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ABSTRACT
For people living in developed countries life span is growing at a faster pace than ever. One of 
the main reasons for such success is attributable to the introduction and extensive use in the 
clinical practice of antibiotics over the course of the last seven decades. In hospital settings, 
Klebsiella pneumoniae represents a well-known and commonly described opportunistic patho-
gen, typically characterized by resistance to several antibiotic classes. On the other hand, the 
broad wedge of population living in Low and/or Middle Income Countries is increasing rapidly, 
allowing the spread of several commensal bacteria which are transmitted via human contact. 
Community transmission has been the original milieu of K. pneumoniae isolates characterized 
by an outstanding virulence (hypervirulent). These two characteristics, also defined as “patho-
types”, originally emerged as different pathways in the evolutionary history of K. pneumoniae. 
For a long time, the Sequence Type (ST), which is defined by the combination of alleles of the 7 
housekeeping genes of the Multi-Locus Sequence Typing, has been a reliable marker of the 
pathotype: multidrug-resistant clones (e.g. ST258, ST147, ST101) in the Western world and 
hypervirulent clones (e.g. ST23, ST65, ST86) in the Eastern. Currently, the boundaries separating 
the two pathotypes are fading away due to several factors, and we are witnessing a worrisome 
convergence in certain high-risk clones. Here we review the evidence available on confluence 
of multidrug-resistance and hypervirulence in specific K. pneumoniae clones.
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Introduction

Klebsiella pneumoniae stands up among other mem-
bers of the Enterobacterales order, both for the speed 
and for the tenacity of its spread. These fermentative, 
non-motile, gram-negative bacteria can be considered 
ubiquitous microorganisms: members of the genus 
Klebsiella are widely represented in soil, water, and 
vegetation [1]. They are also natural inhabitants of 
the gut microbiota of healthy humans and animals 
[1–3]. Within the genus, K. pneumoniae represents an 
emerging worldwide public health issue, being one of 
the most frequent bacterial species associated with 
nosocomial infections [4,5].

While it can be a silent bowel colonizer for long 
periods of time [6,7], the pooled mortality rate for 
K. pneumoniae infections is high even nowadays, ran-
ging from 21% to 42% based on its susceptibility to 
antimicrobial agents [8].

As a matter of fact, K. pneumoniae ‘sensu stricto’ (not 
to be mistaken with other members of the related 
species complex, which seem to be more often linked 
with the environment) [5] emerged as an epidemically 
successful bacterium via two different evolutionary 
pathways, often defined as pathotypes: Multidrug- 
Resistant K. pneumoniae (MDR-Kp) and hypervirulent 
K. pneumoniae (hvKp) [9].

In both cases, infections often start from coloniza-
tion of the gut microbiota [10], yet the pathophysiol-
ogy of the host–microorganism interaction is 
fundamentally different [4].

In Western countries MDR-Kp is a leading cause of 
hospital acquired infections [11,12] and it is the subject 
of frequent risk assessments by health authorities [13– 
15]. On the other hand, in Asia, and more specifically in 
the Asian Pacific Rim, several cases of severe and inva-
sive infections caused by hvKp in otherwise healthy 
individuals were reported since the mid-late 
1980s [16].

Notwithstanding a 30-year history, hvKp in the 
scientific literature is way less represented than MDR- 
Kp, and its characteristics are less defined; yet, its 
spread is highly worrisome due to its ability to cause 
disease in healthy subjects [17].

In this review, we focus on specific Clonal Groups 
(CGs) [18], and on their associated Sequence Types 
(STs) [19], which are considered the leading causes of 
the spread of MDR- and of hvKp, respectively. In parti-
cular, GC258, CG147, and CG101 were considered as 
representatives of the MDR-Kp type, and CG23, CG65, 
and CG86 as those of the hvKp. These lineages spread 
globally from different geographical areas over various 
time periods, and they are for this reason referred to as 
high-risk clones. Isolates/strains belonging to the same 
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high-risk clone have similar phenotypic and genotypic 
traits and phylogenetic relatedness. By comparing 
common and discriminating genetic features, this 
review aims to summarize these characteristics in 
a selection of relevant CGs.

Multidrug-Resistance

The infections caused by MDR-Kp, often described as 
the ‘Classical K. pneumoniae’, represent a huge threat 
to medical care of the growing number of critically ill 
patients [20]. This pathotype is of great concern 
because of i) its fast and vast dissemination, especially 
in critical settings such as Intensive Care Units (ICUs), ii) 
its ability to acquire multiple antimicrobial resistance 
(AMR) genes, and iii) the scarcity of effective antibiotics 
for extensively drug resistant K. pneumoniae. In fact, 
MDR-Kp has been listed as a priority bacterial patho-
gen for which new antibiotics are urgently needed by 
the World Health Organization [21].

Even though in K. pneumoniae a proportion of AMR 
(e.g. toward colistin [22] or tigecycline [23]) emerges 
occasionally through chromosomal mutations [24], the 
vast majority of AMR in this pathogen results from 
Horizontal Gene Transfer (HGT) of large, conjugative 
plasmids [4]. In this scene, the acquisition of β- 
lactamases set the pace for the expansion of antimi-
crobial resistance in K. pneumoniae.

The blaSHV-1 gene is a chromosomally encoded β- 
lactamase gene which is found across members of the 
species and which provides resistance to ampicillin; 
the relationship between this specific AMR gene and 
K. pneumoniae is so tight that this bacterium has been 
proposed as the original source of the SHV β-lactamase 
family [25].

The detection of Extended Spectrum β-lactamases 
(ESBLs) genes in K. pneumoniae began shortly after the 
introduction of third-generation cephalosporins in the 
clinical practice during the first half of the 1980s [26,27] 
While originating from Kluyvera spp., an environmental 
bacterium [28,29], β-lactamases of the CTX-M family 
are the most prevalent ESBLs in the Enterobacterales 
order; in addition, these ESBLs were at the basis of the 
success of some K. pneumoniae STs [30].

Nevertheless, the K. pneumoniae trump card has 
been the acquisition of carbapenemases [31]. These 
specific β-lactamase enzymes, which can hydrolyze 
a last-resort class of drugs named carbapenems, are 
often associated with Mobile Genetic Elements (MGEs), 
which mediate their horizontal diffusion within and 
between bacterial species. Since 1996, the Klebsiella 
Pneumoniae Carbapenemase (KPC) became the most 
prevalent carbapenemase in K. pneumoniae [32].

More than 100 different acquired AMR genes have 
been identified in K. pneumoniae [33], and they are mostly 
carried by AMR plasmids [34,35]. The K. pneumoniae plas-
mids pKpQIL and pKPN were initially identified in the 

genomes of the earliest carbapenemase-resistant isolates 
belonging to the ST258 clone from Israel and the U.S.A 
[31,36]. Both plasmids have FII-related replicons, subcate-
gorized as FIIk [37], and highly different FIB-replicons, 
named as FIB-pKpQIL and FIB-pKPN, respectively. 
pKpQIL and pKPN plasmids are compatible with each 
other, being co-resident in most of the ST258 bacterial 
cells. They can recombine, and, in some cases, they can 
create plasmid fusions [38]. Besides the IncFIIk, many 
different plasmid families encoding for AMR genes have 
been described in K. pneumoniae, with IncA, IncC, IncHI1, 
IncX3, and IncN being the most prevalent ones [5,31]. 
These have been associated with the acquisition and 
spread of other carbapenemase genes, such as blaOXA-48 

and blaNDM.

Hypervirulence

The first description of hvKp dates back in the 1980s, 
when this pathotype became endemic in the Pacific 
Rim region [16].

While the phenotype needed to define a MDR strain 
is clear and well described [39], the same cannot be 
said for the hypervirulent one [40]. The string test, in 
which a colony cultured in standard conditions can be 
stretched into a string of at least 5 mm, was initially 
believed to be pathomognomonic of hvKp [41]. 
However, a positive result to this test only states 
a hypermucoviscous phenotype. Furthermore, given 
the semi-qualitative nature of this test, sedimentation 
tests are currently preferred over the string-test due to 
their higher robustness as hypermucoviscosity detec-
tion methods [42,43].

The presence of a hyper-expressed capsule 
mediated by upregulators of gene expression (regula-
tor of the mucoid phenotype rmpA/rmpA2-rmpD 
[44,45]) is a trait correlated with higher virulence, 
both in vivo [46] and in clinical studies [47,48]. 
However, this characteristic alone does not define 
a strain as hypervirulent: not all hvKp strains are hyper-
mucoviscous and, viceversa, some hypermucoviscous 
isolates do not carry virulence genes [49,50]. This mis-
conception led to uncertainty in the scientific litera-
ture, especially when this phenotypic trait is used 
alone to categorize a strain as belonging to the hvKp 
pathotype [51].

Similarly, the presence of genes encoding for the 
siderophores-salmochelin (iro), aerobactin (iuc), yersi-
niabactin (ybt) – the iron-foraging molecules which are 
associated with systemic infections, is not enough to 
define an isolate as hvKp [33,52–55]. This is also true for 
the presence of the K1 or K2 capsule types: though 
being generally associated with hypervirulence and 
particularly resistant to phagocytosis and serum [56– 
58] they cannot be considered as discerning traits. In 
addition to siderophores, colibactin (clb), a genotoxin 
first described in Escherichia coli [59] which causes 
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cross-links in the DNA and induces double-strand DNA 
breaks [60,61] is diffused in K. pneumoniae too. Its 
prevalence ranges from 3.5% to 4% in the general 
population [62] to 17–25% in the endemic East Asia 
region [63]

As a matter of fact, hypervirulence should be con-
sidered as a multifactorial phenotype conferred by the 
presence of multiple virulence genes carried on large 
virulence plasmids (e.g. pK2044 [64] and pLVPK [65]) 
and within chromosomally inserted Integrative 
Conjugative Elements (ICEs).

Taken into consideration the limits associated with the 
prediction of a phenotype based on the genotype, a valid 
approach to the evaluation of virulence in a specific strain 
has been implemented by the creators of Kleborate [66]. 
This tool does not return a dichotomic answer ‘virulent’, 
‘not virulent’, rather it gives a ‘virulence score’, ranging 
from 0 to 5 . Specifically, the virulence score is calculated 
as follows: 0 if the isolate is negative for all of ybt, clb, and 
iuc, 1 if the isolate carries ybt only, 2 if the isolate carries ybt 
and clb or clb only, 3 if the isolate carries iuc (typically 
associated with the rmpADC and iro loci) only, 4 if the 
isolate carries ybt and iuc but not clb and 5 if the isolate 
carries clb, ybt and iuc. A similar modus operandi is applied 
to antimicrobial resistance, each isolate is given a score 
ranging from 0 to 3. Specifically, the score is 0 if no ESBLs 
nor carbapenemases are detected, 1 if there is one ESBL 
alone, 2 if there is a carbapenemase and 3 if the carbape-
nemase is associated with colistin resistance. On top of 
that, Kleborate also quantifies how many drug classes 
have at least one resistance gene detected. These 
approaches, despite the above-mentioned limits, are 
a valid starting point not only for considering hyperviru-
lence and multidrug-resistance as nuances, but also for 
the detection and analysis of strains displaying simulta-
neously both hypervirulence and multidrug-resistance.

Convergence

Compared to the vast literature of MDR- and hvKp, 
there are not many reports describing isolates charac-
terized by both pathotypes. Owing to the danger of 
clones possessing both these characteristics, surveil-
lance systems are being implemented [67–69].

Most cases of K. pneumoniae isolates carrying both 
MDR and virulence traits have been described in Asian 
countries (China leading this chart, with more than 2/3 
of the reports), and this is coherent with the preva-
lence of isolates displaying these characteristics alone 
[70]. Yet, this kind of phenomenon is being reported 
more and more frequently worldwide.

Under an evolutionary light, it is possible to identify 
three main patterns which can lead to a convergence of 
the two pathotypes [9,71]: i) hvKp isolates acquire MDR 
genes [72,73], ii) MDR-Kp isolates acquire hypervirulence 
plasmids [74–76], and iii) acquisition of hybrid plasmids 
carrying both virulence and resistance genes [30,77,78].

Research methodology

In January 2022, we searched the literature on PubMed 
for the keywords ‘Klebsiella pneumoniae’ and one of the 
selected CGs (GC258, CG147, CG101, CG23, CG65 or 
CG86), and ‘either associated with MDR or hv’. The STs 
comprised within each CG were searched on the BIGSdb 
database hosting the public Klebsiella pneumoniae data-
base (https://bigsdb.web.pasteur.fr/klebsiella/) by using 
the ‘Search by locus combination’ option to retrieve 
every isolate belonging to a specific ST. Albeit being 
a biased search method, since not every isolate reported 
in literature is sequenced and not all sequenced isolates 
are uploaded on that database, this methodology allows 
for standardized and reproducible results (Figures 1 
and 2).

In the interest of simplification and intelligibility, we 
chose to only illustrate well-documented cases for 
each CG where strong evidence demonstrated the 
convergence of virulence and resistance genotypes, 
reporting about their evolution, spread, and genetic 
characteristics.

Clonal group 258 (ST11, 258, and ST512)

Three of the globally epidemic STs, namely ST11, ST258 
and ST512, belong to the CG258, making this CG the 
most diffused MDR-Kp group [79,80] in the BIGSdb 
database, 965 isolates belonged to this CG (n = 476, 
ST11; n = 363, ST258; n = 126, ST512) (Figure 1).

CG258 is a frequent carrier of the blaKPC carbapene-
mase gene, which can be found in most cases on 
plasmids with a pKpQIL backbone; even if this associa-
tion is very high, it is neither absolute nor mutual, since 
this backbone can be found in other clonal groups [81– 
83]. Furthermore, members of the CG258 can also carry 
numerous other acquired AMR genes [84,85].

ST11 is by far the dominant clone of KPC-producing 
K. pneumoniae in China, with the blaKPC-2 gene usually 
found on plasmids of the IncF type [86–88]. Its endemicity 
in this country is so high that more than one clone 
belonging to this ST can cause simultaneous outbreaks 
in the same hospital [89]. In 2015, two reports describing 
carbapenem-resistant K. pneumoniae belonging to ST11 
with a hypervirulent phenotype were issued from the 
Beijing region [90,91], alerting the nation for a threat 
bigger than just carbapenem-resistance. The isolates car-
ried the blaKPC-2 carbapenemase and the capsular type 
was defined as ‘non typeable’ by the capsular polysac-
charide synthesis PCR method [89,90]. A retrospective 
study demonstrated how, up until 2016, the main carba-
penem-resistant K. pneumoniae ST11 lineage of a hospital 
in the Zhejiang region harbored a K47 capsule which, 
over time, was replaced by the ST11-K64 sub-clone [92]. 
In this specific case, the edge of the ST11-K64 was the co- 
occurrence of a pLVPK-like virulence plasmid interplaying 
with several other plasmids. Other studies describing 
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outbreaks of carbapenem-resistant and hypervirulent 
ST11 in China detected K64 as the most common capsular 
type (up to 25% of the infections caused by carbapenem- 
resistant K. pneumoniae in certain regions) [93], and high-
lighted how the fecal carriage of these isolates played 
a key role in their spread [94].

Other reports describe how ST11-K47 has also been 
able to acquire hypervirulence traits. In several cases, 
the acquisition of a non-conjugative pLVPK-like plas-
mid has been held responsible for this evolutionary 
convergence [95]. This type of HGT might have hap-
pened with the help of the conjugative IncF plasmid 

Figure 1. Alluvial diagram depicting the distribution of the various clonal groups (CGs) (left) in the sequence types (STs) that 
compose them (center), sorted by country (right). Connections between CGs and STs are color-coded according to the original 
pathotype, while connections between STs and Countries counting more than 10 isolates are color-coded according to the ST. 
Nodes (i.e. CGs, STs, or countries) counting less than 7 isolates are not shown for the sake of clarity.

Figure 2. Minimum spanning tree representing one of the potentially many relationship which link the isolates belonging to the 
different high-risk clones. Numbers on the branches indicate the Single Nucleotide Polymorphisms differentiating the connected 
Sequence Types.
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harboring blaKPC-2, which has an 11 kb region homo-
logous to that of pLVPK [96]. Interestingly, in another 
case, the co-existence of the two pathotypes in a ST11 
isolate was possible thanks to the acquisition of a 141 
kb IncFII plasmid (pR16-Hv-CRKp1, which does not 
show high homology with the known virulent plas-
mids), which harbored both resistance (blaKPC-2, 
blaCTX-M-65 and rmtB among the others) and putative 
virulence genes (such as R16_5486) [73].

The acquisition of a virulence plasmid plays a key 
role in the spread of ST11 carbapenem-resistant hvKp 
strains [21], and points to a worrisome evolutionary 
trajectory. This should elicit increased surveillance of 
the dissemination of these strains not only in nosoco-
mial but also in community settings [97]. Hypervirulent 
isolates can spread at a faster pace, given the limited 
fitness costs of virulence plasmids [98], and their 
longer environment survival [92].

With regard to the treatment, even if the carbape-
nem-resistant hypervirulent ST11-KL64 sub-clone has 
been capable of evolving resistance toward tigecycline 
and colistin during therapy [99], for now ceftazidime- 
avibactam seems to be a valid therapeutic option 
against infections caused by KPC-2-producing 
hvKp [100].

ST11 is also the ancestor of ST258, a hybrid clone 
composed by a replacement event between ST11, 
which supplied about 80% of the genetic material, 
and a single locus variant of ST258 called ST442 [101]. 
Though there is a tight association between with the 
blaKPC carbapenemase gene, ST258 and its most com-
mon derivative ST512, no description about these two 
STs being hypervirulent has been outlined.

Clonal group 147 (ST147, ST273 and ST392)

Between 2008 and 2014, outbreaks caused by ST147 
were reported in Germany and Hungary, with isolates 
producing OXA-48, KPC-2 and NDM-1 carbapenemases 
[102,103]. In 2016–17, three strains carrying the 
blaOXA-181 located on a 6 kb small ColKP3 plasmid 
were identified. These strains also carried a   110 kb 
IncFIB-like plasmid, that encoded tellurite/colicin resis-
tance determinant, and phage-related genes 
(CP084394.1, CP074089.1) [104]. In 2017, 
K. pneumoniae ST147 was described in the Middle 
East and India [103,104]. These isolates produced chro-
mosomally encoded OXA-181, and the majority also 
produced the NDM-5 carbapenemase. The blaNDM-5 

gene was located within an IncFII plasmid [105,106]. 
In Algeria in 2017, ST147 carried the blaNDM-1 gene 
located on an IncR plasmid [107]. The evolutionary 
origin of ST147 and the two closely related ST273 and 
ST392 (grouped into CG147) was recently investigated. 
A time-scaled phylogeny reconstructed from this CG 
was structured into three main branches, each corre-
sponding to ST147, ST273, and ST392, respectively. 

Within ST147, two main clades were observed, each 
characterized by distinct KL type and liposaccharide 
O antigen loci: clade KL64-O2 from Europe, and clade 
KL10-O3a from Asia, which emerged in 1994 and 2002, 
respectively. ST147 represents the paradigm of a clone 
in which antimicrobial resistance and virulence deter-
minants converged thanks to the acquisition and 
exchange of mosaic plasmids. Different ybt/ICEKp sub-
types (ybt16/ICEKp12, ybt10/ICEKp4) were observed 
within the ST147-KL64 clade, further discerning it in 
subclades 1 and 2 [108]. Differently, virulence genes 
were rare among genomes of ST392 and ST273.

In 2018–2019, a large outbreak of NDM-1 producing 
ST147 K. pneumoniae occurred in Tuscany, Italy, with 
a total of 1,645 cases [109]. The outbreak clone was 
resistant to all beta-lactam antibiotics, including carba-
penems, and aminoglycosides, but susceptible to colis-
tin, tigecycline, cefiderocol, and the aztreonam – 
avibactam combination. Reports of ST147 strains in 
Tuscany continued in 2020 and through 2021 
[110,111].

Genomic studies performed on NDM-producing 
ST147 from Italy revealed that they belonged to the 
KL64 clade and that they were related with clinical 
isolates from the Middle East, the USA, Thailand, 
Myanmar, Egypt, Lebanon, the UK, Denmark, 
Germany, and Hungary [111]. In Italian ST147, virulence 
genes encoding aerobactin (iutA-iucABCD), regulators 
of the mucoid phenotype (rmpADC and rmpA2, the 
latter often carrying a frameshift mutation), proteins 
involved in iron metabolism (cobW), and hemin and 
lysine transport system (shiF) were located on a large 
hybrid virulence/resistance plasmid carrying the HIB- 
FIB (Mar) replicons. This also carried blaCTX-M-15 and the 
16S methyltransferase armA genes. The origin of the 
hybrid virulence/resistance plasmid can be traced back 
to the pNDM-Mar plasmid, carrying the same IncFIB/ 
IncHI1 replicons (IncHI1B_pNDM-Mar; IncFIB_pNDM- 
Mar JN420336), identified in 2011 in K. pneumoniae 
ST15 from Morocco. pNDM-Mar was positive for the 
blaNDM-1, blaCTX-M-15 and qnrB1 genes, but negative for 
virulence genes [112]. The virulence content probably 
originates from the pK2044 and pLVpK virulence plas-
mids of hvKp that are characterized by the replicon 
IncHI1B_pNDM-Mar but carry a different FIB-like repli-
con (repB_KLEB_VIR_AP006726).

The blaNDM-1 gene has been located mostly on 
plasmids of the FIB(pKpQIL)-type, showing 99% iden-
tity and 51% coverage with the backbone of plasmid 
pKpQIL (NC_014016), which massively contributed to 
the dissemination of KPC-type carbapenemases in 
CG258 [110]

Virulence/resistance genes were also identified in 
the chromosome of ST147-KL64, with the most rele-
vant being the yersiniabactin-encoding genes 
(ybtSXQPA, irp1, irp2, ybtUTE, and fyuA) associated 
with an ICEKp3, the mrkA-H genes encoding a type 3 
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fimbriae, as well as two additional blaCTX-15 genes 
located in the chromosome [110,111,113]

ST147 strains from Italy did not exhibit a maximal 
hypervirulent phenotype compared with canonical 
hypervirulent isolate hv-Kp2. This was demonstrated 
using both a subcutaneous model of infection in 
immunocompetent CD1 mice but also in the Galleria 
mellonella infection model [110,111]

Despite the G. mellonella model was shown to not 
accurately differentiate hypervirulent from less virulent 
K. pneumoniae strains some strains in the model 
showed an overall enhanced virulence potential com-
pared with a representative of the ST258 high-risk 
clone, with LD50 comparable or lower than those of 
reference hvKp strain NTUH-K2044. Furthermore, in 
serum bactericidal assays, the Italian ST147 isolates 
exhibited different grades of serum resistance asso-
ciated with a different status of pal, csrD, and ramR 
chromosomal genes. In particular, the inactivation of 
CsrD has been associated with increased serum fitness 
by promoting capsule production and thickness, sug-
gesting that ST147 virulence grade could be depen-
dent by the status or function of bacterial surface 
components that can be variable during the clonal 
expansion [110].

In May 2020, a new variant of the Italian ST147 was 
reported in a hospital in Tuscany. A shift in the NDM 
variant from NDM-1 to NDM-9 was observed, and this 
strain evolved to extreme-drug resistance by acquisi-
tion of resistance to colistin, tigecycline, and fosfomy-
cin. The new clone emerged from highly related strains 
identified in 2019, showing mutations in RamR and 
MgrB proteins, implicated in tigecycline and colistin 
resistance, respectively. The fosfomycin resistance 
was associated with a defect in the glycerol-3-phos-
phate transporter [114].

Clonal group 101 (ST101, ST1685, ST2016, 
ST2017, and ST2502)

The emergence of CG101 is estimated at the beginning 
of the 1990s [115], yet it only needed a few years to 
become one of the most well-represented carbapene-
mase-producing K. pneumoniae in Europe [116,117]. 
Albeit strongly associated with the yersiniabactin 
locus [5], there is only one report describing CG101 
strains as having acquired hypervirulence trait [78]. 
These isolates were sampled in 2018 in the United 
Kingdom and carried the blaOXA-48 carbapenemase 
(on the IncL/M plasmid CP031374.2), the 16S rRNA- 
methyltransferase armA and the macrolide resistance 
genes msr(E) and mph(E) (on the FIB/HI1B pNDM-Mar 
plasmid CP031372.2) and the quinolone resistance 
gene qnrS1 (on the IncX3 plasmid CP031373.2). 
A IncFII(K)/IncFIB(K) virulence plasmid (CP031369.2), 
carrying rmpA, rmpA2, iutA, iucABD, (with a truncation 

in both iucB and iucD), was retrieved alongside the 
resistance ones.

Nonetheless, several studies highlight the resistance 
of this clone not only to first-class antibiotics, such as 
carbapenems [118], but also to colistin [119–121], 
which is associated with a higher in-hospital mortality 
[119], and tigecycline [122]. Furthermore, in high- 
endemic settings for KPC-producing isolates, such as 
Italy, ST101 is developing several variants of this spe-
cific carbapenemase in order to resist to ceftazidime- 
avibactam (e.g. blaKPC-39 and blaKPC-68 [38] blaKPC-46 

[123] or blaKPC-31 [124].
Meanwhile, this ST is giving rise to its own CG by 

generating single locus variants (e.g. ST2502 [124,125], 
ST1685 [115] or ST2016 and 2017 [126]).

Clonal group 23 (ST23, ST26, ST57, and ST163)

Strictly associated with K1 capsular type [49,58], CG23 
is highly diffused in the East Asia area [127] (Figure 1) 
and it has been described as a hvKp with ‘moderate 
virulence’ in the G. mellonella model [128]. The spread 
of the main clade of this lineage (CG23-I [17]) is rapidly 
and steadily involving Western countries through mul-
tiple independent transmissions, embedding AMR 
genes along its way. Since 2018 there have been sev-
eral reports of isolates belonging to ST23, which devel-
oped resistance toward carbapenems, mainly due to 
the acquisition of the IncL plasmid harboring blaOXA-48 

[129,130].
Historically, the first traces of the encounter of this 

hvKp lineage with a plasmid conferring carbapenem 
resistance can be dated back to 2012. The strains were 
isolated from Russia [131] and Germany [103].

Following the report of several hvKp belonging to 
the ST23 in Ireland in March 2019, the European 
Center for Disease Prevention and Control (ECDC) 
performed a Rapid Risk Assessment (RRA), published 
in March 2021 [67]. The ECDC asked 37 National 
Reference Laboratories to submit WGS data from 
ST23, receiving 5 representative isolates from 
Ireland, 5 from France and 1 from both Finland and 
Sweden. The isolates were split into two clades, 
a main one characterized by the K1 capsule loci, and 
one unrelated one with a K57 capsule. Despite all the 
Irish ST23 isolates belonged to the K1 clade, and most 
of them harbored the blaOXA-48 carbapenemase gene, 
a SNPs analysis on the core genome revealed that 
they were not related between each other. 
Differently, 2 out of 5 of the France isolates had 
a K1 capsule cluster and harbored blaOXA-48, while 
the other three had a K57 capsule, two of which 
carried blaOXA-48 and one blaNDM-1. The Swedish iso-
late had a K1 capsule and did not carry any carbape-
nemase gene, while the Finnish one had a K57 
capsule and carried blaOXA-48. This peculiar spread 
and the comparison of the European isolates with 
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the most related ones from the public domain show 
how the acquisition of blaOXA-48 from ST23 is rather 
recent and happened several times independently 
across the continent [67].

The spread of ST23 isolates that acquired carbape-
nemase genes in Europe is not limited to the cases 
reported by the RRA [132].

An eXtensively Drug Resistant (XDR [39]) 
K. pneumoniae isolate harboring blaOXA-48 and the 
16S rRNA methyltransferase armA on a plasmid has 
been described in Spain [133]. The more relevant, 
and worrisome, difference with the RRA isolates is the 
fact that the virulence plasmid was fused within a large 
hybrid virulence/resistance plasmid carrying a copy of 
the blaCTX-M-15, while another copy of blaCTX-M-15, was 
in the chromosome [133].

Despite more and more studies about hvKp in 
Europe are being published [134–136], the scattered 
diffusion of ST23 in this region is a sign of the unno-
ticed spread of hvKp in the continent. An additional 
issue is that the convergence of the hypervirulent ST23 
with carbapenem resistance in Europe seems to be 
strictly associated with the blaOXA-48 gene, for which 
there is a lack of guidelines for treatment [137].

Clonal group 65 (ST25 and ST65)

CG65 is characterized by a K2 capsular serotype 
[18,138], and it is considered to be hypervirulent [71] 
due to the carriage of pLVPK-like virulence plasmids 
and of the pks gene cluster (which is necessary for the 
synthesis of colibactin) [63]. It comprises two STs, 
which differ in their epidemiology.

ST65 is spread worldwide, and it has the ability to 
acquire several plasmids harboring various carbapene-
mase genes. The epicenter of reports of carbapenem- 
resistant ST65 is China where, starting from 2015, sev-
eral isolates manifesting both characteristics have been 
described. Two isolates have been reported carrying 
blaKPC-2 in the 2010–2014 period [91], suggesting that 
this convergence happened prior to 2010, and one 
isolate in 2017–2018 period causing a bloodstream 
infection (BSI) [95]. Furthermore, a case blaNDM-5 on 
a ‘canonical’ IncX3 plasmid [139] was described [140].

With regard to less diffused carbapenemases, two 
isolates belonging to ST65 carrying blaIMP-4 on IncU 
and IncN plasmids, in the latter case also coupled 
with tigecycline resistance [141] were described.

While epidemiological studies in China report a high 
level of genetic diversity and an absence of MDR in 
hvKp [142,143], they only provide us with a glimpse of 
the tip of the iceberg (i.e. strains with peculiar pheno-
types): the high plasticity of the ST65 genome, which 
can accept different resistance plasmids maintaining 
hypervirulence traits, poses a great danger.

There have been several reports of carbapenem 
resistance in ST65 also in other countries, such as 

Japan, where a study reported that out of 104 IMP- 
producing K. pneumoniae 12 were ST65-K2 [144], or in 
Argentina, where blaKPC-2 has been described carried 
by IncM plasmid [145].

ST25, instead, is the second most common carba-
penemase-producing K. pneumoniae in Argentina, 
where in recent years there has been a shift from 
primarily ST258 [146,147] to a number of STs 
[148,149]. A study undertaken to characterize the iso-
lates showing both MDR and hypervirulent phenotype 
collected during a 6-month period reported how, out 
of 35 isolates, 13 were blaKPC-2 harboring-ST25-K2 
[150]. Furthermore, this clone is spreading in the 
South American continent, particularly in Colombia 
[151] and in Ecuador [152].

Clonal group 86 (ST86 and ST3994)

Most of the isolates belonging to ST86 are character-
ized by a K2 capsular serotype and by the presence of a 
pLVPK-like plasmid backbone, which confer the hyper-
virulent phenotype [58]. This ST is an international 
clone with global distribution, and a cause of commu-
nity acquired infections in most continents, with 
a slight predisposition for animal infection.

In Australia, it is the cause of well-documented 
community-acquired infections since 1977, demon-
strating a high PFGE similarity level throughout the 
years [153]. Starting from the 2001–2003 breeding 
seasons, ST86 caused several outbreaks in New 
Zealand sea lion pups, eventually becoming endemic 
in the population in this country [154].

The American continent has been affected from 
north to south by ST86. In North America, 
a carbapenemase-producing (KPC-2) ST86 isolate has 
been described as the cause of urine infections in 
Canada [155], while in the Caribbean, a case of menin-
gitis sustained by an hvKp has been reported [156]. In 
South America, specifically in Brazil in 2013 [157], an 
isolate belonging to the ST3994-K2 (a single locus 
variant of ST86, belonging to the same CG) was 
reported as the cause of a bloodstream infection 
[157], while in the same nation in 2019, a ST86 clone 
was the cause of sudden death in 11 captive marmo-
sets [158].

Several reports have been provided by Asian coun-
tries, mainly from China, where the first report of ST86 
can be traced back to two fatal infections caused by 
a susceptible isolate [159], and it is considered an 
important cause of asymptomatic bacteriuria, which 
may lead to a BSI [160].

Over time, ST86 has been described as associated 
with the blaKPC-2 carbapenemase gene. Alone, on an 
atypical IncX6 plasmid [161], or in association with 
blaNDM-1 [162]. In Japan, it has been held up as cause 
of severe infections, from community-acquired 
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pneumonia [163,164] to infections in the veterinary 
field, particularly in captive-bred ruffed lemurs [165].

In Europe, ST86 has been described as a cause of 
BSIs in a teaching hospital in Spain [166] and there 
have been multiple descriptions of this ST in France 
[167]. In this country, the first reports date back to 
2011, when two cases of fatal infection in patients 
who recently returned from international travels were 
ascribed to this clone [168]. The number of cases grew 
subsequently and in a 5-year period (2011–2016). Five 
community acquired infections (mainly pneumonia) 
that required ICU hospitalization were attributed to 
this ST [167].

Despite all the previously mentioned strains were 
susceptible, this is not always the case: in the same 
nation two isolates belonging to this ST, both harbor-
ing several virulence genes, have been detected as 
MDR, the first one because of the presence of the 
blaOXA-48 on a IncL plasmid, the latter because of 
blaCTX-M-15 on an IncN plasmid coupled with deletions 
in the ompK36 and ramR genes [169].

Though mostly being caused by susceptible iso-
lates, the impact of outbreaks happening in veterinary 
settings should not be underestimated. The presence 
of hvKp in reservoirs close to human is of concern, and 
the application of a One Health approach is mandatory 
to control and contrast it [170].

Conclusions

The identification of carbapenem resistance genes is 
nowadays routine in most clinical microbiology labora-
tories, but the detection of virulence genes is not. 
Phenotypic methods, such as the string test, cannot 
be considered reliable, since they lack sensitivity [49]. 
Apart from the vast symptoms range to which clini-
cians may not be used to, as of today it is mainly the 
simultaneous presence of carbapenem resistance and 
hypervirulence that leads to the identification of the 
latter.

To tackle these issues and to be prepared to face the 
spread of hvKp, there are two strategies, which are not 
mutually exclusive: worthwhile tests to identify viru-
lence genes/lineages (e.g. MLST screening of clinical 
isolates of K. pneumoniae [171] or multiplex PCR assay 
for identification of clones with capsular serotype K2 
[172)], and a wider worldwide Whole Genome 
Sequencing and analysis coverage.

This identification is of the uttermost importance 
due to the fact that for a long time, the two 
K. pneumoniae MDR-Kp and hvKp pathotypes have 
been considered as two distinct, non-intersecting phe-
notypes, the first mostly associated with infections in 
immunocompromised patients, the second causing 
infections in healthy patients. As of today, oversimpli-
fied line we drew to keep MDR-Kp and hvKp apart is 
fading away since the two pathotypes are converging. 

We are not also allowed to conceive the risk of acquisi-
tion of hvKp and MDR-Kp strains restricted to patients 
linked to Asia or to patients from western countries 
with weakened immune systems, respectively.

Currently, the boundaries dividing the two patho-
types are less and less marked. Yet, since the intersec-
tion of the two pathotypes is something completely 
new, their description is moving on different tracks, 
and genomic epidemiology is needed as part of the 
diagnostic routine. On the one hand, case reports of 
single isolates and/or outbreaks are published with 
higher frequency, making a sufficient noise to depict 
a threat more and more tangible as time passes by, but 
from a quantitative point of view they are just scratch-
ing the surface. On the other hand, epidemiological 
studies portrait a dire summary of what the situation 
actually is, and the direction toward which we are 
heading: the spread of strains with converging patho-
types is rising, and it is just a matter of time before 
these strains are going to have the upper hand against 
the single pathotypes.

While focusing on the similarities and the distinctive 
traits of the global spread of MDR-Kp and of hvKp STs, 
this review highlights that, in the future years, the 
definition of these two pathotypes as dichotomous 
K. pneumoniae manifestations is going to be much 
harder. Rather, it is clear that, to tackle the diffusion 
of this global pathogen, the best approach will be to 
assess spectra of resistance and virulence.
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