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Abstract
Background: To	date,	over	400	syndromes	with	hearing	impairment	have	been	
identified	which	altogether	constitute	almost	30%	of	hereditary	hearing	loss	(HL)	
cases	 around	 the	 globe.	 Manifested	 as	 complete	 or	 partial	 labyrinthine	 aplasia	
(severe	malformations	of	the	inner	ear	structure),	type	I	microtia	(smaller	outer	
ear	with	shortened	auricles),	and	microdontia	(small	and	widely	spaced	teeth),	
labyrinthine	 aplasia,	 microtia,	 and	 microdontia	 (LAMM)	 syndrome	 (OMIM	
610706)	is	an	extremely	rare	autosomal	recessive	condition	caused	by	bi-	allelic	
mutations	in	the	FGF3	gene.
Methods: Using	 the	whole-	exome	sequencing	 (WES)	data	of	 the	proband,	we	
analyzed	a	consanguineous	Iranian	family	with	three	affected	members	present-
ing	with	congenital	bilateral	HL,	type	I	microtia,	and	microdontia.
Results: We	discovered	 the	homozygous	deletion	c.45delC	 in	 the	 first	exon	of	
the	FGF3	gene,	overlapping	a	38.72	Mb	homozygosity	region	in	chromosome	11.	
Further	 investigations	 using	 Sanger	 sequencing	 revealed	 that	 this	 variant	 co-	
segregated	with	the	phenotype	observed	in	the	family.
Conclusion: Here,	we	report	 the	 first	 identified	case	of	LAMM	syndrome	 in	
Iran,	and	by	identifying	a	frameshift	variant	in	the	first	exon	of	the	FGF3	gene,	
our	 result	will	help	better	clarify	 the	phenotype–	genotype	 relation	of	LAMM	
syndrome.
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1 	 | 	 INTRODUCTION

Hearing	loss	(HL)	is	the	most	common	sensorineural	dis-
order,	 affecting	 one	 in	 every	 500	 individuals.	 Screening	
data	from	developed	countries	show	that	almost	50%	of	all	
HL	cases	are	genetic,	of	which	almost	30%	are	syndromic.	
To	date,	more	 than	400	syndromes	with	hearing	 impair-
ment	 have	 been	 identified	 (Sheffield	 &	 Smith,  2019).	
Moreover,	an	identifiable	inner	ear	malformation	can	be	
found	in	15%–	20%	of	cases	with	severe	or	profound	senso-
rineural	HL	(Joshi	et	al., 2012).

Accounting	 for	 1%	 of	 the	 inner	 ear	 malformations,	
complete	labyrinthine	aplasia	(CLA)	was	first	described	by	
Michel	 in	 1863,	 and	 is	 characterized	 by	 the	 complete	 ab-
sence	of	the	inner	ear	structure	(Ozgen	et	al., 2009).	In 1991,	
Hersh	et	al.	reported	a	2.5-	year-	old	female	with	congenital	
sensorineural	 deafness	 due	 to	 Michel's	 aplasia.	 Moreover,	
the	patient	was	presented	with	type	I	microtia	(small	auri-
cles	with	or	without	malformation),	and	microdontia	(small	
and	widely	spaced	teeth).	However,	 it	was	until	2007	that	
Tekin	et	al. (2007)	discovered	homozygous	mutations	in	the	
fibroblast	growth	factor	3	(FGF3)	gene	could	lead	to	labyrin-
thine	aplasia,	microtia,	and	microdontia	(LAMM)	syndrome	
(labyrinthine	 aplasia,	 microtia,	 and	 microdontia—	OMIM	
610706).	LAMM	syndrome	is	an	extremely	rare	autosomal	
recessive	condition,	for	which	no	prevalence	has	yet	been	
established	(Ordonez	&	Tekin, 1993).	The	three	main	phe-
notypes	of	the	LAMM	syndrome	include,	complete	or	par-
tial	absence	of	 the	 inner	ear	structures	 (Michel's	aplasia),	
type	I	microtia	with	or	without	large	skin	tags	on	the	upper	
sides	of	the	auricles,	and	microdontia.

The	 advent	 of	 the	 new	 high-	throughput	 sequencing	
technologies	has	been	of	great	help	for	the	identification	
of	 novel	 variants.	 Various	 next-	generation	 sequencing	
methods,	including	whole-	exome	and	whole-	genome	se-
quencing,	have	been	used	to	identify	novel	variations	and	
genes	associated	with	HL	(19,	20).	Studies	have	shown	that	
more	than	89%	of	the	reported	pathogenic	variants	in	the	
ClinVar	 database	 (https://www.ncbi.nlm.nih.gov/clinv	
ar/)	are	located	in	the	coding	region	of	the	genome	(21).	
Therefore,	considering	the	high	cost	and	the	overwhelm-
ing	 amount	 of	 data	 generated	 by	 the	 whole-	genome	 se-
quencing	(WGS),	in	most	cases	whole-	exome	sequencing	
(WES)	 is	 the	 more	 reasonable	 approach	 for	 clinical	 and	
research	purposes.

To	date,	23	pathogenic	and	likely	pathogenic	variants	
in	the	FGF3	gene	have	been	reported	to	be	associated	with	
LAMM	 syndrome	 in	 PubMed,	 Web	 of	 Science,	 ClinVar,	
and	 HGMD	 databases	 (Table  1).	 Here	 we	 add	 to	 the	
pathogenic	 allelic	 heterogeneity	 of	 FGF3	 by	 implicating	
one	novel	pathogenic	variant	 in	FGF3,	which	segregates	
with	 LAMM	 syndrome	 in	 an	 Iranian	 family.	 This	 study	
is	the	first	reported	case	of	LAMM	syndrome	in	Iran	and	

will	provide	further	insight	into	the	molecular	biology	of	
LAMM	syndrome.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Study participants

An	Iranian	family	with	Azeri	ethnicity	was	first	referred	to	
the	Genetics	Research	Center	(GRC)	at	the	University	of	
Social	Welfare	and	Rehabilitation	Sciences	 (USWR)	due	
to	congenital	HL.	Affected	members	underwent	complete	
physical	examination,	and	hearing	thresholds	were	meas-
ured	using	standard	protocols	by	puretone	audiometry	at	
250,	500,	1000,	2000,	4000,	and	8000	Hz.	Written	consent	
forms	were	obtained	from	all	members	of	the	family,	and	
whole	blood	samples	were	collected,	from	which	genomic	
DNA	was	extracted	using	routine	methods.	Subsequently,	
the	proband	underwent	WES.	The	procedure	used	in	this	
study	has	been	approved	and	reviewed	by	the	USWR	eth-
ics	committee.

2.2	 |	 Next- generation sequencing

Agilent	 SureSelectXT	 Human	 All	 Exon	 V6	 (Agilent	
Technologies	Inc,	Santa	Clara,	CA,	USA)	was	used	for	exome	
enrichment,	and	 the	 Illumina	NextSeq500	 (Illumina,	San	
Diego,	California,	USA)	was	used	to	sequence	the	libraries	
with	paired-	ended	read	 lengths	of	100	bp.	Quality	control	
analysis	was	performed	using	the	FastQC	toolkit,	and	se-
quences	were	mapped	to	the	UCSC	hg19	human	reference	
genome	using	the	Burrows-	Wheeler	Aligner	(BWA)	(Li	&	
Durbin,  2010).	 The	 Genome	 Analysis	 Toolkit	 version	 4.0	
(GATK4.0,	Broad	Institute,	Cambridge,	MA,	USA)	was	ap-
plied	for	BAM	processing,	realignment,	base	quality	recali-
bration,	and	variant	calling	(Van	der	Auwera	et	al., 2013).	
The	resulting	variant	calling	format	(VCF)	file	was	anno-
tated	using	ANNOVAR	(Wang	et	al., 2010).	Variants	were	
then	 filtered	 according	 to	 their	 quality	 (depth	>	3,	 qual-
ity	 score	>	30)	 and	 minor	 allele	 frequency	 (MAF	<	0.01).	
Variant	prioritization	was	based	on	variant-	type,	conserva-
tion	(GERP	and	phyloP),	and	the	scores	from	in	silico	pre-
diction	tools,	including	SIFT	(Sim	et	al., 2012),	PolyPhen2	
(Adzhubei	 et	 al.,  2010),	 and	 the	 Combined	 Annotation	
Dependent	Depletion	(CADD)	(Rentzsch	et	al., 2021).

2.3	 |	 Autozygosity mapping

Due	to	the	consanguineous	nature	of	the	family,	we	used	
the	Automap	tool	(Quinodoz	et	al., 2021)	to	 identify	the	
runs	of	homozygosity	(ROH)	by	using	the	WES	VCF	file	

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
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as	input.	The	analysis	was	conducted	by	using	the	tool's	
default	settings,	and	after	receiving	the	output	files,	vari-
ants	identified	by	WES	were	further	filtered	according	to	
the	ROH	regions.

2.4	 |	 Segregation analysis

Sanger	sequencing	and	PCR	primers	were	designed	using	
the	web-	based	 tool,	Pimer3	 (https://prime	r3.ut.ee/).	The	
primers	used	in	this	study	include	the	forward	5′-	CCCAC	
CTT	TCC	CGC	GAAG-	3′,	 and	 the	 reverse	 5′-	CTCAC	
TGT	AGG	CGC	TGTTCT-	3′.	 The	 PCR	 products	 were	 se-
quenced	on	ABI	3130	Sequencer,	and	the	chromatograms	
were	 compared	 to	 the	 genomic	 sequence	 of	 the	 FGF3	
(NM_005247.4)	 and	 changes	 were	 confirmed	 using	 the	
CodonCode	Aligner	software.

3 	 | 	 RESULTS

3.1	 |	 Clinical presentation

A	 consanguineous	 Iranian	 family	 with	 Azeri	 ethnicity	
and	 three	 affected	 children,	 one	 male	 and	 two	 females	
(Figure 2a),	born	 from	healthy	parents	was	entered	 into	
the	 study.	 The	 main	 complaint	 for	 which	 they	 were	 re-
ferred	 to	 the	 USWR	 genetics	 research	 center	 was	 bilat-
eral	severe	to	profound	congenital	HL,	diagnosed	at	birth	
(Figure  1b).	 After	 further	 physical	 examinations,	 it	 was	
noticed	 that	 all	 affected	 members	 were	 presented	 with	
shortening	of	 the	upper	 third	of	 the	auricles,	prominent	
and	 bifurcated	 antihelix	 ears	 (compatible	 with	 microtia	
type	 I),	 and	 small	 and	 widely	 spaced	 teeth	 with	 loss	 of	
tooth	height	and	thin	enamel	(compatible	with	microdon-
tia)	(Figure 1a).	The	parents	and	the	healthy	sister	did	not	
have	any	of	the	LAMM	syndrome	manifestations,	mean-
ing	that	the	results	from	hearing	evaluation	of	the	healthy	
individuals	were	in	normal	ranges	and	no	tooth	or	outer	
ear	malformations	were	observed.

3.2	 |	 Genetic diagnosis

Variant	calling	from	the	WES	data	revealed	377,040	vari-
ants	in	total,	of	which	only	5094	remained	after	filtering	
based	 on	 MAF	 and	 variant	 quality.	 In	 addition,	 autozy-
gosity	 mapping	 revealed	 95.26	Mb	 of	 homozygosity	 re-
gions	 throughout	 autosomal	 chromosomes,	 including	 a	
38.72	Mb	region	in	chromosome	11	which	overlapped	11	
rare	homozygous	exonic	variants	(Figure 2c).	Of	particular	
interest	was	the	homozygous	frameshift	deletion	in	exon	
one	of	the	FGF3	gene,	c.45delC	(Figure 2b).	This	variant	

has	only	one	allele	count	in	the	gnomAD	v2.1.1	database,	
and	it	is	located	on	the	first	exon	of	the	gene.	The	c.45delC	
variant	 is	predicted	to	create	a	premature	stop	codon	63	
amino	acids	downstream	of	the	deletion,	causing	the	tran-
script	 to	 undergo	 nonsense-	mediated	 decay	 (predicted	
based	on	the	50-	nt	rule).	Moreover,	this	variant	was	con-
firmed	using	Sanger	sequencing,	and	it	co-	segregates	with	
LAMM	syndrome	in	the	family.	Therefore,	based	on	the	
American	 College	 of	 Medical	 Genetics	 guidelines,	 using	
the	PVS1,	PM2,	and	PP1	scores,	this	variant	can	be	classi-
fied	as	pathogenic.

4 	 | 	 DISCUSSION

Characterized	 by	 bilateral	 congenital	 deafness,	 severe	
malformations	of	 the	 inner	ear	 (Michel's	aplasia),	 short-
ened	 upper	 half	 of	 auricles	 (microtia	 type	 I),	 and	 small	
and	widely	spaced	teeth	(microdontia),	LAMM	syndrome	
is	a	very	rare	disorder	that	has	been	reported	in	more	than	
20	families	worldwide	(Ordonez	&	Tekin, 1993).	In	addi-
tion	to	the	four	main	symptoms,	motor	development	delay	
during	infancy	(probably	due	to	impaired	balance),	large	
skin	tags	on	the	upper	side	of	the	auricles,	malformation	
of	 the	 middle	 ear,	 stenosis	 of	 the	 jugular	 foramen,	 en-
larged	emissary	veins,	presence	of	intracranial	arachnoid	
cyst,	and	absence	or	narrowing	of	the	eighth	cranial	nerve	
have	 been	 observed	 in	 affected	 individuals	 (Ordonez	 &	
Tekin,  1993;	 Riazuddin	 et	 al.,  2011;	 Tekin	 et	 al.,  2008).	
In	 addition,	 in	 some	 cases	 unique	 phenotypic	 features	
were	also	diagnosed,	 including	 reduced	kidney	 size,	hy-
pophosphatemic	 rickets,	 and	 type	 I	 diabetes	 (Al	 Yassin	
et	al., 2019;	Singh	et	al., 2014).	However,	it	is	possible	that	
these	features	are	due	to	variants	in	other	genes	or	envi-
ronmental	factors.

The	genetic	etiology	of	LAMM	syndrome	was	first	iden-
tified	in	2007	when	Tekin	et	al. (2007)	showed	that	muta-
tions	in	the	fibroblast	growth	factor	3	gene	(FGF3	–		OMIM	
164950)	co-	segregated	with	the	phenotype	in	the	affected	
families,	 and	 so	 far,	 23	 pathogenic	 or	 likely	 pathogenic	
variants	have	been	reported	in	ClinVar,	HGMD,	PubMed,	
and	Web	of	Science	databases.	The	FGF3	gene	(also	known	
as	INT2	and	HBGF-	3),	mapped	to	chromosome	11q13.3,	
contains	three	exons	and	encodes	a	239-	amino-	acid-	long	
protein.	Studies	in	mice	have	shown	that	the	loss	of	func-
tion	of	the	FGF3	protein	leads	to	a	malformed	inner	ear	
structure	with	dilated	or	absent	semi-	circular	canal,	and	
improperly	 coiled	 cochlea	 (Hatch	 et	 al.,  2007;	 Mansour	
et	 al.,  1993).	 Further	 studies	 have	 shown	 a	 spectrum	 of	
phenotypic	features	in	the	inner	ear	of	the	FGF3	knockout	
animal	models,	which	suggests	the	variable	expressivity	of	
FGF3	mutations	(Hatch	et	al., 2007;	Kettunen	et	al., 2000).	
Moreover,	FGF10	and	FGF3	have	been	repeatedly	shown	

https://primer3.ut.ee/
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to	have	an	overlapping	expression	pattern	in	the	otic	plac-
ode,	 suggesting	 a	 modifier	 role	 for	 the	 FGF10	 gene	 in	
LAMM	syndrome	(Olaya-	Sánchez	et	al., 2017).

In	humans,	the	FGF7	subfamily	is	widely	expressed	in	
the	mesenchymal	tissues.	Structural	analysis	shows	that	
the	 members	 of	 the	 FGF7	 subfamily	 (including	 FGF3,	

T A B L E  1 	 Mutations	found	in	FGF3	gene	and	their	related	clinical	features.

Mutation Reference SNP Zygosity Hearing evaluation Inner ears Outer ears Teeth Other clinical features Reference

c.17	T	>	C rs121917706 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I,	Anteverted	ears,	
Bilateral	large	skin	tags

Microdontia Stenosis	of	jugular	foramen,	
enlarged	emissary	vein

Tekin	et	al. (2008)

c.45delC rs1434810965 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I,	Anteverted	ears Microdontia	with	thin	
enamel

NA This	study

c.146A	>	G,	c.310C	>	T rs281860300 Compound	
Heterozygote

Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	anteverted	ears Microdontia NA Sensi	et	al. (2011)

c.150C	>	A rs281860301 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	Protruding	ears Microdontia,	oligodontia NA Dill	et	al. (2011)

c.166C	>	T rs782324453 Homozygote Congenital	bilateral	profound	
deafness

NA Microtia	type	I Microdontia NA Doll	et	al. (2020)

c.173	T	>	C,	c.283C	>	T NA Compound	
Heterozygote

Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	preauricular	skin	
tags

Microdontia NA al	Yassin	et	al. (2019)

c.196G	>	A rs121917705 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I,	unilateral	skin	tags Microdontia,	oligodontia,	
thin	enamel

Prontocerebral	arachnoid	cyst Basdemirci	et	al. (2019)

c.196G	>	T rs121917705 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	anteverted	ears	
and	asymmetrical	dysplastic	ears

Microdontia NA Alsmadi	et	al. (2009)

c.254delT rs281860302 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	anteverted	ears	
and	large	skin	tags

Microdontia NA Tekin	et	al. (2008)

c.255del rs281860302 NA NA NA NA NA NA ClinVar

c.270dup rs1554981083 NA NA NA NA NA NA ClinVar

c.283C	>	T rs281860303 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Variable,	microtia	type	I Variable,	microdontia Hypoplastic	deformed	petrous	
pyramids,	large	arachnoid	
cyst

al	Yassin	et	al. (2019);	
Ramsebner	et	al. (2010);	
Riazuddin	et	al. (2011)

c.284G	>	A,	c.534C	>	G rs558206333 Compound	
Heterozygote

Congenital	bilateral	profound	
deafness

Cystic	cochlea-	vestibular		
malformation

Protruding	ears	without	microtia Microdontia Hypoplastic	eighth	cranial	nerve al	Yassin	et	al. (2019)

c.310dup NA NA NA NA NA NA NA ClinVar

c.310C	>	T rs121917704 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	anteverted	ears Microdontia Delayed	motor	skills,	absence	
of	cochleovestibular	nerve,	
subarachnoid	cyst

Riazuddin	et	al. (2011);	
Tekin	et	al. (2007)

c.317A	>	G,	c.457_458del rs281860307 Compound	
Heterozygote

Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I Microdontia Hypoplastic	petrous	pyramid Sensi	et	al. (2011)

c.325_327delinsA NA Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I Microdontia Bilateral	absence	of	the	eighth	
cranial	nerve

al	Yassin	et	al. (2019)

c.394del rs281860304 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I Microdontia Absence	of	cochleovestibular	
nerve,	subarachnoid	cyst

Riazuddin	et	al. (2011)

c.462C	>	G rs782712529 NA NA NA NA NA NA ClinVar

c.466	T	>	C rs121917703 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I Microdontia	with	the	loss	
of	tooth	height

Gross	motor	skills	during	
infancy	due	to	impaired	
balance

Tekin	et	al. (2007)

c.534C	>	G rs782081344 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I,	Anteverted	ears,	
Bilateral	large	skin	tags

Microdontia Bilateral	absence	of	the	
eighth	cranial	nerve,	
Hypophosphatemic	rickets

al	Yassin	et	al. (2019);	Lallar	
et	al. (2021);	Singh	
et	al. (2014)

c.616del rs281860305 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I Microdontia	with	the	loss	
of	tooth	height

Bilateral	absence	of	
cochleovestibular	nerve,	
strabismus

Tekin	et	al. (2007)

c.625C	>	T rs374453035 NA NA NA NA NA NA ClinVar
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FGF10,	FGF7,	and	FGF22)	specifically	bind	to	the	b	iso-
form	forms	of	fibroblast	growth	factor	receptors	1	and	2	
(FGFR1b	and	FGFR2b)	(Zinkle	&	Mohammadi, 2019).	In	

addition	to	FGF3,	mutations	 in	the	FGF10	and	FGFR2b	
have	 been	 associated	 with	 a	 syndromic	 form	 of	 deaf-
ness	 known	 as	 lacrimo-	auriculo-	dento-	digital	 (LADD)	

T A B L E  1 	 Mutations	found	in	FGF3	gene	and	their	related	clinical	features.

Mutation Reference SNP Zygosity Hearing evaluation Inner ears Outer ears Teeth Other clinical features Reference

c.17	T	>	C rs121917706 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I,	Anteverted	ears,	
Bilateral	large	skin	tags

Microdontia Stenosis	of	jugular	foramen,	
enlarged	emissary	vein

Tekin	et	al. (2008)

c.45delC rs1434810965 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I,	Anteverted	ears Microdontia	with	thin	
enamel

NA This	study

c.146A	>	G,	c.310C	>	T rs281860300 Compound	
Heterozygote

Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	anteverted	ears Microdontia NA Sensi	et	al. (2011)

c.150C	>	A rs281860301 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	Protruding	ears Microdontia,	oligodontia NA Dill	et	al. (2011)

c.166C	>	T rs782324453 Homozygote Congenital	bilateral	profound	
deafness

NA Microtia	type	I Microdontia NA Doll	et	al. (2020)

c.173	T	>	C,	c.283C	>	T NA Compound	
Heterozygote

Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	preauricular	skin	
tags

Microdontia NA al	Yassin	et	al. (2019)

c.196G	>	A rs121917705 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I,	unilateral	skin	tags Microdontia,	oligodontia,	
thin	enamel

Prontocerebral	arachnoid	cyst Basdemirci	et	al. (2019)

c.196G	>	T rs121917705 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	anteverted	ears	
and	asymmetrical	dysplastic	ears

Microdontia NA Alsmadi	et	al. (2009)

c.254delT rs281860302 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	anteverted	ears	
and	large	skin	tags

Microdontia NA Tekin	et	al. (2008)

c.255del rs281860302 NA NA NA NA NA NA ClinVar

c.270dup rs1554981083 NA NA NA NA NA NA ClinVar

c.283C	>	T rs281860303 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Variable,	microtia	type	I Variable,	microdontia Hypoplastic	deformed	petrous	
pyramids,	large	arachnoid	
cyst

al	Yassin	et	al. (2019);	
Ramsebner	et	al. (2010);	
Riazuddin	et	al. (2011)

c.284G	>	A,	c.534C	>	G rs558206333 Compound	
Heterozygote

Congenital	bilateral	profound	
deafness

Cystic	cochlea-	vestibular		
malformation

Protruding	ears	without	microtia Microdontia Hypoplastic	eighth	cranial	nerve al	Yassin	et	al. (2019)

c.310dup NA NA NA NA NA NA NA ClinVar

c.310C	>	T rs121917704 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I	with	anteverted	ears Microdontia Delayed	motor	skills,	absence	
of	cochleovestibular	nerve,	
subarachnoid	cyst

Riazuddin	et	al. (2011);	
Tekin	et	al. (2007)

c.317A	>	G,	c.457_458del rs281860307 Compound	
Heterozygote

Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I Microdontia Hypoplastic	petrous	pyramid Sensi	et	al. (2011)

c.325_327delinsA NA Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I Microdontia Bilateral	absence	of	the	eighth	
cranial	nerve

al	Yassin	et	al. (2019)

c.394del rs281860304 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I Microdontia Absence	of	cochleovestibular	
nerve,	subarachnoid	cyst

Riazuddin	et	al. (2011)

c.462C	>	G rs782712529 NA NA NA NA NA NA ClinVar

c.466	T	>	C rs121917703 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I Microdontia	with	the	loss	
of	tooth	height

Gross	motor	skills	during	
infancy	due	to	impaired	
balance

Tekin	et	al. (2007)

c.534C	>	G rs782081344 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I,	Anteverted	ears,	
Bilateral	large	skin	tags

Microdontia Bilateral	absence	of	the	
eighth	cranial	nerve,	
Hypophosphatemic	rickets

al	Yassin	et	al. (2019);	Lallar	
et	al. (2021);	Singh	
et	al. (2014)

c.616del rs281860305 Homozygote Congenital	bilateral	profound	
deafness

Complete	labyrinthine		
aplasia

Microtia	type	I Microdontia	with	the	loss	
of	tooth	height

Bilateral	absence	of	
cochleovestibular	nerve,	
strabismus

Tekin	et	al. (2007)

c.625C	>	T rs374453035 NA NA NA NA NA NA ClinVar
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syndrome	 (OMIM	 149730).	 Among	 the	 phenotypic	 fea-
tures	 of	 the	 LADD	 syndrome,	 anomalies	 of	 the	 inner	
ear,	 outer	 ear,	 and	 teeth	 resemble	 those	 of	 LAMM	 syn-
drome	(Ryu	et	al., 2020).	Members	of	the	FGF7	subfam-
ily	 share	 a	 highly	 conserved	 120–	130	 amino	 acid	 long	
fibroblast	 growth	 factor	 domain	 (Figure  3b),	 which	 is	
functionally	 essential	 for	 the	 FGF	 proteins	 (Zinkle	 &	
Mohammadi,  2019).	 In	 addition,	 the	 FGF3	 protein	 is	

predicted	to	contain	an	N-	terminal	signal	peptide	(pho-
bius	–		amino	acids	1–	17)	with	a	predicted	cleavage	site	be-
tween	amino	acids	17	and	18	(https://servi	ces.healt	htech.
dtu.dk/servi	ce.php?SignalP),	 and	 a	 20-	amino-	acid-	long	
transmembrane	domain	(phobius	–		amino	acids	72–	92).	
Signal	 peptide	 and	 transmembrane	 domains	 have	 been	
known	to	be	essential	for	post-	translational	modification	
in	 the	endoplasmic	reticulum;	moreover,	when	deleting	

F I G U R E  1  Pictures	showing	the	facial	characteristics	of	three	Iranian	siblings	diagnosed	with	labyrinthine	aplasia,	microtia,	and	
microdontia	syndrome,	and	their	respective	audiograms.	Note	the	microdontia	with	widely	spaced	teeth	and	microtia	with	shortening	of	the	
upper	third	of	the	auricles	apparent	in	all	of	the	affected	individuals	(a).	Pure	tone	audiometry	with	frequencies	250	Hz	to	8000	was	applied	
to	all	family	members.	The	resulting	audiograms	consistently	show	profound	hearing	loss	in	all	affected	members	(b).

https://services.healthtech.dtu.dk/service.php?SignalP
https://services.healthtech.dtu.dk/service.php?SignalP


   | 7 of 10JAMSHIDI et al.

F I G U R E  2  This	picture	shows	the	pedigree	of	a	consanguineous	Iranian	family	with	labyrinthine	aplasia,	microtia,	and	microdontia	
syndrome	(a),	and	the	homozygous	and	heterozygous	mutations	found	in	the	affected	and	healthy	members	respectively	(b).	Using	the	
Automap	software,	autozygosity	mapping	was	conducted	for	the	autosomal	chromosomes,	and	as	marked,	the	mutation	in	the	FGF3	gene	
was	found	in	a	large	stretch	of	a	homozygosity	region	(38.72	Mb)	in	chromosome	11	(c).

F I G U R E  3  So	far,	23	mutations	spanning	the	FGF3	gene	have	been	associated	with	labyrinthine	aplasia,	microtia,	and	microdontia	syndrome.	
The	FGF3	protein	consists	of	one	highly	conserved	fibroblast	growth	factor	(FGF)	domain	(amino	acids	44–	181),	a	predicted	signal	peptide	(SP,	
amino	acids	1–	17),	and	a	predicted	transmembrane	domain	(TM,	amino	acids	72–	92)	(a).	The	conservation	scores	of	each	individual	amino	acid	were	
calculated	using	the	ConSurf	server	(Ashkenazy	et	al., 2016).	Note	the	high	conservation	scores	for	amino	acids	located	in	the	FGF3	domain	(b).
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the	 signal	 peptide	 of	 the	 FGF3	 protein,	 researchers	 ob-
served	the	accumulation	of	the	unmodified	protein	in	the	
nucleus	 (Antoine	 et	 al.,  1997).	 Therefore,	 destabilizing	
mutations	in	the	signal	peptide	and	transmembrane	do-
main	are	predicted	 to	 reduce	 the	secretion	of	 the	FGF3	
protein	and	ultimately	 lead	 to	reduced	or	complete	 loss	
of	function	of	the	protein.

Loss	 of	 function	 of	 the	 FGF3	 protein,	 as	 indicated	 by	
animal	studies,	is	responsible	for	symptoms	of	LAMM	syn-
drome.	 Concordantly,	 almost	 half	 of	 the	 reported	 patho-
genic	and	likely	pathogenic	variants	(52%)	are	 frameshift	
and	stop-	gain	variants	that	can	either	lead	to	the	production	
of	a	truncated	protein	or	nonsense-	mediated	decay	of	the	
FGF3	transcript.	Ten	of	the	11	remaining	missense	variants	
are	located	in	the	highly	conserved	fibroblast	growth	fac-
tor	domain	and	one	is	within	the	secretory	signal	sequence	
(Figure  3a).	 Genotype–	phenotype	 correlation	 of	 LAMM	
syndrome	has	not	been	thoroughly	understood;	however,	
it	 has	 been	 reported	 that	 individuals	 with	 homozygous	
p.R95W	mutation	had	a	less	severe	phenotype	(Riazuddin	
et	al., 2011).	Moreover,	Riazuddin	et	al.	suggested	that	the	
p.R95W	 mutation	 had	 a	 semi-	dominant	 effect,	 as	 some	
carriers	 had	 mild	 to	 moderate	 bilateral	 conductive	 HL.	
Therefore,	 further	 investigations	 are	 needed	 stablish	 the	
phenotype–	genotype	association	of	LAMM	syndrome.

In	 our	 study,	 we	 identified	 a	 novel	 mutation	 in	 the	
FGF3	gene	in	a	consanguineous	Iranian	family	with	three	
affected	members	which	had	identical	LAMM	syndrome	
features	including	HL,	outer	ear	and	teeth	malformation.	
The	HL	was	identified	at	birth	in	all	three	affected	mem-
bers;	however,	patients	were	not	available	to	confirm	inner	
ear	malformation	through	further	clinical	testing.	Neither	
of	the	discussed	phenotypes	were	observed	in	the	healthy	
siblings	 and	 the	 parents.	 Furthermore,	 our	 study	 strives	
to	show	that	considering	the	specific	facial	(outer	ear	and	
teeth	malformation)	and	clinical	features	(early	onset	se-
vere	to	profound	HL)	of	LAMM	syndrome,	it	is	suggested	
that	 in	presence	of	 such	symptoms,	 the	sequence	of	 the	
FGF3	gene	be	assessed	in	order	to	reduce	the	cost	of	ge-
netic	diagnostic	measures.

5 	 | 	 CONCLUSION

Here,	using	WES,	we	introduce	c.45delC	as	a	novel	muta-
tion	in	the	FGF3	gene	that	co-	segregated	with	LAMM	syn-
drome	 in	 a	 consanguineous	 Iranian	 family.	 This	 study	 is	
the	first	reported	case	of	LAMM	syndrome	in	Iran,	and	our	
data	further	broaden	the	spectrum	of	FGF3	gene	mutations.
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