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Simple Summary: Obesity is a poor prognostic factor for patients with breast cancer, resulting in
increased risk of recurrence and death due to breast cancer. Obesity can affect both the efficacy and
toxicity of systemic cancer therapies, including chemotherapy, endocrine therapy, immunotherapy,
and targeted therapies. In this review, we summarize the impact of obesity on the clinical outcomes of
systemic therapies in patients with breast cancer, describe the molecular mechanisms through which
obesity can affect systemic therapies, and highlight additional considerations for treating patients
with obesity and breast cancer. Further research that focuses on the clinical outcomes in patients with
obesity is needed to guide treatment decision-making.

Abstract: Obesity is defined as a body mass index (BMI) of 30 kg/m2 or more and is associated with
worse outcomes in patients with breast cancer, resulting in an increased incidence of breast cancer,
recurrence, and death. The incidence of obesity is increasing, with almost half of all individuals in
the United States classified as obese. Patients with obesity present with unique pharmacokinetics
and physiology and are at increased risk of developing diabetes mellitus and cardiovascular disease,
which leads to specific challenges when treating these patients. The aim of this review is to summarize
the impact of obesity on the efficacy and toxicity of systemic therapies used for breast cancer patients,
describe the molecular mechanisms through which obesity can affect systemic therapies, outline
the existing American Society of Clinical Oncology (ASCO) guidelines for treating patients with
cancer and obesity, and highlight additional clinical considerations for treating patients with obesity
and breast cancer. We conclude that further research on the biological mechanisms underlying the
obesity–breast cancer link may offer new treatment strategies, and clinicals trials that focus on the
treatment and outcomes of patients with obesity and all stages of breast cancer are needed to inform
future treatment guidelines.
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1. Introduction

Obesity, defined as a body mass index (BMI) of 30 kg/m2 or more, is one of the world’s
largest health problems. The World Health Organization has declared obesity as a global
epidemic with more than one billion people worldwide classified as obese [1]. According
to the National Health and Nutrition Examination Survey, 41.9% of the population in the
United States is obese [2]. Along with the rising rates of obesity, the incidence of breast
cancer is also increasing by approximately 0.5% per year [3]. Obesity and breast cancer
are strongly linked, with numerous studies demonstrating that obesity adversely impacts
both breast cancer incidence and outcomes [4–6]. Postmenopausal women with obesity
have a 52% increased risk of hormone receptor (HR)-positive breast cancer compared to
women with normal weight, and the risk increases to 86% for women with a BMI greater
than 35 kg/m2 [4] Postmenopausal women with obesity are also more likely to present
with more aggressive and advanced disease at diagnosis, including larger tumors, positive
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lymph nodes, and regional or distant stage [4]. On the other hand, obesity does not increase
the risk of estrogen receptor-negative or progesterone receptor-negative breast cancer
in postmenopausal women [4], and reduces the risk of breast cancer in premenopausal
women [7], which may be the result of differences in estrogen and adipokine-driven
signaling pathways. However, after breast cancer diagnosis, obesity results in worse overall
survival (OS) in all breast cancer subtypes (HR+ HER2- subtype hazard ratio (HR) = 1.39,
95% confidence interval (CI) 1.20–1.62, p < 0.001; HER2+ subtype HR = 1.18, 95% CI
1.05–1.33, p = 0.006; and triple-negative subtype HR = 1.32, 95% CI 1.13–1.53, p < 0.001) [8],
and worse OS in both premenopausal (relative risk (RR) = 1.75, 95% CI 1.26–2.41) and
postmenopausal women (RR = 1.34, 95% CI 1.18–1.53) [9].

Obesity contributes to the development of cardiovascular disease risk factors, in-
cluding dyslipidemia, type 2 diabetes, and hypertension, leading to an increased risk of
cardiovascular mortality [10]. Women with breast cancer are at an even higher risk of
developing and dying of cardiovascular disease compared to women without breast cancer
due to a number of mechanisms including cancer-related treatment exposure and shared
risk factors for cancer and cardiovascular disease [11]. Ultimately, women with obesity
and breast cancer have a 60% increased risk of dying of cardiovascular disease after breast
cancer diagnosis compared to women with normal weight, and a 41% increased risk of
dying of all-cause mortality [9]. Given that patients with obesity suffer from worse clinical
outcomes, these patients present with unique challenges during breast cancer treatment.

The pathophysiology underlying the obesity–breast cancer link is complex and multi-
factorial, involving mechanisms associated with increased circulating insulin and glucose,
altered levels of adipokines and estrogen signaling, and chronic inflammation [12,13]. Obe-
sity is associated with metabolic dysfunction and hyperinsulinemia, resulting in increased
synthesis of insulin-like growth factor-1 (IGF-1), which activates the PI3K and MAPK
signaling pathways, leading to cancer cell proliferation and survival. Obesity also leads
to dysfunctional adipocytes, the major cellular component in adipose tissue, which can
release adipokines, cytokines, and metabolic substrates to further promote breast cancer
oncogenesis and progression [14]. High levels of circulating estrogen are also observed in
patients with obesity and are associated with an increased risk of HR-positive breast cancer
due to estrogen-mediated alterations in cellular metabolism and signaling pathways [12].
Additionally, obesity leads to a state of chronic, low-grade inflammation, which further
contributes to insulin resistance and promotes tumorigenesis. Furthermore, obesity can
alter the microbiome, which may impact breast cancer risk and the efficacy of breast cancer
therapies [12,15–17]. Treatment-related issues in patients with obesity may also be one of
the key factors underlying the inferior outcomes in patients with obesity and breast cancer.

A better understanding of how these molecular mechanisms impact the biology of
breast cancer in patients with obesity is needed to inform future therapeutic trials. Given the
increasing prevalence of obesity and the urgent need to treat these patients appropriately,
the American Society of Clinical Oncology (ASCO) published clinical practice guidelines
on the appropriate chemotherapy dosing strategy for patients with cancer and obesity in
2012, and more recently published updated guidelines in 2021 to include immunotherapy
and targeted cancer therapy dosing in this patient population [18,19]. In this review, we
summarize available data that address the unique issues related to the delivery of systemic
therapy in patients with obesity and breast cancer, review the ASCO practice guidelines on
treatment strategies in patients with obesity, and provide clinical considerations specific to
breast cancer treatment with the goal of improving outcomes in this high-risk population.

2. Systemic Chemotherapy
2.1. Chemotherapy Dosing and Toxicity

In the adjuvant setting, chemotherapy dose intensity is critical to maximize the chance
of long-term survival [20]. The dose of most chemotherapy agents is determined by a
patients’ estimated body surface area (BSA), which incorporates measures of body weight
and height into several validated formulas, and is based on the assumption that phar-
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macological processes are related to body size. However, BSA-based dosing formulas
were not developed for use in patients who are obese or morbidly obese. As a result,
BSA-based formulas provide inconsistent measures of BSA when used in patients with
obesity compared to patients of average-build [21]. BSA-based formulations also do not
take into account body composition, which is characterized by the distribution of lean and
fat tissues throughout the body, or individual metabolism and excretion factors, which can
further limit the estimates of BSA-based formulas in providing a true assessment of drug
pharmacokinetics in patients with obesity.

BSA-based dosing of chemotherapy is currently the standard for most chemotherapy,
despite significant limitations. Although select cytotoxic agents are prescribed at a fixed-
dose independent of weight or BSA, there is limited evidence that fixed-dosing strategies
for other chemotherapeutic agents are equivalent to BSA-based dosing. For example, a
fixed dose of capecitabine has been developed for use in breast cancer, but a study that
evaluated fixed-dose capecitabine compared to BSA-based dosing for patients with breast
cancer, colorectal cancer, gastric cancer, and other cancers showed similar rates of toxicity
and efficacy of fixed-dose capecitabine compared to BSA-based dosing, including for
patients categorized in a high BSA group [22]. Other dosing strategies of chemotherapy
are also being explored in breast cancer. For example, the phase III Pan-European Tailored
Chemotherapy (PANTHER) study investigated a dose-dense (DD) chemotherapy and
tailoring strategy according to hematologic toxicity of epirubicin/cyclophosphamide (E/C)
and tailored docetaxel (D) to standard interval 5-fluorouracil/E/C and D for patients with
high-risk early breast cancer [23]. In a secondary analysis of the study, patients with obesity
treated with the dose tailoring strategy were found to have improved relapse-free survival
(HR = 0.51, 95% CI 0.30–0.89, p = 0.02) without increased toxicities compared to patients
without obesity [24]. Additional studies that address individually tailored chemotherapy
dosing are needed.

Although current guidelines recommend BSA-based dosing, studies show that almost
40% of patients with obesity receive reduced doses of chemotherapy [25]. Physicians may
underdose patients with obesity due to concerns of dose-dependent toxicity and fears that
BSA-based formulas may overestimate drug distribution in these patients. Frequently
in clinical practice, chemotherapy doses are capped at a BSA of 2.0 m2 or adjusted to
an ideal body weight for patients with an elevated BMI due to safety concerns. When
dose adjustments are made, patients with obesity ultimately receive lower doses than is
recommended, which translates to worse breast cancer outcomes. A secondary analysis
of the CALGB adjuvant trial 8541 found that patients with obesity who started cycle 1 of
chemotherapy with drugs reduced to <95% of the weight-based dose had shorter failure-
free survival rates (overall adjusted failure risk ratio = 0.73, 95% CI 0.53–1.00) compared
to patients with obesity who received chemotherapy dosing within 5% of the expected
dose based on actual weight [26]. The CALGB 8541 trial also found that any patient who
received a reduced total dose and dose intensity of chemotherapy experienced higher rates
of recurrence and increased mortality [27]. The theoretical concern that increased adjuvant
chemotherapy dosing will lead to increased toxicity has been dispelled in multiple systemic
reviews of the literature evaluating toxicity of chemotherapy in patients with obesity. Full
weight-based dosing of chemotherapy in patients with obesity is associated with similar or
less toxicity [28,29].

2.2. The Impact of Obesity on Chemotherapy Efficacy

Even with appropriate dosing of adjuvant chemotherapy, patients with obesity have
worse breast cancer outcomes. The combined adjuvant clinical trials (E1199, E5188, and
E3189) enrolled over 6000 women and found that women with obesity and HR-positive,
HER2-negative breast cancer have worse disease-free survival (DFS) (HR = 1.24, 95% CI
1.06–1.46, p = 0.0008) and OS outcomes (HR = 1.37, 95% CI 1.13–1.67, p = 0.002) compared to
women with normal weight [30]. Given the trials used appropriate BSA-based dosing and
included only patients with normal organ function, this suggests that the inferior outcomes
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were likely attributable to obesity alone. A retrospective analysis of the adjuvant BIG 2-98
trial (n = 2887) comparing non-docetaxel to docetaxel-containing chemotherapy showed
that patients with obesity had reduced DFS (HR = 1.32, 95% CI 1.08–1.62, p = 0.007) and
OS (HR = 1.63, 95% CI 1.27–2.09, p < 0.001) in the docetaxel group; however, no difference
in DFS (HR 1.11, 95% CI 0.83–1.47, p = 0.49) or OS (HR 1.10, 95% CI 0.78–1.54, p = 0.59)
was observed in the non-docetaxel group [31]. To determine whether this finding could be
attributed to patients with obesity receiving a reduced dosing regimen, a separate analysis
showed that the results remained when considering only patients who received a relative
dose intensity ≥ 85% for docetaxel. The authors suggest that these findings may be due to
the lipophilic nature of docetaxel that results in a higher volume of distribution, which may
translate to decreased efficacy in patients with a higher BMI. Patients who are overweight
and obese with HR-positive/HER2-positive disease treated in the NeoALTTO trial also
had decreased rates of pCR (odds ratio (OR) = 0.55, 95% CI 0.30–1.01, p = 0.053), while no
difference in pCR (OR = 1.30, 95% CI 0.76–2.23, p = 0.331) was observed in HR-negative
patients [32]. The authors suggest that the lower pCR rate observed in HER2-positive,
HR-positive breast cancer patients may be due to the association with obesity and increased
estrogen signaling pathways in HR-positive breast cancer, resulting in increased tumor
proliferation and a worse response to neoadjuvant therapy. Additional investigation is
needed into whether the HR status is a predictor for chemotherapy outcomes in patients
with obesity.

2.3. Weight Gain following Chemotherapy

Chemotherapy can directly or indirectly lead to weight gain through the induction
of menopause, which may further exacerbate the poor health outcomes in patients with
obesity. Although weight gain was more common with outdated chemotherapy regimens
(e.g., cyclophosphamide, methotrexate, and 5-fluorouracil [CMF]), a recent meta-analysis
of 25 papers showed that the average weight change in studies published after 2000 is
1.3 kg [33]. Pre-menopausal patients appear to be at increased risk of weight gain after
adjuvant therapy [34]. In an observational study of 86 women treated with a 12- to 18-week
course of (neo)adjuvant chemotherapy, chemotherapy was also shown to negatively impact
lipid profiles and promote the development of insulin resistance in addition to an increase
in weight [35].

Although BMI at diagnosis is a predictor for worse breast cancer outcomes, it is
not known if weight gain after breast cancer diagnosis leads to worse breast cancer out-
comes [36]. In a meta-analysis, which included 7 prospective cohorts and 2 clinical trials
of over 23,000 breast cancer survivors, weight gain of 10% or more after breast cancer
diagnosis was associated with increased breast cancer-specific mortality and all-cause
mortality, but was not associated with increased risk of recurrence [36]. In a pooled analysis
of 4 prospective cohorts of over 18,000 breast cancer survivors, post-diagnosis weight gain
was associated with increased risk of late recurrence, but there was no association with
all-cause mortality [37]. Nonetheless, post-diagnosis weight gain may impact the success
of subsequent cancer treatments. For example, increased BMI is associated with increased
toxicity during radiation treatment and increased complications during reconstructive
surgery [38,39]. Post-diagnosis weight can also contribute to poor quality of life and low
self-esteem and increases the risk of development of comorbid conditions, which can each
negatively impact the overall health in breast cancer patients [40].

3. Endocrine Therapy
3.1. The Impact of Obesity on Choice and Duration of Adjuvant Endocrine Therapy

Endocrine therapy dosing is fixed regardless of individual patient factors; however,
current evidence suggests that there may be differences in outcomes with the use and
type of endocrine therapy in patients with obesity. Because endocrine therapy targets
estrogen and as obesity is associated with increased estrogen production, there is concern
that estrogen therapy may have reduced effectiveness in patients with obesity. Patients
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with obesity have increased estrogen levels as a result of increased breast adipose tissue,
which is a major site of aromatase activity [41]. The main sources of estrogen, estrone and
estradiol, are converted from androgens in breast adipose tissue; therefore, an increase
in aromatase activity in the breast tissue results in increased estrogen [41]. Obesity also
leads to a decrease in sex hormone-binding globulin that inhibits estradiol, resulting in an
additional increase in estrogen [42].

Aromatase inhibitors (AIs) block the aromatization of estrogens from androgens, while
tamoxifen binds to estrogen receptors producing both estrogenic and anti-estrogen effects.
Given that patients with obesity have increased levels of estrogen, there is a concern that
endocrine therapy may not adequately suppress serum estrogen levels in breast cancer
survivors with obesity, which may result in an increased risk of relapse. Several studies
examined levels of serum estrogen before and after treatment with AIs. These studies
confirm that patients with obesity at baseline have higher estradiol levels—with patients
with BMI > 35 kg/m2 having almost three times higher estradiol levels compared to patients
with BMI < 25 kg/m2. The results show that serum levels of estradiol are higher after
treatment with AIs in patients with obesity compared to patients without obesity [43,44].

Obesity also leads to a number of other endocrine resistance mechanisms. Obesity
leads to dysregulated adipocytes, which secrete an imbalance of adipokines (such as leptin
and insulin), metabolites (such as cholesterol and free fatty acids), and cytokines (such
as TNFα and interleukins), which can induce endocrine therapy resistance by activat-
ing various signal transduction pathways and regulating apoptosis-related genes [14,45].
Certain adipokines and cytokines can also modulate estrogen synthesis by upregulating
aromatase gene activity and have been found to diminish the efficacy of endocrine therapy
in vitro [14,45]. Patients with obesity also have higher insulin levels, leading to increased
IGF-1 in breast cancer cells, which activates the PI3K/AKT/mTOR and RAS/RAF/MAPK
signaling pathways that result in endocrine therapy resistance [13,46,47]. Furthermore,
obesity is associated with the overproduction of proinflammatory molecules and reactive
oxygen species, which can further promote tumor progression despite hormone ther-
apy [45,48–50].

Several large studies have addressed whether obesity predicts inferior clinical out-
comes in patients treated with endocrine therapy. In a study of over 18,000 women treated
for early-stage breast cancer within the Danish Breast Cancer Cooperative Group with
30 years follow-up, patients with obesity treated with adjuvant endocrine therapy with
either tamoxifen or AIs had worse breast cancer outcomes with an increased risk of dis-
tant metastases (HR = 1.46, 95% CI 1.11–1.92, p = 0.007) and breast cancer-related death
(HR = 1.38, 95% CI 1.11–1.71, p = 0.003) compared to patients with normal weight [5]. How-
ever, four large randomized clinical trials that compared an AI to tamoxifen in the adjuvant
setting showed mixed results regarding the effect of BMI on treatment efficacy. In the ATAC
trial, which investigated anastrozole, tamoxifen, or the combination in postmenopausal
women with early-stage breast cancer, women with a high BMI (BMI > 35 kg/m2) had more
recurrences than women with a normal BMI (HR = 1.39; 95% CI 1.06–1.82, p = 0.03) after
100 months of follow-up [51]. Breast cancer survivors who received anastrozole had a 27%
decreased recurrence rate than those on tamoxifen; however, the benefit of anastrozole was
greater in women with a lower BMI, whereas tamoxifen was effective across all BMIs [51].
Similarly, in a secondary analysis of the prospective ABCSG-12 trial, which investigated
the efficacy of ovarian suppression with goserelin in combination with anastrozole or
tamoxifen with or without zoledronic acid in premenopausal women, overweight patients
on anastrozole had a 60% increased risk of disease recurrence (HR = 1.60, 95% CI 1.06–2.41,
p = 0.02) and more than a doubling in the risk of death (HR = 2.14, 95% CI 1.17–3.92, p = 0.01)
compared to patients with normal weight treated with anastrozole [52]. Overweight pa-
tients treated with anastrozole had almost a 1.5-fold increased risk of disease recurrence
(HR = 1.49, 95% CI 0.93–2.38, p = 0.08) and a 3-fold increased risk of death (HR = 3.03, 95%
CI 1.35–6.82, p = 0.004) compared with overweight patients treated with tamoxifen [52]. In
the BIG 1-98 trial that compared tamoxifen versus letrozole in postmenopausal women,
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patients with obesity had slightly worse OS (HR = 1.19, 95% CI 0.99–1.44) than patients
with normal BMI, but there was no difference in the treatment effect according to BMI
(p = 0.74) [53]. Lastly, in the TEAM trial that compared tamoxifen followed by exemestane
versus exemestane monotherapy for 5 years in postmenopausal women, exemestane for
2.75 years was associated with a reduced risk of relapse in patients with obesity (HR 0.57,
95% CI 0.39–0.84, p = 0.004) compared to tamoxifen for 2.75 years, but no difference in
disease recurrence was seen between the two groups at 5 years (HR = 0.75, 95% CI 0.56–1.01,
p = 0.058) [54].

Given that the ATAC and ABCSG-12 trials both showed decreased efficacy of anastro-
zole in patients with obesity, the question arises whether an increased dose of AIs may be
more effective for these patients. Although early phase III clinical trials comparing 1 mg
anastrozole to 10 mg anastrozole found no difference in efficacy, these studies were not
powered to determine differences based on BMI [55]. Additional research is needed to test
whether higher doses of AIs will lead to increased estrogen suppression and improved
outcomes. The clinical trial “Impact of Obesity on the Efficacy of Endocrine Therapy
with Aromatase Inhibitors” (NCT01758146) is currently evaluating the efficacy of adjuvant
tamoxifen compared with letrozole and should provide more information on endocrine
therapy selection in this important population.

To our knowledge, no study has evaluated whether obesity impacts the benefit from
extended endocrine therapy. In the MA.17R and ATLAS trials, respectively, longer duration
of AIs and tamoxifen were shown to reduce the risk of recurrence and breast cancer
mortality [56,57]. Women with high-risk tumors may benefit from extended endocrine
therapy, but this benefit needs to be weighed against the side effects and risks of treatment.
For a breast cancer survivor with obesity, consideration of the comorbidities and cardiac
risk factors is warranted prior to the choice and duration of endocrine therapy.

3.2. The Impact of Obesity on Endocrine Therapy in Metastatic Disease

The impact of BMI on the efficacy of endocrine therapy in the metastatic setting has
been less well-studied. Two retrospective studies that investigated AIs and fulvestrant
for metastatic HR-positive breast cancer showed no difference in efficacy according to
BMI [58,59]. Conversely, in another retrospective study of 105 women with advanced breast
cancer treated with fulvestrant during any line of therapy, patients who are overweight
and obese had almost a 2.5-fold decreased clinical benefit rate (defined as the proportion
of partial or complete responses or stable disease lasting at least 6 months) when treated
with fulvestrant compared to patients with normal weight (p < 0.001) irrespective of the
estrogen receptor expression [60]. Similarly, in an observational study of a historic cohort
of HR-positive metastatic breast cancer patients treated with fulvestrant, a higher BMI
was associated with a shorter PFS (HR = 1.89, 95% CI 1.11–3.24, p = 0.02) in patients who
showed prior hormone resistance [61]. Because single-agent endocrine therapy is no longer
first-line therapy, it is hard to put the aforementioned data into context. However, given
the reduced efficacy noted in patients with obesity in the adjuvant trials, it is reasonable to
test whether the same is true in metastatic disease.

3.3. Toxicities of Endocrine Therapy

Data investigating the impact of BMI on toxicity with endocrine therapy are lim-
ited [62]. One retrospective study of 484 patients with early-stage breast cancer treated
with tamoxifen, AIs, and ovarian ablation showed that obesity was associated with more
than a two-fold increased odds of experiencing endocrine-related side effects (OR 2.29, 95%
CI 1.04–5.07, p = 0.04), which led to increased rates of early treatment change or discontinu-
ation compared to patients with normal weight [63]. In another retrospective, exploratory
analysis of the ATAC trial that investigated adjuvant therapy with anastrozole, tamoxifen,
or the combination, women with obesity were found to have more joint symptoms than
women with normal weight (OR = 1.32, 95% CI 1.14–1.53) for both types of endocrine
therapy [64].
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Although AIs and tamoxifen are generally well-tolerated, endocrine therapy can lead
to a host of cardiometabolic adverse effects. In one meta-analysis, AIs were associated with a
slightly increased risk of cardiovascular events compared to tamoxifen; however, the results
were not statistically significant (OR = 1.21, 95% CI 0.99–1.48). In addition, AIs tended
to have a higher risk for dyslipidemia (OR = 2.24, 95% CI 0.99–5.06) [65]. In comparison,
AIs are associated with a 41% decreased risk of venous thromboembolism compared
to tamoxifen, and the risk of venous thromboembolism with tamoxifen is increased for
patients with a BMI ≥ 25 [66,67]. Given patients with obesity are at increased risk of both
endocrine therapy-related side effects and cardiovascular events, patients with obesity
on endocrine therapy should be carefully monitored for toxicities and compliance with
adjuvant therapy.

4. HER2-Targeted Treatments
4.1. Trastuzumab Dosing and Efficacy

Trastuzumab, a monoclonal antibody that targets the HER2 transmembrane growth
factor receptor, is a standard treatment for HER2-positive breast cancer. Trastuzumab is
dosed according to body weight when an intravenous route is used based on phase I dose
escalation studies that utilized a weight-based dosing schedule [68,69]. In a secondary
analysis of the N9831 trial that compared chemotherapy with or without trastuzumab in
over 3400 women with HER2-positive, early-stage breast cancer, women with obesity had
a decreased DFS (HR 1.31, 95% CI 1.07–1.59) compared to women with normal weight [70].
However, after stratification according to the type of treatment received, there was no
difference in the DFS of women who are overweight and those who are obese compared
to women with normal weight after treatment with IV adjuvant trastuzumab. This study
suggests that IV adjuvant trastuzumab may improve clinical outcomes regardless of BMI,
although the study was insufficiently powered to detect a statistical significance according
to the treatment received [70].

A fixed-dose subcutaneous (SC) formulation of trastuzumab is available at 600 mg
per dose based on subsequent pharmacokinetic studies that reported a minimal effect of
body weight on trastuzumab exposure [71]. The HannaH study compared (neo)adjuvant
trastuzumab once every 3 weeks with either 600 mg SC or 8 mg/kg IV loading dose
followed by 6 mg/kg maintenance for early HER2-positive breast cancer and showed non-
inferiority of SC versus IV trastuzumab [72]. However, further population pharmacokinetic
models show that the first cycle of treatment with 600 mg SC trastuzumab may not reach
the target plasma concentration in patients with an elevated BMI [73]. This suggests that a
weight-adjusted IV dosage may be required in the first cycle, or that an additional loading
dose is required when switching from IV to SC dosing [73,74]. Nevertheless, current US
prescribing guidelines do not require modifications according to weight given that SC
trastuzumab achieved equal or higher concentration immediately before the next dose is
administered (Ctrough) at pre-dose cycle 8 with no difference in efficacy across body groups
compared to IV trastuzumab [75,76].

4.2. Trastuzumab Toxicity

Trastuzumab can cause cardiotoxicity in a small percent of patients, characterized
by asymptomatic decreases in the left ventricular ejection fraction (LVEF) and less often
congestive heart failure [77]. Cardiotoxicity can occur independent of the cumulative doses
of trastuzumab, and LVEF recovery to baseline often occurs following trastuzumab discon-
tinuation. In a meta-analysis of 8745 women with breast cancer treated with anthracyclines
and sequential anthracyclines and trastuzumab, Guenancia et al. reported that women who
are overweight and those who are obese are at increased risk of developing cardiotoxicity
from trastuzumab plus chemotherapy (OR = 1.38, 95% CI 1.06–1.80) compared to women
with normal weight [78]. In an exploratory analysis of the ALTTO BIG 2-06 trial, which
investigated trastuzumab and/or lapatinib as adjuvant treatment for early stage HER2-
positive disease, patients with obesity had a higher incidence of grade 3/4 adverse events



Cancers 2023, 15, 2526 8 of 21

(p < 0.001) and serious adverse events (p < 0.001), which led to a statistically significant
increase in treatment discontinuation (p < 0.001) [79]. These data suggest that patients with
obesity and HER2-positive breast cancer are at increased risk of toxicity with HER2-targeted
therapies and may require closer monitoring of toxicity.

4.3. Newer HER2-Targeted Agents

Although newer HER2-targeted agents have been developed in the early stage and
advanced setting for HER2-positive breast cancer, there are limited studies investigating
the impact of BMI on the efficacy and toxicity of these agents. Pertuzumab is a monoclonal
antibody that targets the HER2 receptor by binding to a different HER2 epitope inhibiting
HER2 dimerization. Pertuzumab is administered at a fixed dose based on early clinical trials
and population pharmacokinetic studies that show a clinically insignificant effect of body
weight on pertuzumab distribution and clearance [80]. Similarly, the oral HER2-targeted
tyrosine kinase inhibitors (TKIs)—lapatinib [81], neratinib [82], and tucatinib [83]—are
also administered at fixed doses. On the other hand, the antibody-drug conjugates, ado-
trastuzumab emtansine (T-DM1) and fam-trastuzumab deruxtecan-nxki (T-DXd), are dosed
according to weight given that pharmacokinetic studies showed that body weight impacts
both the volume of distribution and the clearance of these agents [84,85].

Although the safety and efficacy of the newer HER2-targeted agents have been investi-
gated in early phase clinical trials, current evidence suggests that patients with obesity may
have worse outcomes with these agents. In an observational study of 709 patients with
metastatic HER2-positive breast cancer treated with pertuzumab and/or T-DM1, patients
with obesity had worse OS (HR = 1.29, 95% CI 1.09–1.52, p = 0.003) compared to patients
without obesity, but BMI had no impact on the PFS after first-line therapy (HR = 1.09, 95%
CI 0.97–1.21, p = 0.15) [86]. In addition, in the NeoALTTO trial that randomized 455 patients
to neoadjuvant lapatinib, trastuzumab, or their combination plus paclitaxel, patients who
are overweight and those who are obese with HR-positive breast cancer were less likely to
achieve a pathologic complete response (OR = 0.55, 95% CI 0.30–1.01, p = 0.053) compared
to patients with normal weight [32]. However, this effect was not seen for HR-negative
cases (OR 1.30, 95% CI 0.76–2.23, p = 0.331), which may reflect the poor prognostic impact
of obesity in HR-positive breast cancer rather than a specific treatment-related effect.

Compared to trastuzumab, the newer HER2-targeted agents appear to be less car-
diotoxic. For example, the addition of pertuzumab to trastuzumab plus docetaxel in the
phase III CLEOPATRA trial did not increase the incidence of cardiac adverse events [87].
The antibody-drug conjugates, T-DM1 and T-DXd, and the oral HER2-targeted TKIs also
have a relatively low incidence of cardiac toxicity compared to trastuzumab, although
patients with a cardiac history or reduced LVEF at baseline were excluded from these
trials. Nonetheless, patients with obesity may experience more adverse events with these
newer HER2-targeted agents compared to patients without obesity. A retrospective study
of 119 patients with HER2-positive breast cancer treated with T-DM1 found that patients
with obesity treated with T-DM1 had a higher incidence of all-grade adverse events com-
pared to patients without obesity, which resulted in a significantly higher rate of treatment
modifications (45% vs. 25%, p = 0.028) and delays (36% vs. 16%, p = 0.015) [88]. To our
knowledge, a similar analysis of toxicity according to BMI has not been performed for the
more recent HER2-targeted agents.

5. Targeted Therapies
5.1. CDK4/6 Inhibitors

Cyclin-dependent kinase (CDK) 4/6 inhibitors in combination with endocrine treat-
ment are the standard-of-care treatment for first-line HR-positive metastatic breast cancer
and are administered at fixed doses. CDK4 and CDK6 are serine/threonine kinases that reg-
ulate the cell cycle by forming cyclin D–CDK4/6 complexes, which leads to a downstream
effect of cell cycle progression [89]. CDK4/6 inhibitors block the cell cycle transition from
G1 to S by inhibiting the kinase activity of the cyclin D–CDK4/6 complex [89]. Preclinical
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data illustrate that CDK4 and CDK6 are also important regulators of metabolic processes,
such as lipid synthesis, oxidative pathways, insulin signaling, glucose regulation, and mito-
chondrial function [90–93]. Likewise, CDK4/6 inhibitors also impact cellular metabolism,
leading to changes in glycolysis and fatty acid oxidation, and subsequent apoptosis [94].

Based on the interaction of CDK4/6 inhibitors on cellular metabolism, the impact of
obesity on the efficacy of CDK4/6 inhibitors is under investigation. The three CDK4/6
inhibitors, palbociclib, ribociclib, and abemaciclib, are each prescribed as a fixed dose based
on population pharmacokinetic studies that show a clinically insignificant effect of body
weight on drug exposure [95–97]. In the adjuvant setting, palbociclib showed no difference
in invasive DFS outcomes for BMI groups (HR 0.95 CI 0.69–1.30) in the preplanned analysis
of outcomes by BMI in the randomized, phase III PALLAS trial (comparing palbociclib
with adjuvant endocrine therapy to adjuvant endocrine therapy alone in patients with
early-stage breast cancer) [98]. In addition, patients who are overweight and those who
are obese had less frequent and less severe neutropenia compared to patients with normal
weight, which led to significantly lower treatment discontinuation rates with palbociclib
(overweight vs. normal weight: HR = 0.73, 95% CI 0.63–0.84, p < 0.0001; obese vs. normal
weight: HR = 0.65, 95% CI 0.56–0.75, p < 0.0001). In the neoadjuvant setting, an exploratory
post hoc analysis of the NEOMONARCH trial, which compared the biologic activity of
2 weeks of neoadjuvant abemaciclib plus anastrozole, abemaciclib monotherapy, and
anastrozole monotherapy followed by 14 weeks of the combination of abemaciclib and
anastrozole in patients with early-stage breast cancer, showed that BMI (categorized by the
threshold of 25) did not significantly impact Ki67% changes at 2 weeks or radiological and
clinical response rates at the end of treatment with abemaciclib plus endocrine therapy [99].

In the metastatic setting, a pooled analysis from the MONARCH 2 and 3 trials, which
compared abemaciclib plus endocrine therapy to endocrine therapy alone in patients with
advanced breast cancer, found no difference in PFS according to BMI (p = 0.07). However,
normal and/or underweight patients had a higher overall response rate with abemaciclib
plus endocrine therapy compared with patients who are overweight and/or obese (49.4%
vs. 41.6%, OR = 0.73, 95% CI 0.54–0.99) [100]. Similar to palbociclib in the PALLAS trial,
patients who are overweight and those who are obese treated with abemaciclib in the
MONARCH 2 and 3 trials had lower rates of neutropenia of any grade (40.4% vs. 51.0%,
p = 0.004) and neutropenia grade 3 or higher (21.7% vs. 29.3%, p = 0.02) compared to
underweight and/or normal weight patients [100]. The authors of this study propose that a
potential mechanism of the decreased response rate to abemaciclib plus endocrine therapy
observed in patients with obesity and metastatic disease may be due to a suboptimal dose
intensity, but further prospective trials to evaluate this hypothesis are required.

Retrospective studies evaluating the efficacy and toxicity of CDK4/6 inhibitors in
metastatic disease are inconclusive. A study of 179 patients treated with palbociclib or
ribociclib plus endocrine therapy reported that overweight patients tended to have a higher
12-month PFS compared to patients with normal weight and patients with obesity (72.2%,
52.9%, and 56.5%, respectively), although the results were not statistically significant
(p = 0.054). In addition, toxicities of palbociclib and ribociclib plus endocrine therapy in this
study were similar across BMI groups [101]. A retrospective cohort study of 222 patients
treated with CDK4/6 inhibitors (208 received palbociclib, 7 received abemaciclib, and
7 received ribociclib) found no difference in PFS, toxicities, or treatment modifications
according to BMI [102]. Another retrospective study of 50 patients treated with CDK4/6
inhibitors utilized computed tomography (CT)-based analyses of baseline body compo-
sition. While no significant differences in PFS were observed with higher BMIs, baseline
sarcopenia was associated with worse PFS (20.8 vs. 9.6 months, HR = 2.52, 95% CI 1.02–6.19,
p = 0.037), and patients with higher visceral fat indices and higher visceral fat density
had better PFS (20.8 vs. 10.4 months, HR = 0.40, 95% CI 0.16–0.99, p = 0.041) [103]. This
study suggests that certain body compositions may be an important indicator of CDK4/6
inhibitor efficacy.
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5.2. mTOR/PI3K Inhibitors

Resistance to endocrine therapy in breast cancer is associated with the activation of
the phosphatidylinositol 3-kinase (PI3K)–Akt-mammalian target of rapamycin (mTOR)
intracellular signaling pathway. mTOR and PIK3 inhibitors inactivate mTOR and PIK3CA,
respectively, to prevent the downstream signaling required for cell cycle progression
and proliferation [104]. The PI3K–mTOR pathway also plays a central role in cellular
metabolism. The PI3K–mTOR pathway is regulated by intracellular stimuli including nutri-
ents and insulin. When mTOR is activated, downstream PI3K–Akt signaling is disrupted,
which creates a negative feedback loop on insulin leading to insulin resistance [105,106].
Accordingly, mTOR inhibition restores insulin action on the PI3K–Akt pathway and pre-
vents insulin-resistant effects of excess nutrients on insulin-mediated glucose transport in
muscle and adipose cells [106]. Chronic treatment with an mTOR/PI3K inhibitor leads to
dysregulated lipid and glucose metabolism, resulting in a host of metabolic side effects in
patients [106,107].

The mTOR inhibitor everolimus is prescribed at a fixed dose based on pharmacoki-
netic studies that show no effect of body weight on pharmacokinetic characteristics in
adults [108]. The randomized phase III BOLERO-2 trial showed the efficacy of everolimus
in combination with exemestane in patients with ER-positive/HER2-negative advanced
breast cancer resistant to AIs with a significant improvement in PFS (HR = 0.43, 95% CI
0.35–0.54, p < 0.001) compared to exemestane monotherapy [104]. A secondary analysis of
the real-world, expanded-access, multi-center BALLET trial that investigated the safety
of everolimus plus exemestane found no correlation between BMI at baseline and PFS
(p = 0.38) [107]. Everolimus can cause significant weight loss with almost a quarter of
patients losing more than 6.9% of their baseline weight, and patients with greater weight
loss at the end of everolimus therapy had improved PFS compared to those without weight
loss (grade 3 and 4 weight loss vs. grade 0: HR 0.69, 95% CI 0.48–0.99, p = 0.041). This
suggests that everolimus-associated weight loss is a positive prognostic marker in patients
with advanced HR-positive breast cancer and indicative of “on-target” toxicity.

The PIK3CA inhibitor alpelisib is prescribed at a fixed dose based on pharmacokinetic
studies that show no effect of body weight on pharmacokinetics [109]. The randomized,
phase III SOLAR-1 trial of patients with PIK3CA-mutated HR-positive, HER2-negative ad-
vanced breast cancer who received prior endocrine therapy showed a longer PFS (HR = 0.65,
95% CI 0.50–0.85, p < 0.001) in patients treated with alpelisib plus fulvestrant compared
with fulvestrant alone [110]. Similar to everolimus, weight loss is a common side effect of
alpelisib, occurring in almost one-third of patients [110]. In addition, hyperglycemia fre-
quently occurs with alpelisib treatment, with 65% of patients experiencing hyperglycemia of
any grade and 36.6% of patients experiencing grade 3 or higher hyperglycemia [110]. Given
that PI3K inhibitors block the intracellular action of insulin, hyperglycemia is considered
another “on-target” effect [111].

There are limited data investigating the impact of obesity on the efficacy of alpelisib.
One retrospective study of 27 patients with metastatic PIK3CA-mutated breast cancer
treated with alpelisib showed no difference in response to alpelisib according to BMI
(p = 0.966), although the study was limited by the small sample size [112]. Other stud-
ies have shown that patients with increased BMI, pre-existing hyperglycemia, and pre-
diabetes/diabetes are at increased risk of alpelisib-induced hyperglycemia [113,114]. Man-
agement strategies have been proposed to prevent and treat alpelisib-induced hyper-
glycemia, including counseling on healthy lifestyle behaviors, optimization of blood glu-
cose prior to alpelisib treatment, and treatment with anti-hyperglycemia agents [111]. Given
that patients with obesity are at increased risk of alpelisib-induced hyperglycemia, these
patients should be monitored carefully to allow for early detection and management of
hyperglycemia and associated complications.
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5.3. PARP Inhibitors

The poly(ADP-ribose) polymerases (PARP) family of enzymes have a wide variety of
biological functions, ranging from DNA repair, cell division and differentiation, oxidative
stress, and cell death [115]. The PARP enzymes also regulate key metabolic pathways
central to carbohydrate and lipid metabolism and adipocyte differentiation [115]. PARP
inhibitors inactivate the PARP family of enzymes and are approved for use in the treatment
of metastatic germline BRCA1 or BRCA2-mutated breast cancers and in the adjuvant
setting for high-risk, HER2-negative germline BRCA1 or BRCA2-mutated early breast
cancer [116–118]. The PARP inhibitors, olaparib and talazoparib, are both prescribed at
fixed doses [119]. To our knowledge, no study has assessed the impact of BMI on the
clinical outcomes and toxicities of PARP inhibitors in patients with breast cancer.

5.4. Trop-2-Directed Antibody-Drug Conjugate

Sacituzumab govitecan-hziy is an antibody-drug conjugate that combines a human-
ized monoclonal antibody, which targets the human trophoblast cell-surface antigen 2
(Trop-2), with SN-38. Sacituzumab govitecan-hziy is approved for use in patients with
relapsed or refractory metastatic triple-negative or HR-positive, HER2-negative breast
cancer [120,121], and is dosed according to weight based on pharmacokinetic studies that
show that body weight correlates with volume of drug distribution and clearance [122].
To our knowledge, no study has assessed the impact of BMI on the clinical outcomes and
toxicities of sacituzumab govitecan-hziy in patients with breast cancer.

6. Immunotherapy

Pembrolizumab is a humanized monoclonal antibody that inhibits the PD-1 receptor
and is approved for use in the treatment of patients with triple-negative breast cancer
in the neoadjuvant and metastatic settings [123,124]. Although early clinical trials of
pembrolizumab used a weight-based dosing regimen, subsequent pharmacokinetic studies
show that a fixed-dosing strategy results in no clinically significant differences in efficacy
and safety, supporting the current FDA recommendation of a fixed dose [125]. Data
addressing the impact of obesity on clinical outcomes with immunotherapy are lacking.
Although no study has investigated the impact of BMI with immunotherapy in breast
cancer specifically, a systematic review of 18 studies that included many types of solid
tumors (mainly non-small cell lung cancer, melanoma, and renal cell carcinoma) found
mixed results with survival outcomes and immune-related adverse effects after treatment
with immunotherapy [126]. Another systematic review of 13 studies treated with immune
checkpoint inhibitors in solid tumors (also mainly non-small cell lung cancer, melanoma,
and renal cell carcinoma) found a positive association between high BMI and improved OS
(HR = 0.62, 95% CI 0.55–0.71, p < 0.0001) and PFS (HR = 0.71, 95% CI 0.61–0.83, p < 0.0001)
among patients with immune checkpoint inhibitors, but no significant difference between
the incidence of immune-related adverse effects (p = 0.207) [127].

It is hypothesized that patients with obesity and cancer may have a favorable effect
with immunotherapy due to the immune dysfunction that results from excess adipose
tissue. In breast cancer patients with obesity, the immune system is dysregulated with an
increase in pro-inflammatory adipokines, such as CD8+, Th1 CD4+, and Th17 CD4+, and
a decrease in anti-inflammatory adipokines, such as Th2 CD4+ and Tregs [128]. Obesity
is also associated with an increase in myeloid-derived suppressor cells that fail to differ-
entiate into mature myeloid lineages and impaired cytotoxic activity of T cells and NK
cells. There is also increased macrophage recruitment in adipose tissue that results in the
secretion of inflammatory cytokines and can further stimulate angiogenesis. In addition,
obesity is associated with increased expression of PD-1 on T cells and NK cells and of
PD-L1 on myeloid-derived suppressor cells. This suggests that breast cancer patients with
obesity may experience a strong anti-tumor immune response from immunotherapy, which
necessitates further confirmation through well-designed clinical trials.
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7. ASCO Guidelines

ASCO published clinical practice guidelines in 2012 outlining recommendations for
appropriate cytotoxic chemotherapy dosing for adult patients with cancer and obesity [18].
A systematic review of the literature was performed (with the majority of studies involving
breast, ovarian, colon, and lung cancers) by a panel of experts in medical and gynecologic
oncology, clinical pharmacology, pharmacokinetics and pharmacogenetics, and biostatistics
and a patient representative to answer questions regarding chemotherapy dosing and
toxicity in patients with obesity. More recently, ASCO published a guideline update
in 2021 to provide recommendations on the appropriate dosing of immunotherapy and
targeted cancer therapies in adults with cancer and obesity [19]. Sixty studies, primarily
retrospective, were included in the review.

According to ASCO guidelines, patients with obesity should be treated with full
weight-based dosing of chemotherapy given that there is little evidence to suggest that
toxicity is increased with full weight-based dosing and that underdosing is associated with
inferior outcomes [19]. In addition, ASCO recommends that toxicities related to chemother-
apy should be treated the same for all patients, regardless of obesity status. If a dose
reduction is performed in response to toxicity, resumption of full weight-based doses for
subsequent cycles should be considered, especially if a possible cause of toxicity (e.g., im-
paired renal or hepatic function) has resolved. For immunotherapy and targeted therapies,
ASCO recommends the FDA-approved prescribing information for dosing, regardless of
obesity status, given that there is little evidence to suggest that dosing strategies should be
modified for patients with obesity. Dose reductions and modifications for immunotherapy
and targeted therapies should be treated the same for all patients.

8. Clinical Considerations for Patients with Obesity

Patients with breast cancer and obesity present multiple unique challenges during can-
cer treatment. Patients with obesity have different physiology and metabolism compared
to patients without obesity, which leads to variable pharmacokinetics. In addition, patients
with obesity are at higher risk for the development of diabetes mellitus and cardiovascular
disease, which must often be weighed against the benefits of treatment. Furthermore, pa-
tients with obesity are more likely to have aggressive and advanced tumors and less likely
to benefit from breast cancer treatment resulting in increased rates of relapse and death.
Despite these important and unique considerations in managing patients with obesity,
there are no specific guidelines for the management of breast cancer in patients with obesity.
In the United States, the National Comprehensive Cancer Network (NCCN) guidelines are
the most comprehensive guidelines detailing the standard-of-care for patients with breast
cancer, but there is limited recommendations for patients with obesity specifically [129].
Therefore, we propose clinical considerations as outlined in Table 1 for the management of
systemic therapies in breast cancer patients with obesity.
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Table 1. Systemic therapy concerns and considerations for patients with breast cancer and obesity.

Systemic Treatment Mechanisms Related to Obesity Dosing Strategy Treatment Concerns in Patients
with Obesity

Considerations for Patients
with Obesity

Chemotherapy

• BSA-based dosing strategies may not accurately estimate
drug pharmacokinetics in patients with obesity [21]

• Chemotherapeutic agents can have different
pharmacokinetic profiles in patients with obesity (e.g.,
lipophilic drugs with a high affinity for adipose tissue may
have a higher volume of distribution in patients with
obesity) [31,130]

BSA-based dosing

• Risk of under- or over-dosing using
BSA-based dosing formulas, which
may lead to decreased efficacy and/or
increased toxicity

• Leads to weight gain and
cardiometabolic side effects

• Use actual body weight in
BSA-based dosing formulas

Endocrine therapy

• Increased levels of estrogens due to aromatization of
adipose tissue may lead to inadequate estrogen suppression
with endocrine therapy [43,44]

• Dysfunctional adipocytes release adipokines, metabolites,
and cytokines, which induce endocrine resistance by
activating various signal transduction pathways,
modulating apoptosis-related genes, and upregulating
aromatase activity [14,45]

• Adipokines and cytokines have been found to directly
diminish the efficacy of endocrine therapy in vitro [45]

• Increased insulin levels and IGF-1 activate the
PI3K/AKT/mTOR and RAS/RAF/MAPK signaling
pathway, leading to endocrine resistance [13,46,47]

• Chronic inflammation results in endocrine therapy
resistance through the activation of proinflammatory
molecules and reactive oxygen species [45,48–50]

Fixed-dose

• Increased endocrine-related toxicities
and joint symptoms in patients
with obesity

• Leads to cardiometabolic side effects
and increased risk of VTE in patients
with obesity

• Choice of endocrine therapy
should be made irrespective
of BMI

• Consider comorbidities and
cardiac risk factors when
evaluating endocrine therapy
choice and duration in the
adjuvant setting

Trastuzumab Further research is needed Weight-based (IV);
fixed-dose (SC)

• The first SC dose may be suboptimal
• Increased risk of cardiotoxicity and

other adverse events in patients
with obesity

• Consideration of a loading dose
with SC administration for patients
who are overweight and those
with obesity

Pertuzumab Further research is needed Fixed-dose NA • Treat irrespective of BMI

Antibody-drug conjugates
(T-DM1, fam-trastuzumab
deruxtecan)

Further research is needed Weight-based
• Increased toxicity with T-DM1 in

patients with obesity • Treat irrespective of BMI
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Table 1. Cont.

Systemic Treatment Mechanisms Related to Obesity Dosing Strategy Treatment Concerns in Patients
with Obesity

Considerations for Patients
with Obesity

Tyrosine kinase inhibitors
(lapatinib, neratinib,
tucatinib)

Further research is needed Fixed-dose NA • Treat irrespective of BMI

CDK4/6 inhibitors
(palbociclib, ribociclib,
abemaciclib)

• CDK4 and CDK6 help regulate cellular metabolism,
including lipid synthesis, oxidative pathways, insulin
signaling, glucose regulation, and mitochondrial function
[90–93]

Fixed-dose NA • Treat irrespective of BMI

mTOR and PI3K inhibitor
(everolimus and alpelisib,
respectively)

• Activation of the PIK3–mTOR pathway results in insulin
resistance and altered glucose metabolism [105,106] Fixed-dose

• Associated with dyslipidemia,
hyperglycemia (primarily alpelisib)

• Obtain serial fasting blood sugars
and lipid panels

• For alpelisib only:
• Optimize blood glucoses prior to

initiation of alpelisib
• Counsel on healthy lifestyle

behaviors and symptoms of
hyperglycemia

• Closely monitor for signs and
symptoms of hyperglycemia to
allow for the early detection and
management of
hyperglycemia-related
complications

PARP inhibitors (olaparib,
talazoparib)

• PARP enzymes help regulate metabolic pathways, including
carbohydrate and lipid metabolism and adipocyte
differentiation [115]

Fixed-dose NA • Treat irrespective of BMI

Trop-2-directed
antibody-drug conjugate
(sacituzumab
govitecan-hziy)

Further research is needed Weight-based NA • Treat irrespective of BMI

Immunotherapy
(pembrolizumab)

• Excess adipose tissue results in immune system
dysfunction [128]

Fixed-dose NA • Treat irrespective of BMI

BSA = body surface area; VTE = venous thromboembolism; IV= intravenous; SC = subcutaneous; NA = not applicable.
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9. Conclusions and Future Directions

Obesity is an independent poor prognostic factor for breast cancer patients, leading
to increased breast cancer incidence, relapse, and mortality. Obesity can also impact the
efficacy and toxicity of systemic therapies, which pose specific challenges during breast
cancer treatment. Given the prevalence of obesity and the role that obesity plays on breast
cancer risk and progression, further research investigating the impact of obesity on breast
cancer is urgently needed (Table 2). A more detailed understanding of the metabolic
pathways that drive breast cancer has the potential to identify biomarkers and lead to
new targeted therapies. Lifestyle interventions and pharmacologic strategies for weight
management are currently being investigated to reduce breast cancer risk and improve
breast cancer outcomes. Clinical trials are ongoing to address the optimal therapy strategy
in patients with obesity, but further trials are warranted. Given that patients with obesity
are at increased risk of breast cancer recurrence and death, efforts to improve outcomes in
patients with breast cancer and obesity should be a priority.

Table 2. Areas for future research in the prevention and treatment of obesity-associated breast cancer.

Prevention

• Identifying the metabolic pathways that drive breast cancer for the development of biomarkers to predict those
at increased risk

• Identifying the molecular mechanisms underlying the relationship between pre-menopausal patients and
obesity that reduce breast cancer risk

• Improving risk prediction models that incorporate body composition parameters to predict breast cancer risk
• Improving lifestyle interventions and pharmacologic strategies for weight management for primary, secondary,

and tertiary breast cancer prevention

Treatment

• Identifying the metabolic pathways that drive breast cancer for the development of novel therapies and
biomarkers that predict response to treatment

• Identifying targetable metabolic pathways that result in increased endocrine therapy resistance in patients
with obesity

• Improving risk prediction models that incorporate body composition parameters to predict response to therapy
• Improving chemotherapy dosing strategies to reflect body composition in patients with obesity
• Optimizing the selection, dosing, and duration of hormone therapy for patients with obesity
• Improving strategies for the prevention and treatment of cardiometabolic adverse effects in patients

with obesity
• Increasing the number of clinical trials focused on patients with obesity
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