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Abstract

Motivation: Factor analysis is a widely used tool for unsupervised dimensionality reduction of high-throughput data-
sets in molecular biology, with recently proposed extensions designed specifically for spatial transcriptomics data.
However, these methods expect (count) matrices as data input and are therefore not directly applicable to single
molecule resolution data, which are in the form of coordinate lists annotated with genes and provide insight into
subcellular spatial expression patterns. To address this, we here propose FISHFactor, a probabilistic factor model
that combines the benefits of spatial, non-negative factor analysis with a Poisson point process likelihood to explicit-
ly model and account for the nature of single molecule resolution data. In addition, FISHFactor shares information
across a potentially large number of cells in a common weight matrix, allowing consistent interpretation of factors
across cells and yielding improved latent variable estimates.

Results: We compare FISHFactor to existing methods that rely on aggregating information through spatial binning
and cannot combine information from multiple cells and show that our method leads to more accurate results on
simulated data. We show that our method is scalable and can be readily applied to large datasets. Finally, we dem-
onstrate on a real dataset that FISHFactor is able to identify major subcellular expression patterns and spatial gene
clusters in a data-driven manner.

Availability and implementation: The model implementation, data simulation and experiment scripts are available
under https://www.github.com/bioFAM/FISHFactor.

1 Introduction

Transcriptomic profiling of individual cells using single-cell RNA
sequencing is now a widely accessible tool for studying cellular het-
erogeneity in tissues and has contributed to the discovery of new cell
types. However, single-cell RNA sequencing protocols are based on
a disassociation step and therefore can provide only limited insight
into the spatial organization of tissue and no information at all
about the localization of RNA molecules within a cell. To address
this, a growing number of spatially resolved transcriptomic technol-
ogies are being developed that allow measurements of gene expres-
sion while retaining spatial context (Rao et al. 2021, Palla et al.
2022). For example, next-generation sequencing coupled with spa-
tial barcodes provides whole transcriptome measurements of tissue
regions (Ståhl et al. 2016, Rodriques et al. 2019), but the resolution
of current methods is at most at the level of individual cells and can-
not resolve subcellular patterns. On the other hand, imaging-based
techniques such as in situ sequencing (Ke et al. 2013, Lee et al.

2015, Chen et al. 2018, Wang et al. 2018) or fluorescence in situ hy-
bridization (FISH) achieve subcellular resolution by measuring spa-
tial positions of individual molecules. While FISH technologies were
originally limited to the detection of a single or at most a handful of
genes (Femino et al. 1998, Raj et al. 2008, Lyubimova et al. 2013),
advances in imaging technologies, sequential hybridization, and bar-
coding strategies nowadays enable probing tens to thousands of
genes in a single experiment (Lubeck and Cai 2012, Lubeck et al.
2014, Chen et al. 2015, Eng et al. 2017, 2019, Codeluppi et al.
2018), thus rendering such techniques increasingly applicable for
the identification of subcellular gene expression patterns at scale.

Despite the availability of technologies that provide single-
molecule resolution, most established analysis strategies for process-
ing these data do not fully exploit the given resolution. Instead,
RNA quantifications are limited to cellular resolution, for example,
by aggregating the numbers of molecules per cell (Chen et al. 2015,
Codeluppi et al. 2018, Eng et al. 2019), or used only for the task of
cell type inference or clustering (Qian et al. 2020, Littman et al.
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2021, Park et al. 2021, Partel and Wählby 2021). Thereby, such
approaches cannot model subcellular gene expression patterns,
which can provide important insights into cellular states, heterogen-
eity within cell types (Buxbaum et al. 2015, Xia et al. 2019) and can
modulate the function of genes (Eng et al. 2019). A recently devel-
oped tool to explicitly analyse subcellular gene expression patterns
is Bento (Mah et al. 2022). This tool computes spatial statistics of
RNA expression and cell morphology and provides visualization
tools to perform exploratory analyses. Moreover, it includes a classi-
fication model for the subcellular localization of individual genes.
However, it requires the allowed spatial patterns to be predefined
and therefore is only of limited usefulness for de novo discovery.
With the increasing throughput of single-molecule techniques, it will
become ever more important to identify major subcellular gene ex-
pression patterns in a data driven manner and use them as additional
source of information when dissecting cell-to-cell heterogeneity.

Factor models are already widely used for the unsupervised dis-
covery of the principal sources of variation in high-dimensional mo-
lecular datasets (Brunet et al. 2004, Witten et al. 2009, Argelaguet
et al. 2018, 2020, Risso et al. 2018, Stein-O’Brien et al. 2018), and
recent extensions to spatial data have successfully identified spatial
gene expression patterns at the cellular level (Berglund et al. 2018,
Velten et al. 2022, Townes and Engelhardt 2023). However, these
methods cannot leverage the subcellular resolution of spatial tran-
scriptomics data, as they require a count matrix as input and conse-
quently are not directly applicable to single molecule resolved data,
which are lists of coordinates annotated with gene labels. To apply
these methods, it is currently required to crudely aggregate the data,
using spatial binning, or summation of molecules per cell, which
involves additional parameters and results in a loss of the exact spa-
tial information.

To address these shortcomings, we here propose FISHFactor, a
principled factor analysis framework that opens up the application
of factor models for spatially resolved single-molecule data and ena-
bles the unbiased identification and discovery of subcellular expres-
sion patterns (Fig. 1). Other than existing spatial factor models,
FISHFactor employs spatial Poisson point processes as observation
model to explicitly model the subcellular coordinates of each RNA
molecule. It can thereby fully leverage the single-molecule resolution
of the data. We combine this with a spatially aware inference of

factors using Gaussian processes (GPs) tailored to spatial transcrip-
tomics data and impose interpretable factors and weights using non-
negativity constraints. To enable the integration and comparison of
subcellular localization patterns across a population of cells,
FISHFactor jointly models the information from multiple cells in a
scalable manner by inferring a shared weight matrix, while retaining
independent sets of factors. We assess the model using simulated
data, where we demonstrate advantages of FISHFactor over existing
approaches that require spatial binning and show the benefit of
jointly modeling multiple cells. We show that FISHFactor scales to
very large datasets of more than 1000 cells and that it generates re-
producible results. Using a real dataset, we illustrate the use of
FISHFactor to reveal subcellular localization patterns of genes and
to analyse the co-localization of genes within a cell. Moreover, we
show that it is possible to train the model on a subset of cells and
project the remaining data on latent factors using the trained model.

2 Materials and methods

2.1 Factor analysis for count data
Factor analysis is a dimensionality reduction technique commonly
used for unsupervised analysis of high-dimensional omics datasets
(Stein-O’Brien et al. 2018). Based on correlation structures in a
high-dimensional feature space, the method aims to find a low-
dimensional embedding in terms of a small number of latent factors,
representing the major axes of variation in the data. Starting from a
high-dimensional dataset Y 2 R

N�D with N observations of D fea-
tures, factor analysis finds a factorization Y ¼ ZWT þ E with K la-
tent factors Z 2 R

N�K (typically K� D), associated factor weights
W 2 R

D�K and residual noise E 2 R
N�D. In contrast to nonlinear

dimensionality reduction methods, factor analysis identifies latent
embeddings that can be directly interpreted, because the weights lin-
early link each latent factor to molecular features. Formulated in a
probabilistic framework, factor analysis further allows for the in-
corporation of prior knowledge and various sparsity assumptions
through the use of appropriate prior distributions, provides uncer-
tainty estimates for the inferred variables and can account for differ-
ent data types through the use of appropriate likelihood models. As
a baseline model for sequencing data we here consider a Poisson

Figure 1 Illustration of FISHFactor for the analysis of spatial transcriptomics data with subcellular resolution. The input dataset (left) consists of RNA molecule coordinates in

a single or optionally multiple segmented cells, e.g. from multiplexed FISH measurements. FISHFactor models the observed coordinates as realizations of a spatial Poisson

point process with a gene-wise intensity function in each cell. The intensity functions of all genes and cells are governed by a low-dimensional decomposition into non-negative

spatially aware factors and non-negative weights (right, illustrated for three latent factors). Weights are shared between cells, whereas factors are specific to individual cells
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likelihood, which can account for the count nature of the data and
has been successfully applied to transcriptomics data (Townes et al.
2019). The decomposition in a Poisson factor model is given by

pðyndjW;ZÞ ¼ PoissonðkndÞ (1)

knd ¼ gð
XK

k¼1

wdkznkÞ; (2)

where g denotes a positive inverse-link function such as the expo-
nential or softplus (Dugas et al. 2000), defined as
softplusðxÞ ¼ logð1þ exÞ.

2.2 Non-negative factor analysis
To improve the interpretability and identifiability of factor analysis,
different sparsity assumptions on the factors and weights have been
employed, including sparsity on the level of features or sets of fea-
tures (Witten et al. 2009, Argelaguet et al. 2018, 2020) as well as
non-negativity constraints (Lee and Seung 1999, Townes and
Engelhardt 2023). The latter have been found particularly useful, as
they allow to find additive non-negative spatial patterns and mo-
lecular signatures. In practice, non-negativity is achieved by con-
straining weights and factors to non-negative values, for example,
using non-negative parametrization or non-negative priors. In such
a model, with Gaussian priors on the unconstrained latent variables,
knd in Equation (1) is given by

knd ¼
XK

k¼1

wdkznk (3)

wdk ¼ gðqdkÞ (4)

znk ¼ gðfnkÞ (5)

qdk � Nðlq;r
2
qÞ (6)

fnk � Nðlf ; r
2
f Þ: (7)

Equations (6) and (7) represent prior distributions on the uncon-
strained weights and factors, respectively, where lq, lf , r2

q, and r2
f

are constant mean and variance parameters of a Gaussian distribu-
tion. The weights and factors are constrained to non-negative values
by applying a positive inverse-link function g in Equations (4) and
(5). Equation (3) determines the rate parameter knd of the Poisson
distribution for the likelihood term in Equation (1) as the matrix
product of non-negative weights and factors.

2.3 GP factor analysis
A limitation of classical factor models in applications to spatial data
is the assumption of independent observations n ¼ 1; . . . ;N. While
this assumption may be appropriate for some data types, it generally
does not hold for spatial data, where each observation comes with a
spatial coordinate and spatial structures are present between sam-
ples. For example, gene expression profiles at nearby points are
expected to be more similar than at points that are far apart. This
spatial covariance can be incorporated into factor analysis by replac-
ing the univariate Gaussian priors on factors in Equation (7) by
multivariate priors that can model covariation across samples. A
flexible choice for this purpose is GP priors, which provide a non-
parametric framework to model continuous dependencies between
samples. This has given rise to GP factor analysis (GPFA) (Yu et al.
2008), where independent GP priors are placed on the factors to
model smooth temporal patterns. The same concept has recently
been applied for the identification of patterns in spatial transcrip-
tomics data, in combination with different likelihood models and
sparsity constraints (Velten et al. 2022, Townes and Engelhardt
2023). In particular, this approach corresponds to replacing the fac-
tor prior in Equation (7) with a GP prior:

fnk ¼ fkðcnÞ (8)

fk � GPðlk;jkÞ: (9)

Here, cn 2 R
2 is the spatial coordinate of sample n, lk is a mean

function in R
2, and jk is a kernel function in R

2 � R
2. The choice of

the kernel function determines the covariance structure. For ex-
ample, a squared exponential kernel generates very smooth patterns,
whereas a Matérn kernel leads to a more angular appearance as
often observed for spatial expression patterns (Townes and
Engelhardt 2023).

2.4 Poisson point process likelihood
In contrast to (spatial) transcriptomics datasets at the cellular level,
single-molecule resolved data consist of a list of N coordinate vec-
tors fcngn¼1;...;N cn 2 R

2 with gene annotations. For such data, the
Poisson likelihood used in the discussed models can only be
employed after a pre-processing step that aggregates the number of
molecules in a certain spatial region or cell and ignores the exact
spatial information. A more suitable likelihood model for single-
molecule resolved data are Poisson point processes, which directly
model the coordinates of each molecule. Poisson point processes
have already been successfully used in GPFA with temporal data in
neuroscience (Duncker and Sahani 2018) and for cell typing in spa-
tial data (Qian et al. 2020) but so far have not been considered in
factor models for spatial transcriptomics data. Formally, an inhomo-
geneous spatial Poisson point process is characterized by a non-
negative intensity function k : R2 ! R�0. A set of point coordinates
then has the probability density

pðfcngn¼1;...;NÞ ¼ exp
�
�
ð

kðcÞ dc
�YN

n¼1

kðcnÞ: (10)

Intuitively, this means that more points are expected in regions
where k is high, and vice versa.

2.5 The FISHFactor model
FISHFactor is a probabilistic factor model for single-molecule
resolved spatial transcriptomics data that combines the concepts dis-
cussed in the preceding sections (Fig. 1): (i) spatially aware inference
of factors using GPs, (ii) interpretable factors and weights using
non-negativity constraints, and (iii) a likelihood model accounting
for the nature of single-molecule data using inhomogeneous Poisson
point processes. In addition, FISHFactor allows to integrate and
compare inferred patterns across multiple cells by inferring a shared
weight matrix.

The input data to FISHFactor consist of a list of spatial molecule
coordinates fcdm

n gn¼1;...;Ndm
cdm

n 2 R
2 for a set of genes d ¼

1; . . . ;D and cells m ¼ 1; . . . ;M. The assignment of molecules to
cells is assumed to be known and can be defined from the image
using existing segmentation techniques (Littman et al. 2021,
Petukhov et al. 2022). FISHFactor models the coordinates as realiza-
tions of spatial Poisson point processes, where the gene- and cell-
wise intensity functions kdm are given by a decomposition into a
user-defined number K of cell-specific factors and a weight matrix
that is shared between cells. The generative model of FISHFactor is
defined as

pðfcdm
n gn¼1;...;Ndm

jkdmÞ ¼

exp
�
�
Ð

ldmkdmðcÞdc
�YNdm

n¼1

ldmkdmðcdm
n Þ

(11)

kdmðcÞ ¼
XK

k¼1

wdkzmkðcÞ (12)

wdk ¼ softplusðqdkÞ (13)

zmkðcÞ ¼ softplusðfmkðcÞÞ (14)
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qdk � Nð0;1Þ (15)

fmk � GPð0; jmkðsmk; ‘mkÞÞ: (16)

The integration limits in Equation (11) are given by the respect-

ive cell boundaries, which are estimated by thresholding a kernel
density estimate based on all associated molecules. The average
intensity per gene and cell ldm serves as a scale factor for the inten-

sity function kdm to account for differences in the overall expres-
sion intensities of genes and cells, to ensure that the inferred

latent variables do not reflect abundances but subcellular patterns.
It is determined as the number of molecules Ndm divided by the
cell area. The GP prior in Equation (16) uses a Matérn kernel jmk

with smoothness parameter � and learnable output and length
scales smk and ‘mk. The graphical model of FISHFactor is shown
in Fig. 2.

2.6 Implementation
To infer the model’s latent variables in a scalable manner,
FISHFactor is implemented using stochastic variational inference

(Hoffman et al. 2013) and sparse approximations of the GPs
(Hensman et al. 2015). In addition, a sequential update of cell-wise

parameters is used to keep memory requirements constant in the
number of cells (Supplementary Fig. S2), which otherwise can be a
major bottleneck to the application of models to many cells. For

this, every epoch consists of as many optimization steps as there are
cells, whereby in every step one cell is loaded into memory, its

parameters are optimized and the global weight matrix is updated.
Optimization of the evidence lower bound (ELBO) is performed
with a adam optimizer (Kingma and Ba 2014) with gradient clipping

to increase numerical stability and a learning rate of 5 � 10�3. To
determine convergence, the ELBO is monitored for each cell and the

optimization is terminated as soon as it does not increase by a given
value for any of the cells in a given number of epochs. FISHFactor is
implemented using the probabilistic programming language Pyro

(Bingham et al. 2019) and the low-level Pyro interface of GPyTorch
(Gardner et al. 2018).

3 Results

All FISHFactor models in the following sections were trained on a
NVIDIA Titan RTX gpu with 24 GB of NVRAM.

3.1 FISHFactor outperforms existing factor models on

simulated data
First, we validated FISHFactor’s ability to infer subcellular expres-
sion patterns on simulated data for individual cells (M¼1) and com-
pared its performance to related existing factor model
implementations. We considered non-negative matrix factorization
(NMF) as implemented in the scikit-learn package (Pedregosa et al.
2011), a widely used method for a non-negative decomposition
without spatial awareness, and non-negative spatial factorization
(NSF) (Townes and Engelhardt 2023), a recently proposed GP fac-
tor model for a non-negative decomposition with spatial awareness
and a Poisson observation model. In contrast to FISHFactor, both
methods require aggregation of molecule coordinates in spatial bins
to obtain count matrices, for which we included different binning
resolutions in the comparison (5 � 5, 10 � 10, 20 � 20, 30 � 30,
and 40 � 40).

Data were simulated in form of molecule coordinates for 20
cells, where for each cell we independently simulated subcellular ex-
pression patterns for 50 genes using 3 latent spatial factors and cor-
responding gene weights and then sampled molecule coordinates
from the resulting intensity function according to spatial Poisson
point processes by thinning (Lewis and Shedler 1979). Fifty spatial
factors were hand painted as 50 � 50 pixels grayscale images with
intensity values from 0 to 1 (Supplementary Fig. S1). For every cell,
three factors were randomly selected and random rotations of 0�,
90�, 180�, or 270� as well as random horizontal and vertical flips
were applied. Weights were generated from a standard normal dis-
tribution, followed by a softplus transformation to positive values,
multiplication with independent Bernoulli variables (P¼ .7) to in-
duce sparsity, and normalization to a total weight of 1 for every
gene. The intensity function was obtained as the matrix product of
factors and weights. To examine the effect of varying molecule
abundance in the data, e.g. caused by differences in detection effi-
ciency or biological differences, we repeated the simulation with dif-
ferent scale factors for the intensity function (ldm¼50, 100, 200,
300, 400), resulting in an average of 19, 38, 77, 116, and 154 mole-
cules, respectively, per gene and cell.

As a postprocessing step, we normalized inferred factors to a
maximum value of 1 per factor and cell, and the inferred weights to
a maximum value of 1 per factor. Across all simulation scenarios,
FISHFactor shows a good recovery of the simulated factors and
weights (measured using Pearson correlation between simulated and
inferred values, Fig. 3a), with increasing accuracy for datasets with
higher number of molecules. In comparison to NMF and NSF,
FISHFactor achieves a better or comparable weight and factor cor-
relation in all scenarios. Moreover, NMF and NSF show a strong
sensitivity to the choice of binning resolution, which needs to be
selected in an optimal manner to reach the accuracy of FISHFactor.
Such a choice can be difficult to make on real data, where no ground
truth is available, and is not required in FISHFactor. At the same
time, FISHFactor provides a more accurate weight reconstruction
than NMF and NSF at higher spatial resolutions of factors, while
for NMF and NSF accuracy in the weight reconstruction comes at
the cost of a lower resolution (Fig. 3a, illustrated for a single cell
with on average 68 molecules per gene in Fig. 3c). Notably, NSF
fails to converge in some scenarios (fraction of cells with conver-
gence, Fig. 3b).

3.2 Joint modeling of cells improves reconstruction of

weights and factors
In a second experiment, we investigated whether for related cells the
ability of FISHFactor to share information across cells by jointly
modeling their subcellular patterns benefits the reconstruction of
weights and factors. For this, we simulated 10 datasets with 20 cells
each as described in Section 3.1, but using a single shared weight
matrix for all 20 cells, and applied FISHFactor to this data separate-
ly for each cell or jointly modeling multiple cells. We repeated this
experiment with two different simulation intensity scale factors
(ldm¼100, 300), leading to an average of 39 and 117 molecules, re-
spectively, per gene and cell. We found that the inclusion of multiple

Figure 2 Graphical model of FISHFactor with K factors, D genes, M cells, and Ndm

molecules per gene and cell. Gray nodes indicate observed variables, white nodes la-

tent variables, rhombuses learnable parameters, and ldm is a constant determined

by the data
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cells in the model significantly improves the reconstruction accuracy

of the shared weights and, on the data with ldm¼100, the accuracy
of the inferred cell-wise factors (Fig. 4). The improvement is particu-

larly large for the data with ldm¼100 (Fig. 4, first column) because
the smaller number of molecules makes it more difficult to derive
the correct values from just one cell, and the model therefore bene-

fits greatly from modeling multiple cells simultaneously.

3.3 Scalability and reproducibility
In this experiment, we investigated how the run time and memory

allocation of FISHFactor scale with respect to the different model
dimensions. We generated simulated data as described in Section 3.1

and set M ¼ 1 cell, D ¼ 50 genes, K ¼ 3 latent factors, and an

intensity scale factor of ldm ¼ 100 as the base configuration. Using
this configuration, we applied FISHFactor to the simulated data and
varied (i) the number of molecules per cell using intensity scales of
ldm¼50, 100, 150, 200, 250, 300, 350, 400; (ii) the number of la-
tent factors K ¼ 2, 3, 4, 5, 6, 7; and (iii) the number of jointly mod-
eled cells M ¼ 10, 20, 30, 40, 50. We generated 10 independent
datasets for each scenario. Our findings indicate that both run time
and memory allocation scale linearly with the number of molecules
and the number of factors (Supplementary Fig. S2). As for the num-
ber of cells, the run time scales linearly while the memory allocation
remains approximately constant. This is because the cells are not
loaded into memory at the same time but sequentially, and the max-
imum memory requirement depends only on the maximum number
of molecules in a single cell. However, there is a slight increase in

Figure 3 Comparison of FISHFactor to NMF and NSF at different binning resolutions on 20 simulated cells with 5 different intensity scale factors. (a) Reconstruction accuracy

of the simulated weights (first row) and factors (second row). Barplots show the mean Pearson correlation across the 20 cells for FISHFactor and NMF and all cells with con-

vergence for NSF (see b). Error bars indicate 1 SD of the mean. (b) Fractions of included cells (out of 20) for every intensity scale factor and binning resolution. NSF did not

converge on all cells. (c) Exemplary visualization of ground truth and inferred factors in a single cell with an average of 68 molecules per gene. In addition, the difference be-

tween the ground truth factors and the factors inferred by FISHFactor is shown
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memory allocation with the number of cells, which is expected due
to the higher likelihood of including a single cell with a larger mol-
ecule count.

In order to demonstrate the feasibility of using FISHFactor with
very large datasets, we generated simulated data consisting of
M¼1000 cells with D¼100 genes and shared weights. We set the
number of latent factors to K¼3, with an intensity scale factor of
ldm¼100, resulting in an average of 39 molecules per gene and cell.
FISHFactor required 24.77 h for training to converge and allocated
a maximum of 8.45 GB of memory. The average correlation of
inferred and simulated values was R¼0.996 for the weights and
R¼0.852 for the factors (Supplementary Fig. S3).

To evaluate the impact of using different random seeds on the re-
producibility of inferred weights and factors, we ran FISHFactor
with 10 different random seeds on five datasets (intensity scale fac-
tors ldm ¼ 50;100; 200; 300; 400). Each dataset consisted of 20 cells
with shared weight matrices. Our findings show that different ran-
dom seeds produce reproducible results for the inferred parameters,
with an average and minimum correlation of 0.999 and 0.999 for
the weights and 0.976 and 0.958 for the factors, respectively
(Supplementary Fig. S4).

3.4 FISHFactor reveals major gene clusters and

subcellular expression patterns in 3T3 cells
Lastly, we applied FISHFactor to a real dataset that comprises
single-molecule data for 10 000 genes in 225 segmented cultured
mouse embryonic fibroblasts (NIH/3T3) from a seqFISHþ experi-
ment (Eng et al. 2019). As input for FISHFactor we used all cells
and considered genes with a minimum of 30 molecules on average
across cells, resulting in a total of 104 genes. Exemplary molecule
coordinates for 4 genes in 4 cells are shown in Fig. 5a.

From these data, FISHFactor identified 3 factors capturing major
subcellular expression patterns (Fig. 5b). The factors show distinct
subcellular activities, with Factor 0 mainly being active around the
cell center, Factor 1 at the cell border and Factor 2 inside the cell
center. The inferred weight matrix (Fig. 5c) shows a clear clustering
of genes into 3 clusters, where Factor 0 has high weights for genes
previously annotated to cytoplasm (Eng et al. 2019) (Fig. 5c, cyan),
Factor 1 for genes previously annotated to protrusions (Eng et al.
2019) (Fig. 5c, olive) and Factor 2 for genes previously annotated to

nucleus/perinucleus (Eng et al. 2019) (Fig. 5c, purple). We compared
this gene clustering with a clustering based on inferred weights of
NMF applied to normalized and transformed gene counts per cell,
and found that the clustering differs substantially, allowing the con-
clusion that the spatial information is needed to reconstruct the clus-
ters in Eng et al. (2019) (Supplementary Fig. S5).

We asked to what extent the unsupervised approach of
FISHFactor is able to recover gene loadings for signatures previously
identified on this data based on manual annotation of genes to cellu-
lar regions (Mah et al. 2022). For this, we compared the factor
weights inferred by FISHFactor to the previously identified signature
loadings for the same set of genes (Fig. 5d) and found a strong cor-
relation. This indicates that FISHFactor is able to retrieve the same
information, but in a completely unsupervised manner, requiring
only the number of latent factors as input. Moreover, the
FISHFactor weights appear to be more sparse compared to the sig-
nature loadings from Mah et al. (2022), where loadings for signa-
ture 0 strongly correlate with loadings for signature 1 (Fig. 5d).

Overall, this application demonstrates that FISHFactor can re-
veal the major subcellular localization patterns in a data-driven
manner without the need for manual labeling or segmentation of
areas within the cell and identifies relevant gene clusters based on
their subcellular colocalization.

Finally, we trained two FISHFactor models on the dataset: one
trained on the first 25 cells (complete) and another trained on the
first 20 cells (incomplete). We used Gaussian kernel density esti-
mates of the molecule coordinates with the bandwidth determined
by Scott’s rule (Scott 2015) to project the five hold out cells that
were not considered in the incomplete model onto the latent factors
using the weight matrix inferred using the incomplete model
(Supplementary Fig. S6). The average correlation R¼0.72 between
the projected factors (using incomplete model) and the inferred fac-
tors (using complete model) in the same cells indicates that projec-
ting new data onto factors using a trained model is feasible but less
accurate than training the model on the full dataset.

4 Discussion

The spatial localization of individual RNA molecules in a cell has
long been limited to only a handful of genes at a time. However,

Figure 4 Pearson’s correlation of inferred and simulated weights (first row) and factors (second row) in 10 simulated datasets of 20 cells with shared weight matrices. In every

dataset, a given number of cells (x-axis) were modeled using FISHFactor on all cells jointly (multi-cell, orange) or by applying FISHFactor to individual cells and averaging the

results (independent, blue). Error bars show 1 SD of the mean across the 10 datasets. The first column shows results on a dataset with an average molecule count per cell and

gene of 39 (ldm ¼ 100), and the second column with an average count of 117 (ldm ¼ 300)
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recent technological developments have dramatically increased the
number of genes that can be profiled, thereby enabling single-
molecule resolution of spatial transcriptomics. This opens up the ap-
plication of computational methods that share information across
several genes, such as matrix factorization, which is based on the as-
sumption that spatial expression densities of genes can be linearly
decomposed into a small number of initially unknown patterns.
While the benefits of such approaches have been demonstrated for
spatial transcriptomics data on the cellular level (Velten et al. 2022,
Townes and Engelhardt 2023), it was unclear how and whether
similar ideas could be used to gain insights into the localization pat-
terns of individual molecules at the subcellular level.

Here, we addressed this question by developing FISHFactor, a
spatial non-negative factor model for single-molecule resolved spa-
tial transcriptomics data that facilitates the identification of major
subcellular expression patterns and co-localization of genes. We
demonstrated that the use of a tailored likelihood model for single-
molecule data based on a Poisson point process is beneficial

compared to naive application of existing factor models that require
data aggregation via binning. In addition to sharing information
across all genes, FISHFactor furthermore enables sharing informa-
tion across cells by jointly modeling expression patterns in hundreds
of cells, which could improve the reconstruction accuracy of the
weights and factors in our simulation studies and provides a direct
means to compare expression patterns across cells. A joint modeling
of cells can be particularly useful when the number of detected mole-
cules per cell is relatively low and a single cell is not sufficient to reli-
ably identify colocalization patterns of genes. We showed how
FISHFactor scales with different numbers of molecules, factors, and
cells, and demonstrated its applicability to datasets of 1000 cells.
Moreover, we showed that the results are very stable for different
random initializations. We demonstrated the value of FISHFactor
for the unsupervised analysis of single molecule resolved data by an
application to a dataset of cultured mouse embryonic fibroblasts,
where the method identified relevant subcellular expression patterns
and gene clusters based on subcellular spatial colocalization.

Figure 5 Application of FISHFactor to a dataset from cultured mouse embryonic fibroblasts (NIH/3T3) (Eng et al. 2019). (a) Molecule coordinates in four cells (rows) for four

genes (columns) with inferred weights for Factors 0, 1, 2 shown at the top of the columns. Pdia6 has high weight on Factor 2, Amotl2 on Factor 0 and 2, Ddb1 on Factor 0 and

Kctd10 on Factor 0 and 1. (b) Visualization of three factors inferred in the same cells. Factor 0 is active around the cell center, Factor 1 at the cell border and Factor 2 in the

cell center. (c) Hierarchical clustering of inferred gene weights recovers known gene clusters from Eng et al. (2019), indicated by label colors (purple: nucleus/perinucleus,

cyan: cytoplasm, olive: protrusions). (d) Gene loadings for signatures identified in Mah et al. (2022) correlate strongly with inferred weights in (c), the displayed value is the

Pearson correlation with the FISHFactor weights.
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Notably, these clusters cannot be detected on the cellular level,
underlining the importance of considering subcellular information.
In addition, we showed that it is in principle possible to project new

data on latent factors if a reliable weight matrix has been inferred
using a smaller number of cells. This could, for example, be useful

to reduce training time on very large datasets or to incorporate new
data into an existing model.

While the model is scalable to 100–1000 s of cells, a limiting fac-
tor for large-scale applications can be the linear scaling of memory
allocation with the number of molecules per cell, which, for ex-

ample, limits the application to �10 000 to 20 000 molecules per
cell on a typical gpu with 24 GB of RAM. Future extensions of the

model could address this by implementing subsampling strategies on
the level of genes or molecules and developing approaches for an
automated choice of relevant genes. While being a fully unsuper-

vised method for detection of subcellular expression patterns,
FISHFactor currently does not implement a method to determine the
optimal number of latent factors and this needs to be chosen by the

user. An appropriate choice can be guided by prior knowledge or
heuristics as implemented by other factor models. For example, a

Scree plot (Cattell 1966) based on a PCA with binned molecule
coordinates could serve as an orientation. Importantly, the current
implementation of FISHFactor relies on having accurate cell seg-

mentations available to assign molecules to cells. For future re-
search, it would therefore be interesting to investigate the benefits of

joint segmentation and modeling approaches. Moreover, lifting the
restriction of a single shared weight matrix for all cells and instead
allowing a priori unknown groups of cells to share group-specific

weight matrices would make the model even more flexible for het-
erogeneous cell populations with different gene co-localizations.

Lastly, FISHFactor could also be extended to coordinates in 3D,
where the same mathematical model can be used to enable an even
broader applicability.
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