regulate the expression 
and inclusions of α-synuclein observed in PD [22]. Extracellular 
α-synuclein attaches to the plasma membranes of neurons and 
glial cells and translocates into cells [22]. In HD, polyglutamine 
expansion is closely associated with cholesterol metabolism [33]. 
HD is accompanied by cholesterol abnormalities, including hy-
pocholesterolaemia, a decline in cholesterol synthesis, and choles-
terol deposition in neurons [33]. Additionally, the progression of 
ischaemic stroke and cerebral small vessel disease is influenced by 
hypercholesterolaemia [34]. Hypercholesterolaemia is a risk factor 
for vascular disease, which is likely to induce vascular dementia 
[35]. In addition, dysregulated cholesterol catabolism and its ca-
tabolites, such as oxysterols and bile acids, are associated with a 
risk of dementia [36]. Thus, these studies have provided important 
correlations between the cholesterol metabolism and brain health 
and diseases. 

Impaired cholesterol metabolism and neurons 

Cholesterol balance is correlated with normal neuronal structure 
and function [37-39] (Fig. 1). Cholesterol is required for axon out-
growth [37]. It is necessary for synaptogenesis and synaptic plas-
ticity [38]. Cholesterol induces synaptic development, enhances 
pre-synapse differentiation, increases synapse-associated mol-
ecules, and stabilises synaptic transmission [38, 39]. Additionally, 
neuronal cholesterol metabolism is responsible for increased den-
dritic outgrowth [39]. Therefore, cholesterol in neurons and glial 
cells influences learning and memory [23]. Defects in cholesterol 
metabolism are linked to abnormal neurological features [37-39]. 
Cholesterol deposition is deleterious to neurons [40]. A previous 
study showed that an animal model of hypercholesterolaemia ex-
hibited cognitive impairment with altered neurons in the hippo-
campus [41]. In addition, cholesterol imbalance is responsible for 
hippocampal neural degeneration, and the absence of cholesterol 
absence results in the breakdown of the neurofilament integrity 



59www.enjournal.orghttps://doi.org/10.5607/en23010

Cholesterol Metabolism and Neurons in Neuropsychiatric Disorders

[42]. High levels of cholesterol in the diet lead to impairment of 
long-term potentiation (LTP) [42, 43]. Moreover, oxygenated de-
rivatives of cholesterol, 24(S)-hydroxycholesterol, exhibit cytotoxic 
properties and induce neuronal cell death [40]. Individuals with 
hypercholesterolaemia are at risk of cognitive deficits [27]. Simi-
larly, cholesterol depletion or insufficient cholesterol in neurons 
reduces LTP and damages learning and memory [23]. Increased 
amounts of neuronal cholesterol increase endoplasmic reticulum 
stress and induce apoptotic neuronal cell death in the hippocam-
pus, resulting in the loss of cognitive function and brain atrophy 
[44]. Hence, many studies demonstrated the importance of choles-
terol metabolism in neurons [37-39, 42, 43].

Synapse requires the support of cholesterol as a source of 
presynaptic and postsynaptic membranes; that is, cholesterol is 
involved in synaptic transmission [45]. However, abnormal cho-
lesterol levels can disrupt neurotransmission [42]. In a previous 
study, rats that were fed a hypercholesterolaemic diet showed 
hypercholesterolaemia with high levels of total cholesterol, 
triglycerides, and LDL-C, which have an impact on brain cho-

lesterol metabolism [46]. As expected, cerebral total cholesterol, 
triglyceride, and LDL-C levels are elevated, and morphological 
changes in neurons with an imbalance of neurotransmitters are 
observed in the hippocampus [46]. They display increases in 
glutamate, dopamine, and N-methyl-D-aspartate (NMDA) levels, 
while gamma-aminobutrylic acid (GABA), 5-hydroxytryptamine 
(5-HT), and low-density lipoprotein receptor (LDLR) levels are 
decreased in the brain [46]. Similarly, mice induced by high-cho-
lesterol diet showed psychomotor impairment and depression-
like behaviour, accompanied by altered neurotransmitters, such 
as reductions in serotonin in the cortex and dopamine in the 
striatum [47]. Hypercholesterolaemia induced by LDLR knock-
out contributes to changes in acetylcholinesterase activity in the 
brain [48]. In contrast, cholesterol depletion leads to a decline in 
neurotransmission; for instance, evoked excitatory postsynaptic 
currents mediated by NMDA receptors (NMDAR) or α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate 
receptors (AMPAR) are altered after the deletion of cholesterol 
[45]. Cholesterol is involved in NMDAR function, including open 
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Fig. 1. Cholesterol metabolism and neurons. Cholesterol metabolism is essential for synaptic transmission, synaptic plasticity, neurite outgrowth, neu-
rogenesis, and learning and memory. FDPs, Farnesyl-Diphosphate Synthase; FDFT1, Farnesyl-Diphosphate Farnesyltransferase 1 or Squalene Synthase; 
SQLE, Squalene Epoxidase.
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probability, and NMDAR stabilisation [45]. 
Cholesterol metabolism is involved in adult hippocampal neuro-

genesis [41]; therefore, abnormal cholesterol levels lead to impaired 
neurogenesis [41]. An animal model of familial hypercholester-
olaemia by established knockout of LDLR exhibited downregu-
lated expression of cholesterol synthesis-associated genes, such as 
3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase 
(HMGCR) and squalene synthase (FDFT1) [41]. This model 
shows that adult neurogenesis is damaged in the hippocampus 
and is responsible for impaired proliferation and differentiation of 
neural precursor cells in the hippocampus [41]. 

Moreover, cholesterol dysregulation results in neurodegenera-
tion [49]. An imbalance in cholesterol levels can lead to impaired 
neural plasticity [42]. Cholesterol-fed mice display impaired LTP 
[42]. Further, action potential propagation is also influenced by 
cholesterol [45]. In a previous study, cholesterol-fed rats exhibited 
loss of synaptic plasticity and neurodegeneration [49]. After treat-
ment with 27-hydrocholesterol, hippocampal primary neurons 
showed reductions in dendritic length, dendritic spine density, and 
the postsynaptic marker PSD-95 [50]. Moreover, DNA damage 
was observed in primary hippocampal neurons after treatment 
with 27-hydrocholesterol [50]. In Cyp27 Transgenic (Tg) mice 
with high systemic expression of 27-hydrocholesterol, reduced 
spine density and dendritic arborisation were found in the hippo-
campus [50]. Moreover, structural and functional alterations were 
observed in hippocampal synapses of Cyp27 Tg mice [51]. Cyp27 
Tg mice displayed abnormally high LTP and larger dendritic 
spines in CA1 pyramidal neurons, indicating that high cholesterol 
can modify synaptic potentiation and neuronal circuits [51].

Cholesterol metabolism is important for cognitive function [16]. 
Patients with familial hypercholesterolaemia have a higher inci-
dence of cognitive impairment, which may be caused by high cho-
lesterol levels or LDLR dysfunction [15]. In addition, elderly indi-
viduals with hypercholesterolaemia (higher total cholesterol and 
LDL-C concentrations) are vulnerable to cognitive decline [52]. 
A familial hypercholesterolaemia animal model with deletion of 
LDLR showed BBB breakdown and cognitive dysfunction [16]. In 
particular, a hypercholesterolaemic diet increased the permeability 
of the BBB in the prefrontal cortex and hippocampus in wild-type 
and LDLR-deleted mice [16]. In a similar model, LDLR knockout 
resulted in impairment of spatial memory with morphological 
changes in the dentate gyrus in the hippocampus [53]. Wider syn-
aptic clefts and reduced synaptic markers were detected in the hip-
pocampus [53]. Moreover, apoptotic cell death and oedema have 
been observed in the hippocampus of LDLR deleted mice [53]. 

In another study, LDLR knockout mice exposed to high cho-
lesterol from an early age exhibited memory loss in the working, 

spatial, and procedural domains with age [48]. Furthermore, hy-
percholesterolaemia caused by knockout of apolipoprotein E with 
injection of amyloid beta promoted cognitive impairment, such as 
loss of spatial learning and memory function, after a high-fat diet 
[54]. Taken together, proper cholesterol metabolism or balance is 
essential for maintaining the normal structure and function of the 
neurons. 

Cholesterol metabolism in psychiatric disorders

Changes in cholesterol metabolism can alter mental status [55] 
(Fig. 2). Emerging evidence indicates that patients with psychiatric 
disorders exhibit abnormal cholesterol metabolism [56, 57]. An 
imbalance in serum cholesterol levels is easily observed in indi-
viduals with mood disorders [57]. Impairments of synaptic out-
growth and myelin formation due to the influence of cholesterol 
on neurotransmitters, such as serotonin receptor, GABA receptors, 
and NMDARs, affect mental condition [45, 56]. Moreover, cho-
lesterol, as the main source of steroid hormones, plays a key role 
in the activity of the hypothalamic-pituitary-adrenal (HPA) axis, 
which is involved in circadian rhythms, stress, and neuropsychiat-
ric disorders [58]. Stress is also closely associated with cholesterol 
metabolism [59]. Psychological stress leads to altered lipid levels, 
including hypercholaesterolaemia and a high incidence of meta-
bolic diseases [59]. Under stress conditions, individuals display 
increased serum cortisol, total cholesterol, LDL-C, and adrenaline 
levels [60]. Stress contributes to activation of the HPA axis, which 
is known to regulate glucocorticoid levels [61]. On the basis of 
previous literatures, cholesterol metabolism is critical for mental 
health [55-57].

Major depressive disorder (MDD)

MDD is common and leads to poor quality of life [62]. MDD 
is diagnosed using criteria, such as the Diagnostic and Statisti-
cal Manual of Mental Disorder (DSM-5) and Patient Health 
Questionnaire-9 (PHQ-9), and is characterised by impairment of 
functioning, including home or work life, and inability of personal 
care [63, 64]. MDD symptoms include changes in weight, abnor-
mal sleep patterns, and psychomotor problems, and persistent 
depression and sadness [63]. Multiple studies demonstrated that 
genetic, environmental, and psychological components can lead 
to the development of MDD [65, 66]. The pathogenesis of MDD 
is associated with abnormal neurotransmitters, neural plastic-
ity, an impaired immune system, and dysregulation of the HPA 
axis [66]. In addition, abnormal monoamine neurotransmitters, 
including serotonin, norepinephrine, and dopamine, are associ-
ated with MDD [67]. It has been demonstrated that the serotonin 
receptor 5-HT2A is highly expressed in patients with MDD [66, 
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68]. High cholesterol levels are responsible for the low sensitivity 
of 5-HT receptors and suppression of dendritic branching [21]. 
A disrupted dopamine system contributes to anhedonia, found 
in MDD patients, and animal models of depression display dys-
regulated dopaminergic systems [69, 70]. Altered norepinephrine 
neurotransmission is involved in MDD [70]. 

In particular, compromised cholesterol metabolism is a 
pathomechanism of MDD [57]. For instance, patients with hy-
perlipidaemia are vulnerable to depression [71], and depressive 
patients exhibit high levels of plasma cholesterol, which contribute 
to brain damage [72]. High serum LDL-C levels have been de-
tected in patients with depression, and these levels correlate with 
depression severity [73]. This relationship is not limited to a spe-
cific age group but appears in various age groups [74]. Depressive 
adolescent males (aged 12~18 years) show that depressive mood 
is related to high levels of serum LDL-C [74]. In the elderly male 
population, depressive mood is closely associated with lower levels 
of LDL-C in serum [75], although a recent study using data from 
the National Health and Nutrition Examination Survey showed no 
correlation between depressive mood and low cholesterol levels, 
including low total cholesterol, low LDL-C, and low high density 
lipoprotein (HDL)-C levels in both women and men [76]. That is, 
abnormally high or low cholesterol levels are linked to depression 
[74, 75]. Patients with MDD and hypercholesterolaemia exhibit 
poorer outcomes in spite of antidepressant drug than those with-
out hypercholesterolaemia, and high levels of cholesterol result in 

decreased serotonin receptors [57]. A previous study showed that 
serum cholesterol levels are closely related to polymorphisms in 
the promoter region of the serotonin transporter gene in neurons 
[77]. In addition, MDD patients manifest changes in white matter, 
which mostly consists of myelinated nerve fibres, and show abnor-
mal cerebral blood flow (CBF) and BBB [78]. Magnetic resonance 
imaging (MRI) reveals that patients with MDD show abnormally 
low myelin content in brain regions, including the nucleus accum-
bens, medial prefrontal cortex, insula, lateral prefrontal cortex, and 
subgenual anterior cingulate cortex [79]. In particular, the myelin 
contents of the lateral prefrontal cortex, insula, and whole brain re-
flect the severity of depression [79]. SREBP-2 was decreased in the 
hippocampus of an animal model of depression, thereby reducing 
of cholesterol synthesis [80]. Hypercholesterolaemic mice with 
knockout of the LDLR show depression-like behaviour and altered 
monoaminergic metabolism [17]. In contrast, HMGCR inhibitors, 
statins, which are cholesterol-lowering drugs, have an impact on 
the treatment of depression [81]. Statins can decrease cholesterol 
de novo synthesis and reduce steroid hormone precursors, such as 
cortisone and corticosterone [82]. In addition, statins are involved 
in the regulation of serotonin receptor dynamics, leading to the 
upregulation of serotonin levels in the hippocampus [81]. Given 
these studies, cholesterol dysregulation has been implicated in the 
neurological abnormalities found in MDD. 

Abnormal Cholesterol Metabolism

Healthy brain Neuropsychiatric disorders

S

Fig. 2. The relationship between 
abnormal cholesterol metabo-
lism and neuropsychiatric dis-
orders. Cholesterol imbalance 
is involved in aberrant neuro-
transmission, dysregulated HPA 
axis, altered brain morphology, 
changes in steroid hormone and 
abnormalities in learning and 
memory. HPA, Hypothalamic-
pituitary-adrenal.
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Anxiety disorders

Anxiety disorders are common and occur at various ages rang-
ing from childhood to adulthood [83]. Anxiety disorders are co-
morbid with MDD [83, 84]. Anxiety disorders include generalised 
anxiety disorders (GAD), panic disorder, posttraumatic stress dis-
order (PTSD), and social anxiety disorder [85]. Anxiety disorders 
are characterised by persistent and excessive anxiety or fear, avoid-
ance behaviour, and unexpected treats [84, 86]. Physical charac-
teristics include dizziness and irregular heart rate [86]. DSM-5, the 
International Classification of Diseases, Tenth Edition (ICD-10), 
or Generalized Anxiety Disorder-7 is used to diagnose an anxiety 
disorders [86, 87]. The pathogenesis of anxiety disorders includes 
disruptions in neurotransmission, neuronal structure, and neuro-
endocrine systems [85]. Lower inhibitory actions of GABA and 
higher excitatory actions of glutamate are observed in patients 
with anxiety disorders than healthy controls [85]. Similar to MDD, 
abnormal serotonin, dopamine, and norepinephrine levels are 
found in patients with anxiety disorders [85]. Patients with GAD—
a common type of anxiety disorder—experience insomnia, irrita-
bility, or fatigue and show aberrant functional activity or structural 
connectivity in brain regions, including the hippocampus, pre-
frontal cortex, and amygdala [88, 89]. In GAD, the ventrolateral 
prefrontal cortex is activated compared to healthy controls, which 
correlates with symptom severity [85]. Activation of the amygdala 
and insula is detected under negative emotional conditions [85], 
and abnormalities in GABA and serotonin have been detected in 
patients with GAD [90]. Patients with GAD have lower levels of 
serotonin in the cerebrospinal fluid (CSF) compared to heathy 
controls [90]. Patients suffering from panic disorder display re-
duced cerebral blood flow in the temporal lobe [91], lower GABA 
levels in the brain regions, such as the basal ganglia and anterior 
cingulate [92], and decreased/disrupted serotonin type 1A recep-
tor function [93]. Additionally, patients with panic disorder tend 
to present excessive amounts of 5-HT and/or serotonin receptor 
hypersensitivity [93]. Also, patients with PTSD exhibit abnormali-
ties in fear memory, emotion regulation, and threat regulation, as 
well as abnormal activity of the amygdala [94]. Aberrant volumes 
of brain regions, such as the hippocampus and anterior cingulate, 
and abnormal functions of brain regions, such as the amygdala 
and medial prefrontal/anterior cingulate, appear in PTSD [95]. It is 
known that PTSD is related to chronic dysregulation of the HPA 
axis, including increased levels of corticotropin-releasing hormone 
(CRH) in CSF and insensitive adrenocorticotropin (ACTH) [95]. 
Also, changes in serotonin neurotransmission have been observed 
in patients with PTSD [95]. For instance, decreased concentration 
of 5-HT in serum and reduced density of 5-HT1B receptor in the 
brain appear in PTSD [96, 97]. 

Cholesterol dysregulation is also one of the main pathological 
factors in anxiety disorder [18]. In GAD, high levels of cholesterol 
and triglycerides are detected in the serum owing to the elevated 
activity of noradrenaline [98]. Moreover, patients with comorbid 
GAD and MDD display elevated levels of total cholesterol and 
LDL-C [99]. Similarly, hypercholesterolaemia due to enhanced 
noradrenergic activation occurs in individuals with panic disorder 
[100], indicating the elevation of autonomic arousal [101, 102]. 
Patients with PTSD have increased levels of serum cholesterol, 
triglycerides, and LDL [103]. In a preclinical study, adult rats 
with high total cholesterol and LDL-C levels after feeding a high-
cholesterol diet showed anxiety-like behaviour with lower levels 
of hippocampal brain-derived neurotrophic factor (BDNF) [104]. 
The reduction of 5-HT is obvious in the hippocampus of adult 
rats that were fed a high-cholesterol diet [104]. Another study 
demonstrated that a high-cholesterol diet induces anxiety- and 
depression-like behaviour in mice and promotes an increased 
concentration of 5-HT in the hippocampus [105]. In particular, 
5-HT2A receptor expression is elevated in the hippocampus af-
ter a high-cholesterol diet; however, in the prefrontal cortex and 
hypothalamus, 5-HT2A receptor expression is reduced despite 
high-cholesterol feeding [105]. There is an evidence that high cho-
lesterol is responsible for anxiety disorders via changes in GABA 
receptor sensibility [21]. Therefore, neurological malfunctions in 
anxiety disorders are closely associated with cholesterol metabo-
lism.

CONCLUSION

Although an appropriate concentration of cholesterol is neces-
sary to sustain various neurophysiologies, it remains controversial 
whether plasma cholesterol level correlate with brain function and 
behaviour. Moreover, cholesterol in the brain is metaboised inde-
pendently of the rest of the body [106]. Further research is needed 
to elucidate the link. However, accumulating evidence shows that 
cholesterol imbalance due to over- or under- supply of cholesterol 
or a dysfunctional cholesterol metabolic system results in neuro-
pathologies, which can contribute to the development of different 
neuropsychiatric disorders. Impairment of cholesterol metabolism 
is associated with neuronal dysfunction, such as abnormal neurite 
outgrowth, and dysregulated neurotransmission, and neuronal 
cell death in the central nervous system. Balancing cholesterol me-
tabolism may be a novel way to resolve neurological symptoms in 
patients with neuropsychiatric disorders.
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