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Abstract

Introduction: Data-driven approaches to transcranial magnetic stimulation (TMS)

might yield more consistent and symptom-specific results based on individualized

functional connectivity analyses compared to previous traditional approaches due to

more precise targeting. We provide a proof of concept for an agile target selection

paradigm based on using connectomic methods that can be used to detect patient-

specific abnormal functional connectivity, guide treatment aimedat themost abnormal

regions, and optimize the rapid development of new hypotheses for future study.

Methods: We used the resting-state functional MRI data of 28 patients with medi-

cally refractory generalized anxiety disorder to performagile target selection based on

abnormal functional connectivity patterns between theDefaultModeNetwork (DMN)

andCentral ExecutiveNetwork (CEN). Themost abnormal areas of connectivitywithin

these regions were selected for subsequent targeted TMS treatment by a machine

learning based on an anomalous functional connectivity detection matrix. Areas with

mostly hyperconnectivitywere stimulatedwith continuous theta burst stimulation and

the converse with intermittent theta burst stimulation. An image-guided accelerated

theta burst stimulation paradigmwas used for treatment.

Results:Areas 8Av and PGs demonstrated consistent abnormalities, particularly in the

left hemisphere. Significant improvements were demonstrated in anxiety symptoms,

and few, minor complications were reported (fatigue (n= 2) and headache (n= 1)).

Conclusions: Our study suggests that a left-lateralized DMN is likely the primary

functional network disturbed in anxiety-related disorders, which can be improved
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by identifying and targeting abnormal regions with a rapid, data-driven, agile aTBS

treatment on an individualized basis.
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1 INTRODUCTION

While it is increasingly accepted that transcranial magnetic stimu-

lation (TMS) is a safe and effective option for many patients with

mental illnesses, most notably patients with treatment-resistant major

depression (MDD); patient responses to TMS treatments are highly

variable (Berlim et al., 2017; Blumberger et al., 2018; Jannati et al.,

2017). Many patients do not respond to standard approaches, such

as the traditional craniometric targeting of the dorsolateral prefrontal

cortex (DLPFC), and patients who do respond do not show resolu-

tion of all symptoms (Fox et al., 2013, 2012; Johnson et al., 2013;

Weigand et al., 2018). One possible explanation for these differen-

tial patterns of response may be that these disorders demonstrate

significant heterogeneity between patients, likely reflected in het-

erogeneous abnormalities of functional connectivity (Clementz et al.,

2015; Drysdale et al., 2017; Nestler & Hyman, 2010). Indeed, given

the often-diverse range of connectivity anomalies seen in patientswith

mental illnesses, it may be that different symptoms of a disorder might

each result from different, unique network abnormalities that need to

be addressed individually rather than in a singular diagnosis protocol

(i.e., the transdiagnostic hypothesis ofmental illness canbeextended to

connectomics) (Drysdale et al., 2017; Siddiqi et al., 2020). For instance,

MDD includes symptoms of both anxiety and anhedonia, but these two

symptoms localize to different brain circuits and respond best to dif-

ferent TMS targets (Siddiqi et al., 2020). Given that patient-specific

differences in underlying cortical networks influence the location of

TMS stimulation targets, current, standard of practice TMS targeting

based on general scalp measurements can provide limited benefits in

patientswith awide symptomprofile.Data-driven approaches canpro-

vide consistent, empirical models of symptom localization based on

functional connectivity analyses that can be applied for individualized

TMS targeting.

In patients with depression, data on group-average connectivity

(“group maps”) can identify coordinates that may optimize antidepres-

sant responses following TMS treatment (Fox et al., 2012). However,

limitations and difficulty with the technology and models utilized in

single-subject analyses, lead to variable ideographic results that are

difficult to translate clinically (Herwig et al., 2003). While the feasi-

bility of individualized connectivity-based targeting of the left DLPFC

has been illustrated in patients with depression, similar individualized

methods have not beendemonstrated for patientswithGAD (Fox et al.,

2013). Given the significant heterogeneity in individual functional con-

nectivity in patients with GAD as well as the heterogeneity of results

in different rTMS trials utilizing group or single-subject data for TMS

target selections, the demonstration of a feasible single-subject, data-

driven, target selectionmethod for rTMS inGADpatients could inform

larger clinical trial designs in the future.

While this makes intuitive sense, most clinical TMS research

involves the use of randomized controlled trials (RCT) as a method for

hypothesis testing. This remains the gold standard for validating a clini-

cal hypothesis, there are some limitations to such an approach, notably

that it is slow, resource-intensive, and inflexibly ties researchers to

an a priori hypothesis (Bothwell et al., 2016). Additionally, for appro-

priately powered clinical trials and subsequent reviews, it requires

significant case numbers of both treatment and sham patients, and

requires replication when investigating different treatment locations

or protocols. Not only is this costly to undergo, but it requires hun-

dreds, if not thousands of individuals receiving sham treatment. We

do not suggest that implementing RCTs is not incredibly useful and

should be the gold standard, however we suggest that given the vast

investment of resources and time they involve, smaller studies inves-

tigating treatments that appear successful paired with the idea that

a more individualized approach may be the best way forward, that

smaller cohort studies can provide important insights that should not

be overlooked.

In this report, we provide a proof of concept for a different

approach, namely using an agile target selection paradigm based on

patient-specific connectomic methods to detect abnormal functional

connectivity, guided treatment aimed at the most abnormal regions,

and the rapid development of new hypotheses for future study. Using

this individualized approach in a cohort of patients with treatment-

resistant generalized anxiety disorder (GAD), we identify two regions,

left 8 Av and left PGs, which show consistent functional connectivity

abnormalities between patients, andwhichwhen treated, showed very

promising results which should be considered in future, larger clinical

trials.Moreover, given even limited success,wedemonstrate the ability

to utilize agile-connectomics-based-individualized-targeting method-

ology for rapid and personalized treatment development.

2 MATERIALS AND METHODS

2.1 Participants

Patients (n = 28) were included in this study if they had a medically

refractory anxiety disorder during a 12-month period in our outpatient

TMS clinic. Patients were not excluded if they had comorbid mental ill-

nesses or were taking prescribed medications (real-world conditions
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whereby patients were instructed to continue their medication dose

throughout treatment).Similarly, participants were included even if

their GAD-7 scores did not meet the cut-off for generalized anxiety

disorder so long as their prescribing practitioners had evidence of a his-

tory of medically refractory anxiety with persistent and ongoing symp-

toms at the timeof prescription. All participants gave informed consent

after being informedof the fMRIbased agile-targeting approach and its

difference from standard approaches.

2.2 Diffusion-weighted and Resting-State
Functional MRI acquisition

A week before treatment, all patients underwent neuroimaging. Imag-

ing studies were performed on a Phillips 3T Achieva. Diffusion-

weighted imagingwasperformedwith the following acquisitionparam-

eters: 2mm× 2mm× 2mmvoxels, FOV= 25.6 cm,matrix= 128mm×

128mm, slice thickness= 2.0mm, one nonzero b-value of b= 1000, 40

directions, gap = 0.0 mm. A resting-state functional MRI (rsfMRI) was

acquired as a T2-star EPI sequence, with 3 × 3 × 3-mm voxels, 128 vol-

umes/run, a TE = 27 ms, a TR = 2.8 s, a field of view – 256 mm, a flip

angle= 90◦ and an 8-min total run time.

2.3 Image processing pipeline

Resting-state and diffusion preprocessing was performed using the

Omniscient Infinitome software (Sydney, Australia) (Omniscient Neu-

rotechnology, 2020), which is a pipeline for machine learning–based

brain image processing pipelines. The specific details for the algorithms

are described below. In short, the pipeline is cloud-basedwhich utilizes

microservices to run custom-written Python-based scripts in a Kuber-

netes’s serverless framework. The viewing user interface (UI) platform

runs in Angular JS inside a Chrome browser, and target selection was

made in this UI.

2.4 Diffusion tractography preprocessing steps

The DT images are processed using standard processing steps which

specifically include the following steps: (1) the diffusion image is

resliced to ensure isotropic voxels, (2) motion correction is performed

using a rigid body alignment, (3) slices with excess movement (defined

as DVARS > 2 sigmas from the mean slice) are eliminated, (4) the T1

image is skull stripped using a convolutional neural net (CNN), this is

inverted and aligned to the DT image using a rigid alignment, which is

then used as amask to skull strip the DT, (5) gradient distortion correc-

tion is performed using a diffeomorphic warpingmethodwhich aims to

locally similarize the DT and T1 images, (6) eddy current correction is

performed, (7) fiber response function is estimated and the diffusion

tensors are calculated using constrained spherical deconvolution, (7)

deterministic tractography is performed with random seeding, usually

creating about 300,000 streamlines per brain.

2.5 Creation of a personalized brain map using
machine learning–based parcellations

The Infinitome Neuroscience Platform (Sydney, Australia) creates a

machine learning–based, subject-specific version of the Human Con-

nectome Project Multi-Modal Parcellation version 1.0 (HCP) atlas

based on diffusion tractography structural connectivity (Glasser et al.,

2016). This method has been described by Doyen et al. (2022). This

novel method was created by training a machine learning model on

200 normal subjects by first processing T1 andDT images as above and

has been described in our previous work (Doyen et al., 2022). An HCP

atlas in NIFTI Montreal Neurological Institute (MNI) space was then

warped onto each brain and the structural connectivity was calculated

between every pair of this atlas and a set of Region of Interest (ROIs)

containing 8 subcortical structures per hemisphere and the brainstem

based on the streamlines which terminated within an ROI. These fea-

ture vectors for each region were then used as a training set and the

data weremodeled using the XGBoost method.

This model is then applied to the new subject by first, warping the

HCP atlas to the newbrain and collecting a set of feature vectors of the

connectivity of each voxel. The feature vectors are then used to deter-

mine if each voxel belongs to a parcellation or region or not and if so to

assign the voxel to that parcellation. This creates a version of the HCP

atlas, with subcortical components, which is not dependent on brain

shape or pathologic distortion, andwhich is specific for this subject, but

comparable between subjects.

2.6 rsfMRI preprocessing

The rsfMRI images are processed using standard processing steps

which specifically include the following: (1) motion correction is per-

formed on the T1 and BOLD images using a rigid body alignment; (2)

slices with excess movement (defined as DVARS > 2 sigma from the

mean slice) are eliminated; (3) the T1 image is skull stripped using

a convolutional neural net (CNN), this is inverted and aligned to the

resting-state bold image using a rigid alignment which is then used

as a mask to skull strip the rsfMRI image; (4) slice time correction is

performed; (5) global intensity normalization is performed; (6) gradi-

ent distortion correction is performed using a diffeomorphic warping

method which aims to locally similarize the rsfMRI and T1 images; (7)

high variance confounds are calculated using the CompCor method

(Behzadi et al., 2007); these confound as well as motion confounds are

regressed out of the rsfMRI image and the linear and quadratic signals

are detrended.Note thismethoddoesnot performglobal signal regres-

sion. (8) Spatial smoothing is performed using a 4 mm full width at half

maximumGaussian kernel.
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2.7 rsfMRI correlation and anomaly detection

The personalized atlas created in previous steps is registered to the T1

image and localized to the gray matter regions. Thus, it is ideally posi-

tioned for extracting an average BOLD time series from all 377 areas

(180 parcellations × 2 hemispheres, plus 17 subcortical structures).

This yields 142,129 correlations. Outlier detection using a tangent

space functional correlation matrix was performed by comparing the

results with a subset of 200 normal subject rsfMRI samples in whom

a tangent space connectivity transformation was performed to deter-

mine the range of normal correlations for each functional connectivity

pair in thematrix. Abnormal connectivity was determined as a 3-sigma

outlier for that correlation, after excluding the highest variance 1/3 of

pairs, to further reduce the false discovery rate.

The assignment of parcellations to various large-scale brain net-

works was based on several previous coordinate-based meta-analyses

and matching the HCP parcellations to the coordinates of the acti-

vation likelihood estimation (ALE) in MNI space, which has been

previously published (or in reviewpresently) by our group (Milton et al.,

2021; Sandhu et al., 2021). Notably, a significant amount of the data on

HCPparcellations illustrated byAkiki andAbdallah (2019) contributed

to our parcel-network classification.

2.8 Method of agile target selection

We approached individual target selection by allowing the functional

connectivity data to guide the selection of targets for TMS treat-

ment with a minimal set of a priori constraints on target selection.

We started with the hypothesis that functional connectivity abnor-

malities between parcellations in the Default Mode Network (DMN),

central executive network (CEN), and/or salience network (both inside

of the network and/or outside of network) underlie commonabnormal-

ities seen in mental illnesses, including generalized anxiety disorder as

demonstrated by multiple lines of evidence (Menon, 2011). We thus

looked at the anomalous functional connectivity matrices produced

for these networks (Figure 1), looking for evidence of abnormal func-

tional connectivity. Targets were generally represented by columns

demonstratingmultiple anomalies in functional connectivitywithother

members of these three networks. These columns indicate parcella-

tions that show outlier functional connectivity with multiple other

regions of the DMN, CEN, and/or salience networks.

Importantly, we made no subjective, conscious efforts to guide any

patient to a standardized target approach. Instead, these decisions

were purely based on the objective functional connectivity data in

which connectivity anomalies outside of 3 sigmas of the normal range

from 200 healthy rsfMRI data were chosen as TMS targets.

We generally aimed to identify two to three targets. Whenever

present, we usually put a slight priority on identifying areas in the

DLPFC, based on prior work in the field as a biasing factor (Diefenbach

et al., 2016; Siddiqi et al., 2020).

We used the anomalous functional connectivity algorithm to guide

the selection of intermittent theta burst stimulation (iTBS) or con-

tinuous theta burst stimulation (cTBS) protocols. In short, if an area

showed mostly hyperconnectivity with other areas, we used cTBS on

the hypothesis that it generally induces cortical depression (Huang

et al., 2005). The converse was also true, that we chose iTBS for

areas which generally displayed a majority of anomalies which were

hypoconnected to other parts of these networks (Huang et al., 2005).

2.9 TMS treatment

The treatment paradigm used was an accelerated theta burst stim-

ulation (aTBS) protocol, consisting of 5 image-guided TBS treatment

sessions per day for 5 days, which started hourly (Rashid & Calhoun,

2020). As demonstrated in Table 1, all of the targets listed for each sub-

ject were consecutively stimulated in each treatment session at 80%

of the resting motor threshold. iTBS was performed as bursts of 3-

pulse 50-Hz bursts given every 200 ms at (5 Hz) for 40 trains, with an

intertrain interval of 6.3 s, for a total of 1200 pulses. cTBS was per-

formedas one train of 600 stimuli applied in 3-pulse 50-Hzbursts given

every 200 ms (5 Hz), for a total of 1800 pulses. All TBS sessions were

completed using aMagventureMagProX100TMSmachinewith a but-

terfly cool coil (Alfaretta, USA). Each patient’s individualized treatment

protocol can be seen in Table 1.

The targets were exported from the Infinitome Neuroscience Plat-

form (Sydney, Australia) and uploaded as NIFTI volumetric objects,

coregistered to their T1 file, into the Localite (Bonn, Germany) image

guidance platform. The Localite navigation system was used to regis-

ter the patient’s anatomy to their T1 image using surface point tracing.

The target centroid was chosen as the area to center the TMS probe

over the target.

2.10 Primary outcome measures

The primary outcome measure was Generalized Anxiety Disorder

7-item (GAD-7) (Fusar-Poli et al., 2019). All participants completed

these self-report questionnaires before initiating treatment and fol-

lowing their final treatment and some participants completed 1-week

posttreatment and 1-month posttreatment follow-up scores.

2.11 Statistical methods

Differences between pre- and posttreatment scores for each outcome

measure were calculated using a paired t-test and repeated-measures

ANOVA. In order to maintain as much data as possible for the anal-

yses, missing observations were replaced with the sample mean (for

that time-point).We acknowledge that this artificially inflates our sam-

ple size; therefore, we repeated the analyses excluding subjects who

did not have all of the compared data. All continuous measures are

reported asmean± standard deviation.
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F IGURE 1 Anomalous functional connectivity matrices. Anomalous functional connectivity matrices for the DefaultModeNetwork (DMN)
and Central Executive Network (CEN) based on functional connectivity data for two patients in our cohort. Targets were generally represented by
columns demonstrating multiple anomalies in functional connectivity with intra- and internetwork connectivity. Light gray squares are considered
to be functioning normally when compared to a normal dataset, andwhite squares are areas that are highly variable, and are thus excluded from
the analysis. The chosen targets for treatment are highlighted by gray boxes. If an area showedmostly hyperconnectivity with other areas, we used
continuous theta burst stimulation on the hypothesis that it generally induces cortical depression andwe chose intermittent theta burst
stimulation for areas which generally displayed amajority of anomalies which were hypoconnected to other parts of these networks. The
prescribed treatment protocol for this patient was continuous theta burst stimulation of left 8Av and left PGs.

3 RESULTS

3.1 Participant characteristics

Twenty-eight participants, n = 18 men and n = 10 women (mean

age = 38.2 ± 14.8), completed the course of treatment. Comorbidities

were prevalent in 85.7% of the cohort, wherein 18 participants were

experiencing comorbid MDD, 3 with posttraumatic stress disorder, 3

with obsessive compulsive disorder, and 1 case of chronic pain and 1

case of borderline personality disorder. Some of the participants had

multiple comorbidities. Patient information, including targets, treat-

ment protocol, and GAD-7 scores are listed in Table 1. The incidental

sampling of follow-up assessments led to a high rate of subject attri-

tion, as the researchwas secondary to clinical care. Only 9 participants

completed all follow-up metrics, with an additional 9 completing 3 of

the 4 follow-upmetrics.

3.2 Consistent abnormal functional connectivity
in anxiety patients

8Av and PGs demonstrated consistent abnormalities, particularly in

the left hemisphere, among the anxiety patients. Twenty-four partic-

ipants had left 8Av as a target (83% cTBS). Left PGs was chosen as a

target in 18 participants (78% cTBS). Thirteen participants had a treat-

ment prescription with both left 8Av and left PGs as targets. Only one

participant did not have either area 8Av or PGs in either hemisphere

chosen as a treatment target.

3.3 Anxiety improves in these patients

As seen in Figure 2, on average anxiety symptoms improved immedi-

ately posttreatment in the cohort. Patient scores on the GAD-7 scale

significantly decreased immediately at the end of treatment (M= 7.57,



YOUNG ET AL. 8 of 13

F IGURE 2 Average GAD-7 scores of participants before and after treatment. Participants completed the GAD-7 immediately prior to, and
following Transcranial Magnetic Stimulations using the agile-targeting approach. Additional follow-upmetrics of the GAD-7were taken 1week
and 1month after their treatment completion.

SD = 5.52), demonstrating a significant improvement in anxiety symp-

toms (t(27) = 3.15, p = .004). This reduction in anxiety persisted, with

both 1-week (M = 6.0, SD = 5.08, t(27) = 4.61, p = .00009) and 1-

month (M = 4.71, SD = 5.31) posttreatment scores being significantly

decreased frompretreatment scores (t(27)= 5.69, p= .000005). Over-

all, therewas a statistically significantmean decrease of anxiety scores

across time, F(3, 78)=5.08, p= .0029.We repeated the above analyses

excluding all participantswithmissing data. Therewas once again a sig-

nificant decrease in pre- to 1-week post-GAD-7 scores (t(11)== 4.16,

p= .0007); a significant decrease inpre- to1-monthpost-GAD-7 scores

(t(13) = 3.17, p = .007); and a significant mean decrease of anxiety

scores across time (F(2, 24)= 2.2, p= .04).

3.4 Complications

Two patients experienced fatigue after the third day of treatment until

their treatment course ended. One patient had a dull headache after

the first day of treatment. The remaining patients did not report any

side-effects.

4 DISCUSSION

An increasing body of evidence suggests that mental illness classifica-

tions group together a heterogeneous collection of diverse pathophys-

iologic states based on partial symptom overlap (Drysdale et al., 2017;

Fusar-Poli et al., 2019; Krueger & Eaton, 2015). Importantly, a large

number of studies also suggest that functional connectivity measures

can provide insights into the connectivity differences between individ-

uals and provide a method toward understanding the mechanism of

this heterogeneity (Cole et al., 2020; Fox et al., 2013; Rashid & Cal-

houn, 2020). Therefore, an individualized, connectomic approach can

guide therapies toward pathophysiologic signature profiles of patient-

specific symptoms which transcend traditional singular diagnostic

categories to optimize clinical outcomes (Siddiqi et al., 2020).

The present report provides preliminary evidence suggesting that

using a connectomic- approach based on resting-state functional con-

nectivity (rsfMRI) can identify consistent patterns of connectivity

disturbances in patients with medically refractory generalized anxiety

(GAD). This empirical, data-driven information can be specificallymod-

ulatedwith image-guided noninvasive brain stimulation demonstrating

favorable therapeutic improvement in anxiety symptoms. Interestingly,

these patients show relatively consistent functional anomaly patterns

in two parcellations of the left DefaultModeNetwork (DMN), 8Av, and

PGs, which were our most common targets in the current study. Note,

we initially approached this sample in a target naïve fashion to avoid

bias, and mainly directed our target selection strategy by identifying

anomalies inside of theDMN,CEN, and their cross-network connectiv-

ity through amachine learning approach with an anomalous functional

connectivity matrix. These promising preliminary results highlight the

potential for using connectomic-based approaches to find individual-

ized symptom-specific targets in GAD which can be applied for other

symptom clusters related to different mental illnesses.

4.1 The potential for an open-label paradigm for
TMS targeting discovery research

The majority of clinical TMS research has focused around the ran-

domized controlled trial (RCT). This kind of study paradigm involves

evaluating an a priori hypothesis regarding the target, stimulation
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parameters, and inclusion and exclusion criteria. This phase was crit-

ical in establishing TMS as an effective approach for diseases such as

major depressive disorder (MDD) (Berlim et al., 2017). However, given

the idea of treating mental illness with TMS has become less contro-

versial with an increasing body of evidence and experience for the

safety of this technique over recent years, it is worth revisiting the

idea ofwhether anRCT is the best approach for hypothesis exploration

(Berlim et al., 2017; Duprat et al., 2016). Given the known heterogene-

ity of the types of diseases being treated with TMS, it is possible that

more specific subtypingmay allow for at least some patients to receive

more effective treatmentwith different targets, possiblywith different

protocols, and that subtype-specific trials may yield more consistent

results (Fox et al., 2013; Siddiqi et al., 2020).

A similar study by White and Tavakoli (2015) demonstrated high

rates of remission among a cohort of MDD with comorbid anxiety.

They demonstrated a higher remission rate than that of our study,

although there are a number of differentiating factors that could be

contributing to this. An interesting pointwas that they completedmore

treatments over time than our clinical workflow, which could indicate

that patients with anxiety, particularly those with comorbidities, may

require additional sessions in order to reach remission. Additionally,

their study also elucidates the potential benefit of bilateral treatments,

of which some of our participants had as well. These hypotheses are

worthwhile additional research and further demonstrate the benefit of

different study designs to generate interesting hypotheses worthy of

exploration.

It is also worth noting that the placebo effect may be enhanced

with the use of medical devices, compared to pharmacotherapy. This

is thought to be due to several factors associated with the treatment,

including its association with sophisticated technology, the placement

of a device being placed over the head, and increasing media cover-

age of its innovative use (Burke et al., 2019). While several studies

have noted this enhanced placebo effect (Razza et al., 2018), it has not

been extensively studied. Given our study was a preliminary proof-of-

concept study, we did not have a control condition,making it difficult to

commenton the roleof theplaceboeffect.However,while several trials

utilizing rTMS, most notably for depression, have demonstrated ben-

efits, more structured, larger trials with longer follow-up are needed

to address treatment effects. This includes addressing questions such

as whether sham rTMS relying on the placebo effect itself could be a

therapeutic option for some patients.

4.2 Why is the left side the abnormal side?

It was a bit surprising to us that the functional anomalies were so fre-

quently on the left side in these patients, but the data was strikingly

asymmetric in this direction. Given previous literature with right-sided

anxiety treatments, wewere surprised at how consistent the left-sided

anomalies were in these patients, and how consistent our results were

with treating these areaswith cTBS (Bystritsky et al., 2008;Diefenbach

et al., 2016; Dilkov et al., 2017; Sagliano et al., 2019; White & Tavakoli,

2015).

An answer may lie in subtle differences in the network affiliation

of different parcellations between the two hemispheres as seen in

connectomic studies of rsfMRI data in normal individuals (Akiki &

Abdallah, 2019). Specifically, there are few asymmetries in thesemaps,

usually, a parcellationwhich is part of theextendedCENorDMNon the

right side has the same affiliation on the left (Akiki & Abdallah, 2019).

However, we noted that the asymmetries are particularly interesting,

for example, area 44 and area 55b (speech/language areas) are DMN

parcellations on the left (consistent with the idea that the DMNplays a

role in language production) and CEN parcellations on the right (Akiki

&Abdallah, 2019; Sheets et al., 2021). A similar patternhasbeen shown

with8AvandPGs,which on the left areDMNaffiliated, andon the right

are CEN affiliated, a pattern not repeated in their immediate neigh-

bors (Akiki & Abdallah, 2019). This striking finding provides a possible

mechanismbywhich laterality of treatmentmay be relevant formental

illness stimulation.

Traditional protocols for functional network visualization have

applied the community detection algorithm to the cluster distribution

of the group dataset to derive an average group-representative net-

work model (Akiki & Abdallah, 2019). This process has been shown

to have several limitations, which may distort important network

features, particularly when applied to highly heterogeneous patient

datasets (Jeub et al., 2018). Recent work has validated a superior

approach which first maps the cluster distribution of each individual’s

network before performing a meta-reclustering analysis afterward

(Jeub et al., 2018; Lancichinetti & Fortunato, 2012). This approach

leads to a higher degree of similarity between individual network

cluster distributions and the group-representative model than the

traditional method.

4.3 Anatomic specificity in TMS targeting

For most mental illness–related applications, the TMS target is the

DLPFC, which is targeted using craniometric measurements from the

location of the motor cortex (Perera et al., 2016). The Human Con-

nectome Project and others have demonstrated that this large region

comprises at least 14 distinct functional regions, which often show

functional connectivity with different large-scale brain networks. The

specificity of functional connectivity anomalies we noted raises the

possibility that this level of anatomic specificity is important to achieve

consistent results.

One such important anatomic distinction involves area 46 and area

8Av, which are highlighted in Figure 3. Note that while area 46 has

been suggested by some to be the target for depression treatment

(Moreno-Ortega et al., 2020), area 8Av is immediately posterior to it,

and is part of a different large-scale brain network, and also seems

to be a promising anxiety target (Akiki & Abdallah, 2019). This has

been demonstrated wherein stimulation of an area similar to 8Av

has been shown to mediate anxiosomatic symptoms (e.g., irritability,

decreased sexual interest, changes in sleep pattern), while stimulation

of the region anterior to it, area 46 (part of the CEN)mediated dyspho-

ric symptoms (e.g., anhedonia, guilt, psychomotor retardation) (Siddiqi
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F IGURE 3 Anatomical location of areas left 8Av and 46. Demonstrates the similarities in location between left areas 46 and 8Av and the large
differences in functional connections. Left area 46 has been suggested to be the target for depression treatment, area 8Av is immediately posterior
to it, and is part of a different large-scale brain network, and seems to be a promising anxiety target (Sandhu et al., 2021). Our results demonstrate
consistent functional abnormalities associated with left area 8 Av, not left area 46, in our anxiety patients, which is consistent with previous
literature which demonstrated that stimulation of an area similar to left 8 Av has been shown tomediate anxiosomatic symptoms, while
stimulation of the region anterior to it, left 46, mediated dysphoric (Siddiqi et al., 2020).

et al., 2020). This suggests that it is possible that missing the target by

1 cm in the anterior-posterior plane could be enough to stimulate the

wrong network. In fact, such minuscule variations in target precision

have recently been postulated to be the primary reason for the failure

of a largeRCT trial assessing TMS for treatment-resistantMDD (Rosen

et al., 2021). A recent study on veteranswith treatment-resistantMDD

demonstrated that area 46 was the common target in the success-

ful treatment responders to rTMS compared to area 8Av, which was

the common target in nonresponders (Rosen et al., 2021; Yesavage

et al., 2018). This is also supported by the improved and consistent

results achieved by the individualized, image-guided TMS utilized in

our cohort.

4.4 Where we are and future directions:
individualized TMS target selection

It is important to note that both individualized or connectome-based

TMS target selections are not new. Differences in functional connec-

tivity have been previously correlated with differences in the clinical

efficacy of TMS for patients with depression (Fox et al., 2012). Fur-

thermore, methods accounting for individual differences, such as with

PET scans or anatomy basedMRI coordinates, are superior to standard

craniometric TMS target selections, but have still produced variable

results (Fitzgerald et al., 2009; Herwig et al., 2003). Importantly, many

studies commonly utilize group-average metrics (“group maps”) to

guide TMS target selection and have produced results superior to

those which targeted individualized foci (Fitzgerald, 2021; Fox et al.,

2013; Herwig et al., 2003). This may be due to inherent limitations

with the technology utilized, such as individual PET maps which may

provide too much noise (Fox et al., 2013; Garcia-Toro et al., 2006;

Herwig et al., 2003). Fox et al. (2013) illustrated the feasibility of

single-subject, connectivity-guided TMS targets within the left DLPFC

in 2 patients with depression. Unfortunately, patients with GAD and

depression, amongstmany othermental illnesses, have significant indi-

vidual variability in the connectivity of their affected brain networks,

suggesting the need to replicate single-subject, connectivity-guided

TMS selections in patients with GAD as well.

One study on patients with GAD demonstrated that a pretreat-

ment provocation fMRI experiment (gambling) can determine active

targets in individual subjects to guide the rTMS treatment, resulting in

improved anxiety symptoms (Bystritsky et al., 2008, 2009). However,

individualized, connectomic approaches basedon rsfMRI data havenot

been described for patients with GAD as shown by Fox et al. (2013).

Compared to task-based fMRI, rsfMRI data do not require a task and

instead focuses on spontaneous BOLD signal fluctuations, which is

attractive in patients with psychiatric illness, more rapid for larger clin-

ical trial executions, and also provide benefits for more data-driven,
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machine learning approaches like the ones applied in the current study

(Lv et al., 2018).

The current findings suggest the feasibility of an agile, connectomic

approach at the single-subject level based on rsfMRI data, which can

target clinically effective TMS targets in a consistent and symptom-

specific manner. Applications in subsequent larger clinical trials will

further demonstrate and optimize the clinical utility of this data-driven

approach for agile aTBS protocols.

4.5 Limitations

It is important to note that the presented research is made from our

preliminary data as a proof-of-concept, and as such there are limita-

tions that need to be considered when drawing conclusions from our

work. The lack of control condition paired with the small cohort of

presented data, limits the present findings to our data set. Further

research should corroborate the findings of this study using a control

condition and a larger participant pool to more rigorously understand

the possible benefits of this connectomic approach, even though itmay

be logistically difficult to implement a control condition for subtype-

specific target selection. Additionally, our small cohort had variable

presentations of anxiety, which will need to be considered in future

research. To this end, we provided the subject-level data to promote

transparency for future researchers.

To maximize the understanding of our presented approach’s effec-

tiveness, future research should include a condition that uses sham

stimulation with our presented targeting approach and an additional

condition that uses active stimulation with the traditional targeting

approach. Furthermore, this study is underpinned by the assumption

that the cortical activity modifications by different forms of TBS likely

also results in similar connectivity intensity modifications, wherein

cTBS both decreases cortical activity and the associated connectivity

that region has to other regions. Both this and the assumption that

these stimulation protocols have net excitatory or inhibitory outputs

have not been empirically confirmed. In saying that, our team believes

this is a logical approach that did provide interesting and statistically

significant clinical results, butwebelieve these assumptions areworthy

of additional investigation.

Follow-upprocedures, includingbothposttreatment fMRI scansand

long-term rigorous metric collection, should be included in any future

research, to understand if associated neural connectivity changes

occur and if they correlate to objective improvements of anxiety. Par-

ticularly given the present studies inconsistent follow-up response

rates. Additionally, it is plausible that given the high rates of comorbidi-

ties within this study, that other attributable disease-profiles, such as

MDDdiagnosis, are responsible for the vast improvement in outcomes

which warrants additional research.

5 CONCLUSION

In our clinical experience, generalized anxiety patients have con-

sistently displayed anomalies within the left 8Av and PGs region.

Image-guided TMS treatment targeted at these areas consistently pro-

duced improvements in anxiosomatic symptoms, and consequently

patient quality of life.Our findings suggest that theDMN is the primary

functional network disturbed in anxiety-related disorders and that the

disruption may be primarily left lateralized. The currently described

work could inform the design of future studies, which should apply our

data-driven TMS target selection approach in a larger, controlled sam-

ple of patients, and should embolden the discovery of patient-specific,

connectomics-informed real-world clinical research.
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