
Cationic Phosphinidene as a Versatile P1 Building Block: [LC−P]+
Transfer from Phosphonio−Phosphanides [LC−P−PR3]+ and
Subsequent LC Replacement Reactions (LC = N‑Heterocyclic
Carbene)
Philipp Royla, Kai Schwedtmann, Zeyu Han, Jannis Fidelius, Derek P. Gates,* Rosa M. Gomila,
Antonio Frontera, and Jan J. Weigand*

Cite This: J. Am. Chem. Soc. 2023, 145, 10364−10375 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Cationic imidazoliumyl(phosphonio)-phosphanides [LC−P−PR3]+ (1a−e+, LC = 4,5-dimethyl-1,3-diisopropylimida-
zolium-2-yl; R = alkyl, aryl) are obtained via the nucleophilic fragmentation of tetracationic tetraphosphetane [(LC−P)4][OTf]4
(2[OTf]4) with tertiary phosphanes. They act as [LC−P]+ transfer reagents in phospha-Wittig-type reactions, when converted with
various thiocarbonyls, giving unprecedented cationic phosphaalkenes [LC−P�CR2]+ (5a-f[OTf]) or phosphanides
[LC−P−CR(NR2′)]+ (6a-d[OTf]). Theoretical calculations suggest that three-membered cyclic thiophosphiranes are crucial
intermediates of this reaction. To test this hypothesis, treatment of [LC−P−PPh3]+ with phosphaalkenes, that are isolobal to
thioketones, permits the isolation of diphosphirane salts 11a,b[OTf]. Furthermore, preliminary studies suggest that the cationic
phosphaalkene [LC−P�CPh2]+ may be employed to access rare examples of η2−P�C π-complexes with Pd0 and Pt0 when treated
with [Pd(PPh3)4] and [Pt(PPh3)3] for which analogous complexes of neutral phosphaalkenes are scarce. The versatility of [LC−P]+
as a valuable P1 building block was showcased in substitution reactions of the transferred LC-substituent using nucleophiles. This is
demonstrated through the reactions of 5a[OTf] and 6c[OTf] with Grignard reagents and KNPh2, providing a convenient, high-
yielding access to MesP�CPh2 (16) and otherwise difficult-to-synthesize 1,3-diphosphetane 17 and P-aminophosphaalkenes.

■ INTRODUCTION
Simple phosphorus-containing functionalities can represent
important tools for the construction of novel structural
architectures with application in areas such as catalysis,
polymers, and materials. For instance, phosphinidenes [R−P]
are considered valuable and simple P1 building blocks for the
synthesis of organophosphorus substrates or as diverse ligands
in transition-metal complexes.1 Despite their synthetic utility
and fundamental curiosity, phosphinidenes display exceedingly
high reactivity, and the first isolable “free” phosphinidene,
reported in 2016, remains the only example.2 Thus, researchers
have designed a variety of more applicable precursors,
phosphinidenoids, which can be employed in phosphinidene
transfer reactions. Of particular importance were the early
investigations of transition-metal-supported phosphinidenoid
reagents as [R−P] building blocks, thereby affording otherwise
difficult to access organophosphorus compounds.1,3 In a few
cases, the release of [R−P] from metal-free precursors has also
been described, for example, from so-called inversely polarized
phosphaalkenes R−Pδ−�Cδ+R2.

4

More recently, a new generation of phosphinidene chemistry
has evolved with exciting breakthroughs involving isolable,
neutral, and metal-free singlet [R−P] transfer reagents that are
tolerable of a variety of substituents (Figure 1a).
For instance, amino-phosphinidene, [R2N−P], transfer has

been enabled from precursor I with concomitant formation of
anthracene.5 Importantly, the first transfers of the parent
phosphinidene, [H−P], were observed from II.6 Carbene-
phosphinidene adducts III and phosphanylidenephosphoranes
IV (or “phospha-Wittig reagents”7) have been shown to
transfer aryl- and alkyl-substituted phosphinidenes to a wide
range of substrates [e.g., organic electrophiles,8 aldehydes,9
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NHCs (N-heterocyclic carbenes),10 isonitriles,11 ammonia,12

and AlI species.13 Diphosphadiboretane V has been utilized as
a [Mes*−P] transfer agent to ketones, amides, and esters in
the unprecedented phospha-bora-Wittig reaction.14 Despite
advances in the field, the development of a single
phosphinidene transfer reagent capable of transferring
phosphinidenes [R−P] with a multitude of different
substituents R is still desired. In a recent study, we
demonstrated the versatility of cationically substituted
phosphorus compounds for the formation of P−C, P−N,
and P−O bonds by easily replacing the cationic substituent
using commercially available reagents.15 This inspired us to
explore the potential of employing cationic substituents for
phosphinidenes to create unprecedented cationic phosphini-
dene transfer reagents, namely, [LC−P]+ (Figure 1b). This
could enable further functionalization at the P atom after the
transfer reaction and render [LC−P]+ a versatile P1 building
block.
We recently discovered that the tetracationic tetraphosphe-

tane 24+ (Figure 1), formally a tetramer of [LC−P]+, may be
conveniently obtained in good yields (86%) as its triflate salt
from the reduction of 3[OTf] with 1,4-bis(trimethylsilyl)-1,4-
dihydropyrazine (4, Scheme 1).16 Computational studies on
24+ suggest a high electrophilicity due to the four

imidazoliumyl substituents. We therefore hypothesized that
nucleophilic cleavage with tertiary phosphanes R3P might
provide suitable access to phosphonio−phosphanides 1+ as
potential [LC−P]+ transfer reagents.
We now report a straightforward route to simple [LC−P]+

transfer agents (1a-d+) from readily available starting reagents.
Their utility is demonstrated by cationic phosphinidene
transfer to substrates, including thioketones, thioamides,
thiourea, thioesters, and phosphaalkenes R−Pδ+�Cδ−R2.
Unprecedented phosphonio−phosphanides, 1b-d+, have been
characterized crystallographically as triflate salts, along with a
series of hitherto unknown cationic phosphaalkenes, phospha-
nides, diphosphiranes, and metal complexes, including very
rare η2−P�C−Pd0 and Pt0 complexes. In addition, we
demonstrate the ability to perform substitution reactions of
the transferred LC-substituent in selected substrates using
widely applied nucleophilic aryl and alkyl Grignard reagents
RMgBr (R = Mes, Me), as well as amide KNPh2. This results
in the formation of differently P-functionalized organo-
phosphorus compounds.

■ RESULTS AND DISCUSSION
Preparation of Phosphonio−Phosphanides. Upon

adapting our published synthesis of 2[OTf]4 to a larger scale
(ca. 50 g, see Supporting Information S2.1), we opted to
investigate the reaction of 2[OTf]4 with Ph3P (Scheme 1).
Thus, isolated 2[OTf]4 was treated with Ph3P (4 equiv.) in
CD3CN. Subsequent analysis of an aliquot removed from the
reaction mixture revealed a new AX spin system [δ(31PA) =
−168.6 ppm, δ(31PX) = 31.3 ppm, 1J(PP) = −519 Hz] in its
31P NMR spectrum assigned to phosphonio-phosphanide 1a+

(Figure 2). In addition, the spectrum showed signals assigned
to the starting materials suggestive of equilibrium. In
comparison with phosphanylidenephosphorane DmpP−PPh3
(Dmp = 2,6-Mes2C6H3, Table 1),17 the phosphanide (PA)
moiety in 1a+ is further upfield, and the magnitude of 1J(PP) is

Figure 1. (a) Examples of neutral phosphinidene [R−P] transfer
reagents; (b) synthesis of cationic [LC−P]+ transfer reagents reported
here. Mes* = 2,4,6-tBuC6H2, Dipp = 2,6-iPr2C6H3.

Scheme 1. Synthesis of 2[OTf]4 and Its Nucleophilic
Fragmentation with Tertiary Phosphanes R3P (R = Me, Et,
Cy, and Ph)a

aReagents and conditions: (i) +4 Ph3P, CD3CN, rt, 16 h; (ii) +4 R3P,
CH3CN, rt, 4−16 h, 88−93%.

Figure 2. 31P NMR spectrum of an aliquot of the reaction mixture of
2[OTf]4 with four equivalents of Ph3P in CD3CN after 16 h (top,
CD3CN, 300 K) and zoom in of a 31P−31P-EXSY NMR spectrum
(bottom, CD3CN, 300 K) displaying spin polarization exchange
between the phosphonio moiety in 1a+ and Ph3P.
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significantly lower. In related triphosphenium cations {e.g.,
[(Ph3P)2P]+}

18 the high field chemical shift and smaller
coupling constant have been attributed to the dominance of
the bis(ylidic) canonical structure.19 Further investigation of
the reaction mixture by means of 31P−31P EXSY NMR
experiments confirmed the underlying thermodynamic equili-
brium (Figure 2). Notably, nucleophilic fragmentation of
pentaphospholane (PhP)5

4a,20 and the more electrophilic
tetraphosphetane [(CF3)P)4]

21 has been described previously,
although stronger nucleophiles, that is, NHCs or Me3P,
respectively, are required.
In an effort to prepare isolable phosphonio−phosphanides,

the reaction of 2[OTf]4 with more nucleophilic trialkyl-
substituted tertiary phosphanes (R3P: R = Me, Et, and Cy) was
conducted in CH3CN solution. The complete formation of the
corresponding phosphonio−phosphanides 1b-d+ was observed
after 4−16 h, and they could be isolated by precipitation with
Et2O in excellent yields as their triflate salts (88−92%, Scheme
1). Their respective 31P NMR spectra show the expected
characteristic AX spin systems (see Table 1), in accordance
with reported values for the related phosphanylidenephosphor-
anes ArP−PMe3

9,10 and with the expected group contribution
effects.18,19,22 Alternatively, 1b-d[OTf] can be synthesized
directly from the reduction of 3[OTf] using an excess of R3P
(Scheme S2, Figure S6); however, isolation is best achieved
using the procedure described above. Vapor diffusion of Et2O
into saturated CH3CN solutions of 1b-d[OTf] at −30 °C
afforded colorless crystals suitable for single crystal X-ray
analysis. The molecular structures of 1b[OTf] and 1d[OTf]
are shown in Figure 3 and that of 1c[OTf] is shown in the
Figure S14.

The observed P−P bond lengths [for 1b+: P1−P2 2.1162(4)
Å, 1c+: P1−P2 2.1195(4) Å, and 1d+: P1−P2 2.1446(4) Å]
match values for related triphosphenium cations19,23 and range
between a typical P−P single24 and P�P double bond.25 This
shortening has previously been attributed to result from ylidic-
type negative hyperconjugation between the lone pairs at the
phosphanide moiety and the σ*(P−R) orbitals.19 Phospho-
nio−phosphanides 1b-d[OTf] can be stored indefinitely under
an inert atmosphere at ambient temperature, whereas neutral
derivatives of phosphanylidenephosphoranes ArP−PMe3 have
a tendency to decompose with respect to the formation of
(ArP)n (n = 2,3) under concomitant release of PMe3.

9,26 In an
effort to rationalize this apparent high stability, density
functional theory (DFT) calculations were performed on the
1a+, 1b+, and 1c+ cations using CH3CN as solvent (details are
provided in the Supporting Information). As the energy of the
HOMO−LUMO gap in 1a+ (Egap = 2.472 eV; 1b+: R = Me:
Egap = 2.791 eV; 1c+: R = Et: Egap = 2.760 eV) is still slightly
higher than in DmpP−PMe3 (Egap = 2.443 eV), even larger
HOMO−LUMO gaps can be achieved through the introduc-
tion of alkyl substituents at the phosphonio moiety (Table S9,
Figure S124).
Notably, reaction of 2[OTf]4 with ditopic phosphane 1,1-

bis(diphenylphosphino)methane (dppm) leads to the for-
mation of 1e[OTf] (Table 1) instead of the corresponding
bis(phosphonio-phosphanide). Changing the ditopic phos-
phane to bis(diphenylphosphino)ethane (dppe) gives rise to a
mixture of previously reported cyclic triphosphenium cation
[(Ph2PC2H4PPh2)P]+ and di(imidazoliumyl)phosphanide
[(LC)2P]+ as evidenced by means of 31P NMR spectroscopy
(Scheme S3 and Figure S8).18,23,27

Phosphonio−Phosphanides as Cationic Phosphini-
dene Transfer Agents. We continued to investigated the
ability of compounds 1a-d[OTf] to transfer [LC−P]+ in
phospha-Wittig-type reactions. An initial effort to treat
1b[OTf] with 4-methoxybenzaldehyde resulted in encouraging
31P NMR spectra (see Supporting Information S2.14) of the
reaction mixture, showing a small downfield signal at
178.3 ppm along with resonances assigned to free Me3P (δ
= −61.5 ppm) and Me3PO (δ = 36.2 ppm). We speculated
that the downfield signal observed was consistent with that
anticipated for an unprecedented cationic phosphaalkene {i.e.,
[LCP�CH(C6H4OMe)]+}. However, the conversion to
phosphaalkene was very low (<5%), thus we turned our
attention to more reactive thiocarbonyls. The latter can

Table 1. Comparison of 31P NMR Chemical Shifts and
Coupling Constants in 1a-e+ and Selected Related
Compounds9,17,23

compound
PA (in
ppm)

PX (in
ppm)

1J(PP) (in
Hz)

1a[OTf] (R = Ph) −168.6 31.3 −519.0
1b[OTf] (R = Me) −167.0 12.0 −472.0
1c[OTf] (R = Et) −202.0 36.0 −492.0
1d[OTf] (R = Cy) −208.8 38.1 −545.0
1e[OTf] (R = Ph2(CH2PPh2)) −164.3 38.1 −519.0
DmpP−PPh3

17 −138.8 25.2 −639.0
DmpP−PMe3

9 −114.7 −2.8 −582.0
[(Ph3P)2P][AlCl4]

23 −174.0 30.0 −502.0

Figure 3. Molecular structures of phosphonio−phosphanides 1b,d+ in 1b,d[OTf]; hydrogen atoms and anions are omitted for clarity, and thermal
ellipsoids are displayed at 50% probability; selected bond lengths (Å) and angles(°): for 1b+: P1−P2 2.1162(4), P1−C1 1.8306(13), C1−P1−P2
97.98(4); 1c+ (Supporting Information, Figure S14): P1−P2 2.1195(4), P1−C1 1.8299(11), C1−P1−P2 99.29(4); 1d+: P1−P2 2.1446(4), P1−
C1 1.8280(11), C1−P1−P2 105.93(4).
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typically be accessed directly by thionation of the respective
ketone, for example, via conversion with H2S, P4S10, or
Lawesson’s reagent.28

For our following studies, compound 1a+ was selected to
investigate its [LC−P]+ transfer capability, as it holds the
greatest synthetic value compared with 1b-d[OTf], owing to
its ease of handling and the comparatively low cost of its
starting material PPh3 compared with the other alkyl-
substituted tertiary phosphines. When treated with equimolar
amounts of selected thioketones in CH3CN, in situ generated
1a+ completely converts into the respective phosphane sulfide
R3PS and cationic phosphaalkenes 5a-e+ within 16 h at room
temperature (Scheme 2), as evidenced by 31P NMR spectros-

copy. The resonances of 5a-e[OTf] in CD3CN (Figure 4) are
significantly upfield shifted relative to neutral phosphaalkenes
[e.g., MesP�CPh2: δ(31P) = 233 ppm].29 For heteroleptic
5d[OTf], both configurational diastereomers (E/Z) are
observed in a near 1:1 ratio. The formation of (+)-camphor-

derived 5e[OTf] requires heating of the reaction mixture to
80 °C for 3 h in a microwave reactor. The title compounds can
be isolated as analytically pure solids as their triflate salts in
very good to excellent yields by precipitation from the
respective reaction mixture by addition of Et2O (63−91%,
Figure 4).
A second set of cationic phosphinidene transfer reactions

were explored by treating in situ generated 1a+ with thioamides
[R(NMe2)C�S (R = H, Ph, NMe2)] and LC�S. In each case,
analysis of the reaction mixtures by means of 31P NMR
spectroscopy showed only a signal assigned to Ph3PS (δ =
42.4 ppm) along with a new singlet resonance {δ(31P) =
−8.8 ppm (br), R = H; 7.9 ppm, R = Ph; −60.2 ppm (br), R =
NMe2; −124.6 ppm, cf. known [(LC)2P]+

30}. Remarkably,
each were shifted considerably upfield compared to those of
5a-e+. A similar trend to higher field shifts is observed in the
31P NMR spectra of inversely polarized phosphaalkenes
bearing C-amino substituents when compared to conventional
phosphaalkenes.4e,31 Given this apparent higher shielding/
increased electron density at the P atoms, the products were
formulated with the cationic phosphanide canonical form (i.e.,
6a-d+ in Figure 4) rather than cationic phosphaalkene (cf. 5+).
A supporting trend for this observation was found in the

molecular structures of 5a-f[OTf] and 6a-c[OTf] (5a[OTf]
and 6a[OTf] in Figure 4; 5b-f[OTf] and 6b,c[OTf] in
Supporting Information). The P�C bond length in cationic
phosphaalkene 5a[OTf] [P�C 1.707(3) Å, Figure 4] is only
slightly elongated compared to the related MesP�CPh2
[P�C 1.692(3) Å].32 Likewise, the P�C bonds of 5b,d+
[1.700(4), 1.702(4) Å, respectively] are in the range typical of
phosphaalkenes. In contrast, the camphor-substituted 5e+ has a
shorter P�C bond length [1.675(4) Å], presumably due to
reduced delocalization of the P�C bond. The introduction of
donating amino groups leads to significant elongation of the
P−C bond [5c+: 1.7247(19) Å, 6a+: 1.7417(13) Å, 6c+:
1.7838(11) Å], consistent with increased contribution of the
phosphanide canonical form, and comparable to values for
reported inversely polarized phosphaalkenes.4e,8a,20,33 Gener-
ally, the LC−P�C bond angles are more acute for those

Scheme 2. Reactions of 1a,d+ with Thiocarbonyls Yield
Phosphaalkenes 5a-f[OTf] (R = Aryl, Alkyl; R′ = Aryl,
Alkyl, OMe) or Phosphanides 6a-d[OTf] (R = H, Aryl,
NR2″; R′ = NR2″)a

aReagents and conditions: (i) for 5a-d[OTf] and 6a,b[OTf]: −R3PS,
CH3CN, rt, 16 h, 63−91%; for 5e[OTf] and 6c,d[OTf]: −R3PS,
CH3CN, 80 °C, 3 h, 76−77%; 5a,d,e[OTf] and 6a-d[OTf] were
prepared using in situ generated 1a+, 5b-c[OTf] were prepared using
isolated 1d[OTf].

Figure 4. Synthesized phosphaalkenes 5a-f[OTf] and phosphanides 6a-d[OTf] (left); molecular structure of phosphaalkenes 5a+ in 5a[OTf] and
phosphanide 6a+ in 6a[OTf] (right); hydrogen atoms and anions are omitted for clarity, and thermal ellipsoids are displayed at 50% probability;
selected bond lengths (Å) and angles (°): for 5a+: P1−C1 1.707(3), P1−C2 1.834(33), C1−P1−C2 104.55(16); 6a+: P1−C1 1.7417(13), P1−C2
1.8382(12), C1−P1−C2 93.77(6).
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formulated as phosphanides [C1−P1−C2 (°) = 93.77(6), 6a+;
99.30(15), 6b+; 100.81(5), 6c+] when compared to those
formulated a phosphaalkenes [C1−P1−C2 (°) = 104.55(16),
5a+; 104.68(19), 5b+; 103.86(9), 5c+; 104.56(16), 5d+;
99.3(3), 5e+]. The reaction with O-methyl benzothioate
proceeds likewise but results in multiple products, as evidenced
by the 31P NMR spectra of the reaction mixture (Figure S74).
Single crystal analysis of some crystalline material obtained by
vapor diffusion of Et2O into the reaction mixture, however,
confirms the formation of methoxy-substituted phosphaalkene
5f[OTf] [δ(31P) = 53.0 ppm, see Supporting Information
S2.25].
In general, Wittig-type conversions are thought to proceed

via open-chain betaine-type structures or four-membered
oxaphosphetanes as intermediates.14,34 One report proposes
an oxadiphosphetane intermediate for the related phospha-
Wittig-Horner reaction.35 Next to this, detailed investigations
on the mechanism of the phospha-Wittig reaction specifically
are scarce. Therefore, we employed DFT calculations [RI-
BP86-D3/def2-TZVP (acetonitrile)] to gain further insight
into the reaction of 1a+ with thiobenzophenone (Figure 5).

The reaction profile reveals an overall exergonic transformation
(−13.0 kcal/mol) that is initiated by the formation of a
supramolecular complex INT-1 (see Figure S126), which is
13.3 kcal/mol more stable than the isolated reactants and
possibly results from interaction of the lone pairs at the
phosphanide moiety of 1a+ with the π*-orbital of the C�S
double bond. This pre-organization is followed by a [LC−P]+
transfer onto the C�S double bond via TS-1 with
concomitant release of Ph3P to give the three-membered
thiophosphirane36 INT-2, which is more stable than TS-1 by
5.8 kcal/mol. In an attempt to identify the formation of INT-2
during the course of the reaction, we monitored the reaction
between isolated 1d[OTf] (in favor of 1a+ to rule out possible
[LC−P]+ transfer from 2[OTf]4 present in the reaction mixture
of in situ generated 1a+) and thiobenzophenone by means of

time-resolved 31P NMR spectroscopy. The spectrum of an
aliquot of the reaction mixture after 10 min at room
temperature reveals the formation of a new singlet resonance
at δ(31P) = −89.3 ppm (Figure S1), which is within the margin
of error37 for the calculated 31P NMR shift of INT-2 [δ(31P) =
−78.4 ppm]. We therefore assign this resonance to
thiophosphirane 7a+. Notably, the formation of thiophosphir-
ane 7a+ can also be observed in other transformations (see
Figures S2, S4, and S7), as evidenced by its characteristic
chemical shift in the 31P NMR spectra.
The formation of phosphanides 6a-d+, exemplified for the

conversion of 1a+ with tetramethylthiourea, can be described
by the same mechanism, although higher energy barriers are
calculated (Figure S125). However, the corresponding
thiophosphiranes 8c+ could not be observed spectroscopically.
Following the initially reported protocols for the phospha-

Wittig reaction,9,38 phosphaalkenes 5a-e+ and phosphanides
6a-c+ can also be synthesized using one-pot reactions of
dichlorophosphane 3[OTf] with thiocarbonyls in the presence
of Ph3P and Zn, yet isolation cannot always be achieved
satisfyingly (see Supporting Information S2.15).
Cationic Disphosphiranes from [LC−P]+ Transfer to

Phosphaalkenes. We further explored the [LC−P]+ transfer
reactivity of 1a+ toward phosphaalkenes,39 which are isolobal
to thioketones. Indeed, reacting 2[OTf]4 with a phosphaalkene
929 (4 equiv) or 1,2-diphosphetane 1040 (2 equiv) in the
presence of catalytic Ph3P (0.1 equiv) afforded diphosphiranes
11a,b[OTf] in very good or excellent yield (83 and 90%,
respectively, Scheme 3). 31P NMR spectroscopic investigations

on the isolated compounds showed the expected AB spin
systems (11a[OTf]: δ(31PA) = −127.7 ppm, δ(31PB) =
−100.8 ppm, 1J(PP) = 146 Hz, 11b[OTf]: δ(31PA) =
−139.5 ppm, δ(31PB) = −107.9 ppm, 1J(PP) = 133 Hz).
The observed high field-shifted resonances for both

phosphorus nuclei are characteristic for phosphorus-containing
three-membered ring {e.g., [(LC)3P3][OTf]3, (tBuP)3}.

16,41

The molecular structures of 11a-b+ in 11a[OTf] (Figure 6)
and 11b[OTf]·o-C6H4F2 (Figure S86) reveal shortened P−P
bond lengths [11a+: 2.1905(7) Å, 11b+: 2.1817(4) Å] and
acute P1−C1−P2 bond angles [11a+: 70.50(9)°, 11b+:
70.82(15)°] in the range of other diphosphiranes42 and
diphosphiranium cations [RP(R(CH2

tBu)P)((tBu)HC)]+
(R = tBu, Ad).43

Reactivity of Cationic Phosphaalkenes. Motivated by
the successful isolation of 5a-e[OTf], we further probed the
reactivity of 5a[OTf], as a model compound for cationic
phosphaalkenes, due to its structural similarity to the well-
studied MesP�CPh2, toward typical conversions of phos-
phaalkenes (Scheme 4). Treating 5a[OTf] with [Pd(PPh3)4]

Figure 5. Reaction profile for the conversion of 1a+ to 5a+ at the RI-
BP86-D3/def2-TZVP (acetonitrile) level of theory; optimized
geometries of the transition states (TS) with distances (red) in Å.
Y axis shows ΔG in kcal/mol.

Scheme 3. Synthesis of Diphosphiranes 11a,b [OTf] (R =
Mes, Ph) via [LC−P]+ Transfer from 1a+ onto
Phosphaalkenesa

aReagents and conditions: (i) +0.1 Ph3P, +0.25 2[OTf]4, CH3CN, rt,
2 h, 83%; (ii) +0.1 Ph3P, +0.5 2[OTf]4, CH3CN, 60 °C, 2 h, 90%.
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or [Pt(PPh3)3] gave the metallaphosphiranes 12a[OTf] and
12b[OTf], respectively, under concomitant release of Ph3P as
evidenced by 31P NMR spectroscopy. The η2-coordination of
the phosphaalkenes was indicated by a strong high field shift
[12a+: δ(31PA) = −5.6 ppm (br), 12b+: δ(31PA) = −55.3 ppm]
compared to the resonance of 5a[OTf] and the modest
coupling constant to the Pt atom in 12b[OTf] [1J(PAPt) =
564 Hz].44 The 195Pt NMR spectrum of 12b[OTf] showed the
expected doublet of doublet of doublet resonance at δ(195Pt) =
−4822 ppm [1J(PtP) = 3571 Hz, 1J(PtP) = 3207 Hz, and
1J(PtP) = 563 Hz, Figure S102].
In general, the chemical shifts for 12a,b+ are comparable to

the reported values for some related η2-diphosphene
complexes16,45 and the η2-phosphaalkene complex
[Pt(Ph3P)2(η2-MesP�CPh2)].

46 Notably, the latter phos-
phaalkene complex was structurally characterized as the η1-
complex with the η2-complex only being observed by 31P NMR

spectroscopy at −70 °C in solution. Remarkably, the 31P NMR
spectra of solutions 12a-b[OTf] in toluene-d8 did not show
evidence for the formation of η1-complex upon heating to 100
°C. The latter might be a result of an increased π-acceptor
ability in 12a,b+ due to the presence of the imidazoliumyl-
substituent, thereby favoring the η2-coordination mode.47 After
workup, analytically pure red 12a[OTf] and yellow 12b[OTf]
were obtained in excellent yields (90 and 97%, respectively).
Subsequently, single crystals of each were obtained and

characterized by X-ray crystallography (Figures 7 and S96).

Both complexes show the expected trigonal core, including the
P−C bond of the [LCP�CPh2]+ ligand and the metal centers.
Therein, the P−M−C bond angles are relatively acute [12a+
(M = Pd): 45.89(12)−46.46(9)°, 12b+ (M = Pt): 47.93(5)°].
In line with the η2-coordination mode, the P�C bond in both
metallaphosphiranes is elongated to the extent of a P−C single
bond [12a+: 1.782(4)−1.787(5) Å, 12b+: 1.8260(18) Å]
presumably due to electron-backdonation from the metal
centers into the π*-orbitals of the P�C bond.48 Similar
structural features have been observed for other transition-
metal complexes involving η2-phosphaalkene or η4-phospha-
butadiene ligands.49

We further reacted phosphaalkene 5a[OTf] (1 equiv) with
[Fe2(CO)9] (1 equiv) in THF, which led to a red precipitate
after 16 h at room temperature. Analysis of a CD3CN solution
of the red product by means of 31P NMR spectroscopy showed
only one singlet resonance at δ(31P) = 154.5 ppm. The slight
downfield shift compared to that for 5a[OTf] [δ(31P) =
152.8 ppm] suggests η1-phosphaalkene complex 13[OTf]

Figure 6. Molecular structure of 11a+ in 11a[OTf]; hydrogen atoms
and the anion are omitted for clarity, and thermal ellipsoids are
displayed at 50% probability selected bond lengths (Å) and angles
(°): P1−C1 1.908(2), P1−P2 2.1905(7), P2−C1 1.887(2), P2−C2
1.852(2), P1−C1−P2 70.50(9), C1−P1−P2 54.30(7), P1−P2−C2
109.68(7), C1−P2−C2 106.65(9).

Scheme 4. Reactions of Phosphaalkenes 5a[OTf] with Low
Oxidation State Transition Metal Complexes [M(Ph3P)n]
(M = Pd: n = 4, M = Pt: n = 3) toward Metallaphosphiranes
12a,b[OTf], with [Fe2(CO)9] toward Iron Complex
13[OTf] and with 3,4,5,6-Tetrachloro-1,2-benzoquinone
(14) toward 15[OTf]a

aReagents and conditions: (i) +[M(PPh3)n], −(n − 2) Ph3P, C6H5F
(12a[OTf]), toluene (12b[OTf]), rt, 1−4 h, 90−97%; (ii)
+[Fe2(CO)9], −[Fe(CO)5], THF, rt, 16 h, 86%; (iii) +14, C6H5F,
rt, 1 h, 85%.

Figure 7. Molecular structures of metallaphosphirane 12b+ in
12b[OTf], iron complex 13+ in 13[OTf] (left) and of 15+ in
15[OTf]·0.5C6H5F·n-pentane (right); hydrogen atoms and anions are
omitted for clarity and thermal ellipsoids are displayed at 50%
probability; selected bond lengths (Å) and angles(°): 12b+ (Pt): P1−
C1 1.8260(18), Pt−P1 2.3127(5), Pt−C1 2.1718(16), Pt···P1−C1
2.0418(10), P1−Pt−C1 47.93(5); 13+: P−C1 1.6846(18), P−Fe
2.1697(5), C−P−C 106.51(8), ⌀C�Oax.: 1.1405, ⌀C�Oeq.:
1.1435; 15+: P−C1 1.897(3), P−O1 1.657(2), C1−O2 1.458(3);
C1−P−C2 104.01(12)°.
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(Scheme 4). Crystallographic analysis of single crystals
confirmed that the phosphaalkene ligand binds in a η1-fashion
in the equatorial position of the Fe0 center (Figure 7). The
P−Fe−COeq [119.62(6)° and 122.44(7)°] and P−Fe−COax
angles [88.29(6)° and 89.69(6)°] are typical of [FeL(CO)4]
complexes, where L is a π-acceptor.50 As a result, the bonding
parameters of the phosphaalkenes ligand are only slightly
affected compared to uncoordinated 5a+.51

For instance, the P�C bond in 13[OTf] is marginally
shortened [1.6846(18) Å versus 5a+: 1.703(3) Å] and the
C−P−C bond angle is widened [106.51(8)° versus 5a+:
104.55(16)°], which may indicate a strengthening of the
double bond character. Compound 13[OTf] could be isolated
in 86% yield. The IR stretching frequencies of the CO ligands
are found at 2073, 2013, 1993, and 1965 cm−1, which renders
the ligand properties of 5a+ similar to those observed in
phosphites, according to Tolman analysis.52

To evaluate the potential of the P�C double bond in
5a[OTf] to be involved in cycloaddition reactions, we
performed its conversion with 3,4,5,6-tetrachloro-1,2-benzo-
quinone (14). Upon dropwise addition of the red solution of
14 in C6H5F to yellow 5a[OTf], a colorless reaction mixture is
obtained immediately. X-ray analysis of single crystals obtained
by vapor diffusion of n-pentane into the reaction mixture
confirms 15[OTf] as the product resulting from a [4 + 2]
cycloaddition reaction (Figure 7). While the C1−P−C2 bond
angle is barely affected [104.01(12)°], the P−C bond length is
significantly elongated [1.897(3) Å] as a result of the
conversion, and the P atom takes on a trigonal pyramidal
geometry. The loss of the double bond character is consistent
with the high field shift in the 31P NMR spectrum of 15+
[δ(31P) = 110.3 ppm], which has been observed in the reaction
of related phosphaalkenes with the same and other ortho-
quinones.53

Replacement Reactions of Imidazoliumyl Substituent
LC. We further assumed that, due to the cationic charge in
synthesized 5a-f+ and 6a-c+, their interaction with nucleophiles
may lead to substitution at the P atom. Based on this, we
hypothesized that the reaction of 5a[OTf] with MesMgBr
could provide a practical route to obtaining MesP�CPh2
(16), a significant monomer for the creation of P-containing
polymers54 that is typically synthesized via the phospha-
Peterson reaction.55 As confirmed by 31P NMR spectroscopy,
treating the cationic phosphaalkene 5a[OTf] with 1 equiv of
MesMgBr in THF at −78 °C resulted in its complete
conversion to MesP�CPh2 (16) within 30 min (Figure 8a).
The product was conveniently obtained in 93% yield after

extraction with n-hexane and subsequent recrystallization. One
of the side products of the reaction was identified crystallo-
graphically as [MgBr2(LC)2].

56

The successful conversion of 5a[OTf] to MesP�CPh2
prompted us to expand our investigation to screening reactions
with other nucleophiles that would result in the substitution of
the imidazoliumyl substituent. Without adequate steric
protection at the P atom, phosphaalkenes have a tendency to
dimerize into either head-to-head (1,2-diphosphetanes) or
head-to-tail (1,3-diphosphetane) dimers.40,55,57 Consequently,
the 31P NMR spectrum of an aliquot removed from the
reaction mixture of 5a[OTf] with MeMgBr at −78 °C after
quenching with HCl and warming to room temperature shows
two new major resonances at δ(31P) = 35.6 ppm (70% integral
ratio) and δ(31P) = −34.8 ppm (18% integral ratio), which we
assigned to the head-to-tail and head-to-head dimers of

MeP�CPh2, respectively. 1,3-Diphosphetane (17) was
isolated from the reaction mixture in 49% yield (Figure 8a)
and structurally characterized by single crystal X-ray analysis
(Figure 8c). The nearly square planar P2C2 core of 17 features
P−C bond distances of approximately 1.909 Å and bond
angles C2−P1−C4 and P1−C2−P2 of 88.30(5)° and
91.70(5)°, respectively. The two methyl substituents are
arranged in a trans position, forming a dihedral angle
C1−P1−P2−C3 of 180.00(9)°.57
In some cases, thermodynamic equilibria between phos-

phaalkenes and their dimers have been reported.40,57a,c,e

Remarkably, no meaningful change within the 1H and 31P
NMR spectra of isolated 17 in toluene-d8 was observed upon
stepwise heating to 80 °C.
In a separate experiment, we investigated the reaction of two

model compounds, 5a[OTf] and 6c[OTf], which are
representative of cationic phosphaalkenes and phosphanides,
respectively, toward KNPh2. The reaction was carried out by
adding 1 equiv of KNPh2 to solutions of either 5a[OTf] or
6c[OTf] in THF at ambient temperature. After 30 min, the
formation of free Me/iPrNHC was observed, as confirmed by 1H
and 13C NMR spectroscopic analysis of a sample removed
from the reaction mixture. The 31P NMR spectra displayed
low-field shifted resonances in both cases, indicating the
exchange of the LC-substituent with an amino group, resulting
in the formation of two new examples of aminophosphaalkenes
[18: δ(31P) = 231.0 ppm; and 19: δ(31P) = 106.1 ppm; Figure
8b]. Since both resulting compounds had similar solubility to

Figure 8. (a) Substitution reactions of the cationic imidazoliumyl
substituent in 5a[OTf] using Grignard reagents; reagents and
conditions: (i) +MesMgBr (1 M in THF), −0.5 [Mg(OTf)2(THF)4],
−0.5 [MgBr2(LC)2], THF, −78 °C, 30 min, 93%; (ii) +MeMgBr (1 M
in nBu2O), THF, −78 °C, 30 min, quenched with 2 M HCl in Et2O,
49%; (b) reactions of 5a[OTf] and 6c[OTf] with KNPh2; reagents
and conditions: (iii) +KNPh2, THF, rt, 30 min, quenched with
Me3SiOTf, 90% (for 18), 80% (for 19); (c) molecular structures of
1,3-diphosphetane 17 and aminophosphaalkene 18; hydrogen atoms
are omitted for clarity, and thermal ellipsoids are displayed at 50%
probability; selected bond lengths (Å) and angles(°): for 17: P1−C1
1.8373(12), P1−C2 1.9085(11), P1−C4 1.9096(12), C1−P1−C2
103.44(5), C2−P1−C4 88.30(5), P1−C2−P2 91.70(5), C1−P1−
P2−C3 180.00(9); 18: P−C1 1.726(2), P−N 1.7132(17), C1−P−N
103.28(9).
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free Me/iPrNHC, 1 equiv of Me3SiOTf was added to the
respective reaction mixture, resulting in the formation of
[LCSiMe3][OTf], which is a precursor in the synthesis of
3[OTf].58 Subsequently, 18 and 19 were isolated via extraction
with n-hexane, with yields of 90 and 80%, respectively. Single
crystals of both compounds were obtained through recrystal-
lization from n-hexane or n-pentane and subjected to X-ray
analysis.
In the molecular structures of 18 [P−C1 1.7132(17) Å,

Figure 8 bottom], the P−C1 bond length is slightly elongated
compared to a typical P�C double bond. This elongation is
attributed to the donating effect of the P-amino substituent.
The P−C1 bond length in C-amino substituted 19 [P−C1
1.754(1) Å, Figure S123] is even further elongated. The P−N
bonds in both compounds [18: P−N 1.726(2) Å; 19: P−N
1.7501(12) Å] are comparable with other structurally related
compounds.59

■ CONCLUSIONS
In summary, we showed the synthesis of cationic
imidazoliumyl(phosphonio)-phosphanides 1a-d+ via the nucle-
ophilic fragmentation of tetracationic tetraphosphetane
2[OTf]4 with tertiary phosphanes R3P (R = Ph, Me, Et, Cy).
We tested their ability to undergo the hitherto unknown
transfer of a cationic phosphinidene, that is, [LC−P]+.
Employing in situ generated 1a+ or isolated 1d[OTf] in
phospha-Wittig-type reactions with thiocarbonyls allowed the
isolation and characterization of a series of novel cationic
phosphaalkenes 5a-f+ as well as phosphanides 6a-d+ bearing a
wide variety of substituents as their triflate salts. As evidenced
spectroscopically and by DFT calculations [RI-BP86-D3/def2-
TZVP (acetonitrile) level of theory], the mechanism of the
formation of phosphaalkenes proceeds via the intermediary
three-membered thiophosphiranes as a result of a [LC−P]+
transfer from 1a+ onto the C�S double bond. Although
calculations show a similar pathway for the formation of
phosphanides, energy barriers are found to be significantly
higher. Furthermore, when in situ generated 1a+ is reacted with
phosphaalkenes that are isolobal to thioketones, [LC−P]+
transfer is also observed, leading to the isolation of heteroleptic
diphosphiranes 11a,b[OTf].
In order to evaluate the reactivity of the formed cationic

phosphaalkenes, we subjected 5a[OTf] to reactions with low
oxidation state transition-metal complexes [Pd(PPh3)4],
[Pt(PPh3)3], and [Fe2(CO)9]. While the conversion with the
latter gave iron complex 13[OTf], in which the phosphaal-
kenes are in an equatorial position and have a η1-coordination
mode, metallaphosphiranes 12a,b[OTf] are formed in the
reaction with the former two complexes, including 5a+ in a η2-
coordination mode. Lastly, we showed the potential to use the
P�C double bond in 5a[OTf] for cycloaddition reactions by
its conversion with ortho-quinone 14 giving 15[OTf].
We furthermore exemplified the possibility of exchanging

the transferred LC-substituent in 5a[OTf] by reacting it with
MesMgBr. This reaction allowed for the convenient and high-
yield synthesis of MesP�CPh2, a compound that is typically
obtained through reactions involving malodorous primary
phosphines and silylphosphines. Moreover, our work enables
access to unprecedented 1,3-diphosphetane 17 as well as
aminophosphaalkenes 18 and 19 through the conversions of
5a[OTf] and 6c[OTf] with MeMgBr or KNPh2. These
conversions demonstrate the versatility of [LC−P]+ as a P1
building block.
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