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Abstract
Background: The retinal microvascular density changes have been identified in thyroid-
associated ophthalmopathy (TAO) patients. Whereas a lack of research has been done on the 
diagnostic ability of optical coherence tomography (OCT) combined with optical coherence 
tomography angiography (OCTA) parameters.
Objectives: This study aims to evaluate the retina perfusion variations in eyes with active and 
stable TAO and its diagnostic abilities using OCT and OCTA.
Design: This is cohort longitudinal retrospective study.
Methods: A total of 51 patients with TAO and 39 healthy controls (HCs) were recruited. 
The TAO eyes were divided into active and stable stage groups. The foveal avascular zone 
(FAZ), macular perfusion density (mPD), and peripapillary PD were measured by OCTA. The 
peripapillary retinal nerve fiber layer (RNFL), central retinal thickness (CRT), and whole 
macular volume (wMV) were measured by OCT. Visual evoked potential (VEP) and visual field 
(VF) were also assessed.
Results: The mPD of the superficial retinal capillary plexus (SRCP) was significantly different 
in all subfields among active, stable, and HC groups (p < 0.05) except for the temporal inner 
(p = 0.137), and the active group achieved the lowest PD. The FAZ size increased significantly 
in the active and stable groups compared with the HC group (p < 0.001). Significant difference 
was observed in mPD of deep retinal capillary plexus (DRCP) in all quadrants among three 
groups (p < 0.05). Moreover, PD parameters of optic nerve head (ONH) and radial peripapillary 
capillary plexus (RPCP) showed a different trend among three groups (p < 0.05). The r-value 
of visual field-mean deviation (VF-MD) of TAO with DRCP-whole PD (wPD) and RPCP-wPD 
was 0.421 and 0.299, respectively (p < 0.05). The DRCP-wPD in OCTA and RNFL in OCT were 
significantly higher in area under the receiver operating characteristic curve (AUC) than that of 
HC eyes.
Conclusion: OCT and OCTA can noninvasively detect the peripapillary and macular changes in 
various stages of TAO patients, and it might be a high diagnostic value tool to monitor the TAO 
progression.
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Introduction
Thyroid-associated ophthalmopathy (TAO) is an 
autoimmune mediated inflammatory disorder 
and affects orbital tissue. The condition shows in 
patients with hyperthyroidism, euthyroidism, or 
hypothyroidism.1 It shows a range of clinical 
manifestations, including upper eyelid retraction, 
eyeball proptosis, cornea exposure, limited eye 
movement, and apical compression of the optic 
nerve.2 The proliferation of orbital fibroblasts, 
inflammatory cellular infiltration with plasma 
cells, lymphocytes, mast cells and macrophages, 
and the overproduction of glycosaminoglycans 
and collagen were the pathogenesis features of 
this disease.3 All these contribute to the expan-
sion of extraocular muscles and intraorbital fat 
which lead to the increased volume of orbital con-
tents and retrobulbar pressure.3,4 It is the leading 
theory of the severe consequence of compressive 
optic neuropathy (ON) which requires prompt 
evaluation and treatment. As early optic nerve 
variations in clinic are inapparent, it is difficult to 
detect optic nerve involvement in TAO. Retinal 
and optic disk structure and function, however, 
may be acquired alterations before the appear-
ance of the ON;5–7 for earlier detection of ON, 
previous studies has been reported that latency of 
P100 in the visual evoked potential (VEP) was an 
early indicator of ON to prevent visual loss.8,9 
Moreover, visual field (VF) test, contrast sensitiv-
ity test, and color sensation test have been used to 
evaluate the visual function and prevent irrevers-
ible visual-threatening.9–12

Various techniques have been used to evaluate 
the orbital blood flow of TAO patients. Alimgil et 
al.13 revealed that in Graves ophthalmopathy 
(GO) patients, elevated intraorbital pressure led 
to the increase in venous pressure and choroidal 
vessel resistance, and then, ocular blood flow was 
significantly decreased. As an advanced tech-
nique, optical coherence tomography (OCT) and 
optical coherence tomography angiography 
(OCTA) enable visualize detailed structure and 
microvasculature with high-quality retina image. 
Several studies have evaluated variations of vessel 
density in TAO patients,14–16 but obtained con-
flicting results. In addition, microvasculature 
changes in the retina and the foveal avascular 
zone (FAZ) size are considered an indicator of 
the visual acuity, which facilitates further study of 
early abnormalities in retina of TAO patients.17 
Meanwhile, perfusion density (PD) focuses on 

differentiating the movable and stable structures, 
which can be used to detect changes in retinal 
blood vessels at different clinical stages and obtain 
more timely and accurate retinal circulation flow 
maps. Besides, the determination of the treat-
ment of diverse clinic stages of TAO may take 
into account the combining of OCTA and OCT 
parameters.17,18 In this study, we aim to evaluate 
the retina perfusion variations in eyes with active 
and stable TAO and its diagnostic abilities using 
OCT and OCTA and its correlation with the vis-
ual function.

Materials and methods

Enrollment of participants
All subjects were recruited from the Department 
of Ophthalmology at Xiangya Hospital, Central 
South University from December 2019 to June 
2021. A total of 51 random eyes from TAO 
patients were divided into two groups based on 
the clinical activity scores (CASs):19 (1) sponta-
neous orbital pain, (2) staring induced orbital 
pain, (3) eyelid swelling, (4) eyelid erythema, (5) 
conjunctival redness, (6) suppurative necrosis, 
(7) sarcoma inflammation, or plica. Patients with 
CAS ⩾3/7 were defined as active TAO, and those 
with CAS ⩽2/7 were stable TAO. All patients 
with TAO were newly diagnosed. At the same 
time, 39 healthy volunteers of matched age were 
recruited for physical examination as the control 
group. According to the design of randomized 
controlled trial, taking deep retinal capillary 
plexus–whole perfusion density (DRCP-wPD) as 
the evaluation index, referring to previous 
research and presurvey data, the DRCP-wPD of 
the control group was 0.299, the DRCP-wPD of 
the disease group was 0.421, and the common 
standard deviation of the two groups was 0.18. 
Under the condition of α = 0.05 and β = 0.2, 
assuming the homogeneity of variance between 
the two groups, PASS software was used to calcu-
late 36 cases in each group, which could achieve 
80% statistical efficiency. The cases in the control 
group and the disease group were 39 and 51, 
respectively, which met the requirements of sam-
ple size. Exclusion criteria for patients and healthy 
participants included (1) thyroid treatment within 
3 months, like radioactive iodine therapy, immu-
nosuppressor agents, and thyroid surgery; (2) 
hormonotherapy within 6 months; (3) ophthalmic 
surgery history; (4) concomitant eye diseases, like 
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glaucoma, retinal vein occlusion, maculopathy, 
dysthyroid optic neuropathy (DON), and ON; 
refractive error [> ±3 diopters (D) sphere and 
±2 D cylinder]; (5) complicated with infection or 
severe systemic diseases; systolic blood pressure 
greater than 150 mmHg or less than 100 mmHg, 
diastolic blood pressure greater than 90 mmHg or 
less than 60 mmHg; and (6) decreased visual acu-
ity [the best-corrected visual acuity (BCVA) in 
logMAR visual chart, >0.2], apparent VF defect 
[mean deviation (MD) in Humphrey perimetry, 
<−10 dB], and apical congestion is evident on 
orbital CT and magnetic resonance imaging. 
OCT and OCTA images with the following char-
acteristics were excluded: (1) signal strength 
index <7; (2) motor artifacts visible on the en 
face angiogram; (3) local weak signal; and (4) 
images off-center on fovea or disk.

Ophthalmic and systemic examination
All participants received a complete ophthalmic 
examination including BCVA, intraocular pres-
sure (IOP) measurement with the Goldmann 
applanation tonometry, slit-lamp examination, 
and axial length (AL). The proptosis was deter-
mined by the same examiner using the Hertel 
exophthalmometry. B-scan ultrasonography was 
used to evaluate the ocular and orbital structure. 
Perimetry was conducted with the standard 24-2 
Swedish Interactive Thresholding Algorithm on 
the Humphrey Visual Field Analyzer (Carl Zeiss 
Meditec, Inc., Dublin, CA, USA),20 and visual 
field-mean deviation (VF-MD) was recorded. 
Pattern VEP (GT-2008 V-VI; GOTEC, 
Chongqing, China) was only performed for all 
TAO subjects.

OCTA and OCT imaging
Retina microvasculature imaging based on the 
Nidek RS-3000 Advance device (Nidek, 
Gamagori, Japan)21 of all participants was 
obtained. The PD (total area of perfusion vessels 
per unit area in the measurement area) of macular 
and peripapillary data at different retinal layers 
was recorded. Spectral domain optical coherence 
tomography (SD-OCT) and OCTA images were 
collected and analyzed by the updated AngioScan 
software. The optic nerve head (ONH) and fovea 
were artificially entered, and each eye was scanned 
in 6 mm × 6 mm mode. The PD of macular and 
peripapillary parameters was measured using the 

inbuilt software. Retina was automatically seg-
mented into superficial retinal capillary plexus 
(SRCP) and deep retinal capillary plexus 
(DRCP), including center area, inner and outer 
rings of diameters 6 mm, and the inner and outer 
rings segmented into four sectors, that is, supe-
rior, nasal, inferior, and temporal. Automatic seg-
mentation defines the panel (determined by 
automatic segmentation) where the SRCP 
extends 12 μm below the core layer from the inner 
limiting membranes. The panel of the DRCP 
extends from 8 μm below the inner nuclear layer 
to 12 μm below the outer nuclear layer. The reti-
nal thickness and macular perfusion density 
(mPD) were obtained. Central retinal thickness 
(CRT) was represented as the average thickness 
of the 1 mm ring in the center of the retina, whole 
macular volume (wMV), and peripapillary retinal 
nerve fiber layer (RNFL) were measured by an 
automatic analysis algorithm of OCT. For optic 
nerve OCTA, the PD of radial peripapillary capil-
lary plexus (RPCP) network (located in the 
RNFL) and ONH layer was imaged, including 
the superior area and inferior area of diameters 
6 mm. The FAZ area was calculated using the 
manufacturer’s angiometric software.

Statistics analysis
SPSS 25.0 was used for statistical analysis. 
Continuous variables with a normal distribution 
were represented by mean and standard devia-
tion. The independent samples t-test was used to 
make comparisons between two groups and one-
way analysis of variance (ANOVA) (if the vari-
ances were equal) and the Brown–Forsythe test 
(if the variances were not equal) for multiple 
groups. The median (interquartile range) was 
used to analyze continuous variables that did not 
follow a normal distribution. The Wilcoxon rank 
sum test was recruited to make comparisons 
between two groups and the Kruskal–Wallis H 
test for multiple groups. Categorical variables 
were represented as frequencies (percentage), 
and the chi-square test was employed to make 
comparisons between multiple groups. 
Correlation analysis was performed using the 
Pearson and Spearman correlations. A difference 
of p < 0.05 was considered statistically significant. 
The area under the receiver operating character-
istic curve (AUC) was conducted to evaluate the 
diagnostic capability of different parameters of 
OCT and OCTA in TAO.
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Results
A total of 90 participants were recruited here, 
including 39 healthy controls (HCs), 28 active 
patients, and 23 stable patients. No statistical dif-
ference was identified in sex distribution 
(p = 0.279), age (p = 0.126), IOP (p = 0.538), 
BCVA (p = 0.242), CRT (p = 0.160), and mWV 
(p = 0.078) among the active, stable, and HC 
groups (Table 1). VF-MD and P100 latency were 
obviously different between the active and stable 
groups (Table 1, p < 0.001). Moreover, proptosis 
and RNFL showed significant differences among 
three groups (Table 1, p < 0.001), the values of 
RNFL were lower in stable group than in HC, 
while it reached the highest in active group.

MPD parameters
The results demonstrated that mPD of the SRCP 
was significantly different in all subfields except 

temporal inner (p = 0.137) among three groups 
(p < 0.05) (Table 2), the active group obtained the 
lowest PD. The FAZ size increased significantly in 
the active and stable groups in comparison with the 
HC group (p < 0.001) (Table 2). Similarly, signifi-
cant difference was found mPD of DRCP in all 
quadrants among three groups (p < 0.05) (Table 3). 
Post hoc test revealed that the difference of mPD 
between the active and stable groups was statistically 
significant only in DRCP except fovea and temporal 
inner (p < 0.05), active and stable groups significant 
differs from HC in almost all quadrants of DRCP 
(Table 3), but only several areas in SRCP (Table 2).

Peripapillary PD parameters
The PD parameters of ONH and RPCP in all 
grids were significantly different among three 
groups (p < 0.05) (Table 4). The average PD val-
ues of the ONH in inferior, superior, and whole 

Table 1. Clinical characteristics of all included eyes.

 Active Stable HC p-value Post hoc analysis p-value

Active versus 
stable

Active 
versus HC

Stable 
versus HC

Sex 0.279a  

Male 10 (35.7) 6 (26.1) 18 (46.2)  

Female 18 (64.3) 17 (73.9) 21 (53.8)  

Age (years) 49.61 ± 12.42 44.17 ± 10.89 44.72 ± 9.71 0.126b  

BCVA (logMAR) 0.00 (−0.08~0.05) 0.00 (−0.08~0.15) 0.00 (−0.08~0.00) 0.242c  

IOP (mmHg) 16.54 ± 3.32 16.17 ± 1.44 15.87 ± 2.04 0.538d  

CAS 3.00 (3.00~3.00) 1.00 (0.00~1.50) – <0.001e  

PROP (mm) 18.32 ± 3.04 17.24 ± 2.79 14.95 ± 1.32 <0.001d 0.468 <0.001 0.003

VF-MD (dB) −2.13 ± 0.78 −1.10 ± 0.64 – <0.001e  

P100 latency (ms) 105.79 ± 2.41 102.87 ± 2.33 – <0.001e  

RNFL (μm) 114.93 ± 7.58 103.74 ± 8.40 108.03 ± 9.15 <0.001b <0.001 0.005 0.175

CRT (μm) 241.07 ± 35.83 242.65 ± 13.44 251.64 ± 14.44 0.160d  

wMV (mm3) 8.50 ± 0.26 8.51 ± 0.30 8.67 ± 0.38 0.078b  

BCVA, best-corrected visual acuity; CAS, clinical activity scores; CRT, central retinal thickness; HC, health control; IOP, intraocular pressure;  
PROP, proptosis; RNFL, retinal nerve fiber layer; VF-MD, visual field-mean deviation; wMV, whole macular volume.
aChi-square test.
bOne-way ANOVA.
cKruskal–Wallis H test.
dBrown–Forsythe test.
eIndependent samples t-test.
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of the active group were lower than those of the 
stable group without statistically significant dif-
ference (p > 0.05) (Table 4). PD of the RPCP in 
inferior and superior has the same tendency with 
ONH, but the difference between active and sta-
ble groups was significant (p < 0.001) (Table 4).

Correlation between vessel density  
and other parameters
The Pearson correlation coefficients and their cor-
responding p-value are presented in Table 5. The 
r-values of VF-MD of TAO patients with DRCP-
wPD and RPCP-wPD were 0.421 and 0.299, 
respectively (p < 0.05) (Table 5). CRT was nega-
tively correlated with VF-MD and positively cor-
related with P100 latency (p < 0.05) (Table 5).

Diagnostic abilities of OCTA and OCT
The AUC for distinguishing active and HC eyes in 
OCTA was the highest for DRCP-wPD (0.998), 
followed by RPCP-wPD (0.939), FAZ (0.823), 

SRCP-wPD (0.755), and ONH-wPD (0.708). In 
OCT, RNFL was the highest for active/HC 
(0.731), followed by ONH-wPD (0.708), wMV 
(0.640), and CRT (0.577). In the pairwise com-
parison, the DRCP-wPD in OCTA and RNFL in 
OCT owned a higher AUC than that of differenti-
ating active from HC eyes (Figure 1).

Discussion
A lack of research has been done on the diagnos-
tic ability of OCT combined with OCTA param-
eters and whether they can serve as early signs of 
visual loss at different stages of TAO. The retinal 
microvascular density changes has been identified 
in TAO patients in previous studies,15 but the 
results were inconsistent. In this study, we 
excluded the patients with elevated systemic pres-
sure, which may cause increased cardiac output 
and orbital blood flow.22 It might partially explain 
the discrepancy. In addition, the differences in 
techniques and disease staging, such as inactive 
or stable stage, were also factors contributing to 

Table 2. Superficial retinal capillary plexus (SRCP) perfusion densities in the active, stable, and HC eyes.

 Active Stable HC p-value Post hoc analysis p-value

Active versus 
stable

Active versus 
HC

Stable 
versus HC

Fovea 17.00 (10.00~19.50) 16.00 (15.00~18.00) 19.00 (16.00~23.00) 0.017b 1.000 0.090 0.031

SI 42.11 ± 6.15 43.61 ± 2.31 46.00 ± 4.39 0.003c 0.555 0.019 0.020

II 43.29 ± 6.05 44.65 ± 3.41 46.74 ± 4.25 0.013a 0.916 0.012 0.285

NI 42.07 ± 5.75 43.04 ± 5.44 46.33 ± 5.58 0.006a 1.000 0.009 0.084

TI 45.64 ± 10.64 46.00 ± 3.44 48.85 ± 4.60 0.137c – – –

SO 48.64 ± 6.68 50.83 ± 3.38 52.74 ± 3.71 0.005c 0.356 0.016 0.121

IO 52.29 ± 4.54 52.35 ± 4.30 54.59 ± 2.12 0.029c 1.000 0.050 0.077

NO 53.43 ± 3.88 53.57 ± 2.79 55.15 ± 2.47 0.042a 1.000 0.075 0.152

TO 45.00 ± 9.35 45.26 ± 5.15 49.13 ± 4.51 0.026c 0.999 0.106 0.014

FAZ 0.37 ± 0.06 0.35 ± 0.03 0.29 ± 0.07 <0.001c 0.216 <0.001 <0.001

SRCP-wPD 43.11 ± 5.36 43.96 ± 1.92 46.57 ± 1.85 0.001c 0.820 0.008 <0.001

FAZ, foveal avascular zone; HC, healthy control; II, inferior inner; IO, inferior outer; NI, nasal inner; NO, nasal outer; SI, superior inner; SO, superior 
outer; SRCP-wPD, superficial retinal capillary plexus-whole perfusion density; TI, temporal inner; TO, temporal outer.
aOne-way ANOVA.
bKruskal–Wallis H test.
cBrown–Forsythe test.
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this difference.17 Finally, the TAO participants 
involved in this study were uncomplicated with 
DON and without any appearance change. We 
explored the retinal hemodynamic and structure 
change in TAO patients at active and stable stages 
according to CAS. Our research studied PD 
which symbolized the total area of the perfused 
vasculature per unit area within an OCTA meas-
urement area. In addition, multidepth assessment 
of retinal perfusion was performed on cross-sec-
tional images. OCTA offers qualitative and quan-
titative data of the microcirculation and the PD.

We found in OCT and OCTA parameters in 
Table 2, except for the PD of the temporal inner 
quadrant in SRCP, the other quadrants were sig-
nificantly different among three groups. We 
observed that PD decreased in active TAO 
patients. Moreover, as revealed from the post hoc 
analysis p-value, active and stable groups signifi-
cantly differ from HC in almost all quadrants of 
DRCP, but only several areas in SRCP. The trend 
of ONH and RPCP was similar, and the 

difference of PD in all fields was significant among 
groups. But no significant difference was observed 
in ONH (superior) and ONH (inferior) between 
stable and HC groups. Retinal perfusion depends 
mainly upon the orbital blood supply. The 
Doppler ultrasonography have been used to study 
the hemodynamic variation and concluded that 
superior ophthalmic vein had lower flow velocity 
and stasis in TAO patients.23 It is known that 
inflammatory changes recurrent in orbital spaces 
could lead to chronic atrophic. Then, the orbit 
compression and macular thinning were found in 
stable patients.24 Meanwhile, decreased consump-
tion of nutrients and oxygen occurred in atrophic 
tissue causes lowered blood flow.23 Compressive 
ON might be the severe consequence of orbit 
compression. Besides, orbital fibroblast mediator, 
stimulated by orbital fibroblasts and turned into 
adipocytes and fibroblasts, is thought to be an 
important cause of orbit compression.25,26 The 
compression of orbit puts pressure on the venous 
system, causing retro blood flow. In addition, the 
inflammatory changes can increase orbital arterial 

Table 3. Deep retinal capillary plexus (DRCP) perfusion densities in the active, stable, and HC eyes.

 Active Stable HC p-value Post hoc analysis p-value

Active versus 
stable

Active 
versus HC

Stable 
versus HC

DRCP-wPD 28.91 ± 2.53 33.65 ± 3.43 41.25 ± 5.44 <0.001a <0.001 <0.001 <0.001

Fovea 16.21 ± 3.99 17.48 ± 2.92 19.72 ± 4.82 0.002a 0.480 0.006 0.076

SI 34.96 ± 4.51 41.30 ± 9.18 47.59 ± 8.98 <0.001a 0.015 <0.001 0.034

II 29.36 ± 4.59 36.22 ± 5.97 41.31 ± 8.50 <0.001a <0.001 <0.001 0.023

NI 36.82 ± 5.19 42.91 ± 8.24 51.54 ± 8.34 <0.001a 0.012 <0.001 0.001

TI 33.86 ± 5.05 36.96 ± 6.26 48.41 ± 8.58 <0.001a 0.173 <0.001 <0.001

SO 26.29 ± 4.43 32.04 ± 3.21 40.15 ± 5.87 <0.001a <0.001 <0.001 <0.001

IO 21.86 ± 3.60 26.87 ± 4.77 34.95 ± 6.64 <0.001a <0.001 <0.001 <0.001

NO 30.36 ± 5.62 34.91 ± 4.93 42.95 ± 8.45 <0.001a 0.010 <0.001 <0.001

TO 30.50 ± 5.89 34.17 ± 4.02 44.67 ± 7.25 <0.001a 0.033 <0.001 <0.001

DRCP-wPD, deep retinal capillary plexus-whole perfusion density; HC, healthy control; II, inferior inner; IO, inferior outer; NI, nasal inner;  
NO, nasal outer; SI, superior inner; SO, superior outer; TI, temporal inner; TO, temporal outer.
aBrown–Forsythe test.
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blood flow velocities.27 Meanwhile, inflammatory 
variations could cause intraorbital congestion and 
an increased episcleral venous pressure, and then 
the central retinal vein is obstructed.28 It is a pos-
sible explanation for reduced macular and ONH 
perfusion in patients compared with HC. The 
temporal retinal ring is usually the thinnest, 

making the difference between HC and affected 
eyes smaller and therefore hard to detect. 
Exophthalmos is a result of the expansion of 
orbital fat and muscle tissue into the bone struc-
ture. In this study, the Hertel exophthalmometry 
values were higher in the active group, but not sta-
tistically significant. Marked inflammation was 

Table 4. Optic nerve head (ONH) and radial peripapillary capillary layer (RPCP) densities in the active, stable, and HC eyes.

 Active Stable HC p-value Post hoc analysis p-value

Active versus 
stable

Active versus 
HC

Stable 
versus HC

ONH (S) 44.43 ± 3.52 44.57 ± 2.91 46.38 ± 2.84 0.018a 1.000 0.037 0.082

ONH (I) 43.93 ± 5.25 45.04 ± 2.88 47.03 ± 3.77 0.010b 0.710 0.031 0.069

ONH (WHOLE) 44.18 ± 3.87 44.70 ± 2.33 46.71 ± 2.71 0.002a 1.000 0.004 0.041

RPCP (S) 45.86 ± 2.86 50.91 ± 5.51 52.85 ± 3.60 <0.001b 0.001 <0.001 0.362

RPCP (I) 43.50 ± 3.82 47.52 ± 3.91 51.03 ± 3.98 <0.001a 0.001 <0.001 0.003

RPCP (WHOLE) 44.68 ± 2.74 49.22 ± 4.37 51.94 ± 3.28 <0.001a <0.001 <0.001 0.040

I, inferior; ONH, optic nerve head; RPCP, radial peripapillary capillary plexus; S, superior.
aOne-way ANOVA.
bBrown–Forsythe test.

Table 5. Pearson correlation coefficient matrix on parameters of optical coherence tomography (OCT) and 
optical coherence tomography angiography (OCTA) and visual functions.

SRCP-wPD DRCP-wPD ONH-wPD RPCP-wPD CRT RNFL FAZ

VF-MD

 r 0.133 0.421 0.207 0.299 −0.481 −0.034 −0.064

 p 0.353 0.002 0.145 0.033 0.000 0.810 0.657

P100 latency

 r −0.257 −0.183 −0.079 −0.232 0.337 −0.021 0.115

 p 0.069 0.199 0.581 0.102 0.016 0.886 0.422

BCVA

 r −0.125 −0.162 −0.198 −0.059 0.052 −0.065 0.174

 p 0.242 0.128 0.062 0.580 0.630 0.545 0.101

BCVA, best-corrected visual acuity; CRT, central retinal thickness; DRCP-wPD, deep retinal capillary plexus-whole 
perfusion density; FAZ, foveal avascular zone; ONH-wPD, optic nerve head-whole perfusion density; RNFL, peripapillary 
retinal fiber layer; RPCP-wPD, radial peripapillary capillary plexus-whole perfusion density; SRCP-wPD, superficial retinal 
capillary plexus-whole perfusion density; VF-MD, visual field-mean deviation.
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observed during the active phase, followed by a 
period of stability. Recurrent inflammatory in 
inactive patients leads to chronic atrophic changes 
and macular thinning.

DRCP is a more sensitive and early indicator in 
our investigation, which could be caused by vari-
ous factors, like the different circulation systems. 
Retinal circulation produced in endothelial cells 
is regulated by local factors and only supplies the 
SRCP.29 Meanwhile, both the DRCP and macu-
lar area are feeded by choroidal circulations with 
less autoregulation, it is known that perfusion 
pressure and sympathetic innervation are the 
main factors influencing choroidal blood flow.17 
Chiara Del Noce et al.30 found that vascular flow 
of choriocapillaris was reduced in TAO patients 
compared with HC, which implied that the 
decreased PD in DRCP of macular caused by the 
high congestion of ophthalmic veins reduced cho-
roid drainage. Hence, it is speculated that orbital 
blood determined the fundus perfusion, and the 
pathological changes in orbital tissues lead to the 
perfusion variations in the orbit.

Here, we further found FAZ area enlarged in 
active TAO patients, and the difference was sig-
nificant when compared with the HC group. FAZ 
is the most sensitive in retina and the capillary 
free zone in central macula. Previous research 

demonstrated that FAZ enlargement promoted 
the appearance of capillary perfusion more 
objectively.21,31

The thickening of the peripapillary RNFL in 
active stage is predicted by an elevated retrobul-
bar pressure-based etiology and an inflammatory 
process. McKeag et al.32 revealed that disk edema 
appeared in 56% eyes with diagnosed ON, and it 
was an effective marker for ON. Intro-orbital 
inflammation and edema may give rise to optic 
disk swelling in TAO patients.

A normal-looking appearance of optic disk is, 
however, thought to be the coexistence of optic 
disk atrophy with axon loss and optic disk swell-
ing and inflammation combined with inflamma-
tory mechanisms and compressive mechanisms. 
The compression mechanism is found in glauco-
matous eyes which finally results in macular thin-
ning and RNFL loss.33 This is consistent with our 
OCT results. Therefore, early changes in TAO 
can be better monitored and understand with the 
objective parameters of OCT and OCTA.

Furthermore, we also found that DRCP-wPD 
and RPCP-wPD positively correlated with 
VF-MD. According to the previous studies, 
VF-MD defects and VEP were considered as the 
early sign of DON even in the presence of normal 

Figure 1. The area under the receiver operator characteristic curves (AUROCs) for differentiating active from healthy controls. 
(a) Optical coherence tomography (OCT) measurements: CRT thickness (0.577), RNFL thickness (0.731), and wMV (0.640). (b) OCT 
angiography (OCTA) measurements: SRCP-wPD (0.755), DRCP-wPD (0.998), ONH-wPD (0.708), RPCP-wPD (0.939), and FAZ (0.823).
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visual acuity,12,34 suggesting that they can be 
applied to the early assessment of VF changes.

The AUC showed that the DRCP-wPD was of a 
high value to distinguish the active eyes from HC 
in OCTA. Combined with the fact that there was 
no significant difference among three groups in 
structural parameters (CRT and wMV) in this 
research, the diagnostic value of OCTA and OCT 
was confirmed. We inferred the peripapillary and 
mPD changes might precede structural changes.

Some limitations, however, remained in our 
research. First, the sample size was small; we can 
only see the tendency of the parameters reflecting 
the stage of the disease. In addition, the use of 
medicine was not considered in TAO patients, 
which is a biased evaluation of the severity of the 
disease. Besides, this study was cross-sectional and 
failed to capture PD changes over time. Finally, 
further longitudinal and larger sample study should 
be performed in the following experiment.

Conclusion
In conclusion, the results suggested the peripapil-
lary and mPD changes might precede structural 
changes. Furthermore, DRCP-wPD and RNFL 
have a high value in distinguishing the active eyes 
from HC which confirmed the diagnose value of 
OCTA and OCT. The PD in DRCP is promising 
early sign to detect the variations in various stages 
of TAO more sensitively.
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