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Abstract

Introduction: Models of structural connectivity in the human brain are typically simulated using tractographic
approaches. However, the nonlinear fitting of anatomical pathway atlases to de novo subject brains represents a
simpler alternative that is hypothesized to provide more anatomically realistic results. Therefore, the goal of this
study was to perform a side-by-side comparison of the streamline estimates generated by either pathway atlas fits
or tractographic reconstructions in the same subjects.
Methods: Our analyses focused on reconstruction of the corticospinal tract (CST), cerebellothalamic (CBT),
and pallidothalamic (PT) pathways using example datasets from the Human Connectome Project (HCP). We
used MRtrix3 to explore whole brain, as well as manual seed-to-target, tractography approaches. In parallel,
we performed nonlinear fits of an axonal pathway atlas to each HCP dataset using Advanced Normalization
Tools (ANTs).
Results: The different methods produced notably different estimates for each pathway in each subject. The fitted
atlas pathways were highly stereotyped and exhibited low variability in their streamline trajectories. Manual trac-
tography resulted in pathway estimates that generally corresponded with the fitted atlas pathways, but with a
higher degree of variability in the individual streamlines. Pathway reconstructions derived from whole-brain
tractography exhibited the highest degree of variability and struggled to create anatomically realistic represen-
tations for either the CBT or PT pathways.
Conclusion: The speed, simplicity, reproducibility, and realism of anatomical pathway model fits makes them an
appealing option for some forms of structural connectivity modeling in the human brain.
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Impact Statement

Axonal pathway modeling is an important component of deep brain stimulation (DBS) research studies that seek to identify
the brain connections that are directly activated by stimulation. The corticospinal tract, cerebellothalamic (CBT), and pallid-
othalamic (PT) pathways are specifically relevant to the study of subthalamic DBS for the treatment of Parkinson’s disease.
Our results suggest that anatomical pathway model fits of the CBT and PT pathways to de novo subject brains represent a
more anatomically realistic option than tractographic approaches when studying subthalamic DBS.
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Introduction

Modeling techniques to estimate the structural con-
nectivity of the human brain are a major focus of im-

aging research. Structural connectivity models have utility in
characterizing the circuitry of brain networks (Elam et al.,
2021), estimating targets for neuromodulation interventions
(Horn and Fox, 2020), and prospective surgical planning
for clinical brain stimulation therapies (Sheth et al., 2022).
Structural connectivity estimates are typically derived from
diffusion-weighted imaging (DWI) data using tractography
algorithms (Wakana et al., 2007). One key advantage of
using tractography approaches is that many different path-
ways in the brain can theoretically be reconstructed from
the DWI data, given a priori knowledge of the seed and tar-
get regions for each pathway of interest. However, while
tractography results are ubiquitous in human brain imaging
research, their reliability, robustness, and accuracy are com-
monly called into question (Schilling et al., 2021). In addi-
tion, novel approaches to validate human structural
connectivity estimates with intracranial electrophysiology
measurements have exhibited relatively weak correlations
(Adkinson et al., 2022; Howell et al., 2021).

In attempts to improve the reliability, robustness, and ac-
curacy of structural connectivity models, several groups have
used tractography data to create anatomically annotated
large-scale pathway atlases for the human brain (e.g., Hansen
et al., 2021; Oishi et al., 2008; Radwan et al., 2022; van
Baarsen et al., 2015; Yeh et al., 2018; Zhang et al., 2018).
Histology-based anatomical pathway atlases have also been
created for focal brain regions consisting of small-scale path-
ways that exhibit a high degree of bending, crossing, and
intermingling (Adil et al., 2021; Petersen et al., 2019).

Irrespective of how they were originally created, pathway
atlases can then be nonlinearly warped to fit the MRI of a
de novo subject, thereby representing an alternative to trac-
tography for estimating the location of axonal streamlines
in the brain. The atlas fitting process does not require the col-
lection of DWI data, and is analogous to the coregistration of
3D nuclei atlas volumes to the subject brain (Yelnik et al.,
2007). In addition, all of the available pathways in the
atlas are defined in subject space simultaneously by the fit-
ting process, which is attractive from an efficiency perspec-
tive. However, the pathway estimates derived from atlases
are stereotyped results and are limited by the errors associ-
ated with the coregistration of the atlas to the subject,
which can be especially inaccurate in subjects with abnormal
brain anatomy (e.g., large tumors or substantial atrophy).

The goal of this study was to provide a side-by-side com-
parison of axonal pathway estimates generated by pathway
atlas fits or tractographic reconstructions in the same sub-
jects. We selected three different pathways for analysis,
where each pathway represented a different anatomical chal-
lenge for estimating the axonal trajectories through the brain.
The corticospinal tract (CST) is a large long-range pathway.
The cerebellothalamic (CBT) pathway is a mid-sized mid-
range tract that crosses hemispheres. The pallidothalamic
(PT) pathway is a small short-range tract that exhibits a
high degree of tortuosity.

We created the pathway estimates in the brains of different
subjects using: (1) anatomically constrained segregation of
whole-brain tractography, (2) manual seed-to-target tractog-

raphy, or (3) nonlinear fitting of a pathway atlas. The analy-
ses were performed with six example datasets randomly
selected from the Human Connectome Project (HCP)
(Elam et al., 2021) (Supplementary Table S1), and employed
advanced processing steps to maximize the accuracy of the
tractographic reconstructions (Tournier et al., 2019). The re-
sults allowed us to compare the streamline trajectories of the
different pathway reconstruction methods and identify some
of the caveats associated with using these various approaches
to model axonal pathways in the human brain.

Methods

We compared the nonlinear fits of atlas pathway models
with prominent methods for pathway reconstruction with
tractography (Fig. 1). Our goal was to generate the best pos-
sible representation of three example axonal pathways using
tractographic algorithms. The three pathways of interest
were the CST, CBT, and PT pathways. We relied on HCP
preprocessed datasets to ensure that the quality of the DWI
data was sufficient for detailed tractographic analyses
(Glasser et al., 2013). Six HCP subjects (three males, three
females) were randomly selected from the ‘‘HCP 1200 Sub-
ject Release’’ for our analyses (Supplementary Table S1).

We employed one reconstruction strategy based on
whole-brain tractography, and another strategy based on
manual seed-to-target tractography. Both strategies were
implemented using MRtrix3 (Tournier et al., 2019) and
the default (iFOD2) probabilistic tractography algorithm.
In parallel, we performed nonlinear fits of the Petersen
et al. (2019) axonal pathway atlas to each HCP dataset
using Advanced Normalization Tools (ANTs) (Avants
et al., 2014). Table 1 provides estimates of the processing
time associated with the estimating the pathways in brain
imaging data.

Tractographic reconstruction of the CST is a relatively
straightforward process that generally yields good results
(e.g., Archer et al., 2018) (Fig. 2). Reconstructing the CBT
pathway with tractography is more challenging, especially
when considering the decussation in the midbrain (e.g., Now-
acki et al., 2018) (Fig. 3). The PT pathway is very difficult to
reconstruct with tractography because of the small fibers,
high tortuosity of the trajectory, and crossing of the internal
capsule (IC) (e.g., Kwon et al., 2021) (Fig. 4).

All of our DWI-based pathway reconstructions used cus-
tom anatomical regions of interests (ROIs). The ROIs were
initially defined in the high-resolution CIT168 brain atlas
template (Pauli et al., 2018). These ROIs were then nonli-
nearly warped to each HCP dataset. For the CST reconstruc-
tion, the ROIs were further refined using the subject-specific
Freesurfer cortical parcellation map provided with the HCP
data (primary motor cortex ROIs) and the DWI-derived FA
map (IC ROI) (Supplementary Fig. S1). All nonlinear regis-
trations and warps were carried out with the ANTs toolbox
(three stage, rigid and affine and b-spline symmetric normal-
ization, optional arguments left at default values) and used
both T1w and T2w data for multimodal registration between
CIT168 template and HCP structural data (0.7 mm isotropic).
ROIs used with the DWI data for streamline generation were
resliced to match the lower data resolution (1.25 mm isotro-
pic). All registrations were manually inspected to ensure ad-
equate results from the nonlinear warping.
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Table 1. Estimated Processing Time

Requirements Reproducible Processing time

Imaging
data Other

Template
registration

DWI
preprocessinga Tractographyb Total

Whole-brain
ACT

T1w
DWI

— Yes 39 min 5 h 45 min 1 h 12 min 7 h 36 min

Manual
tractography

T1w
DWI

Neuroanatomical
knowledge

No 39 min 5 h 45 min Manual tracking
+ filtering

6 h 24 min
+ manual
filtering

Anatomical
pathway model

T1w — Yes 39 min — — 39 min

Time estimates for a single subject for the three processing pipelines using the minimum data necessary. If a T2w dataset is available then
multimodal registration may improve registration accuracy but will increase processing time by *20 min. (T1w data for template registra-
tion and DWI for streamline generation). To provide more realistic estimates for this table we used a non-HCP unprocessed DWI dataset
(2 mm isotropic resolution, 180 directions, multishell [0, 700, 1200, 2800 sec/mm2], reverse-phase-encoded b0 volumes only, acquired on
a Siemens 3T Skyra Magnetom). All processing were done using a workstation equipped with a Xeon Gold 5120 CPU (14c/28t @ 2.20GHz).

aThe DWI preprocessing includes: denoising and Gibbs unringing (MRtrix), as well as correction for EPI distortions, subject motion, and
Eddy currents (FSL).

bThe tractography stage includes generation of functions and for whole-brain ACT only, generation of tissue segmentation map (5TT), and
10 million streamlines (ACT).

ACT, anatomically constrained tractography; DWI, diffusion-weighted imaging; FOD, fiber orientation distribution.

FIG. 1. Flowchart illustrating the key processing steps for each of the three pathway reconstruction methods. FA, fractional
anisotropy; FOD, fiber orientation distribution; GPi, globus pallidus internus; STN, subthalamic nucleus.
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Whole-brain tractography was carried out using multishell
multitissue constrained spherical deconvolution (MSMT-
CSD) (Jeurissen et al., 2014) and the Anatomically Con-
strained Tractography (ACT) framework (Smith et al.,
2012), as implemented in the MRtrix3 toolbox (Fig. 1). In
brief, multitissue orientation distribution functions (ODFs)
were generated using MSMT-CSD. Tissue segmentation
masks (cortical gray matter [GM], subcortical GM, white mat-
ter [WM], and cerebrospinal fluid) were generated from the
T1w data. The masks provided biologically realistic con-
straints for streamline propagation and reduced false positives
in the whole-brain tractogram. We used rules that the stream-
lines cannot terminate in WM or CSF, and if a streamline en-
tered a GM structure, then it had to terminate within and could
not exit to propagate further. Ten million streamlines were
generated for each HCP dataset. Additional parameters used
in ACT generation were—backtracking: on, crop_at_gmwmi:
on, seed_dynamic using wm-ODFs, maxlength: 250, cutoff:
0.06. Subsequent streamline selection was done by filtering
the full ten million using specified inclusion masks.

The two DWI-based CST reconstructions were carried out
using three sets of CST-ROIs. Each CST-ROI was associated

with either the face, upper extremity, or lower extremity regions
of primary motor cortex (Fig. 2). For manual tractography, each
cortical region was used as a seed mask along with three subse-
quent inclusion masks at the level of the IC, the cerebral pedun-
cle, and the inferior pons. Once a streamline passed through all
inclusion regions, it was automatically terminated. For each
bundle (i.e., face, arm, leg), 5000 streamlines were selected,
with a max length threshold of 150 mm. No further manual fil-
tering of the streamlines was applied. For the whole-brain ap-
proach, the same three sets of four ROIs were used to extract
streamlines that passed through the specified regions.

For manual tractography of the CBT pathway, two ROIs
were used (Fig. 3). A seed mask was placed in the superior
cerebellar peduncle and a target mask covered the contralat-
eral thalamus. The thalamus mask was generated using FSL
First (Patenaude et al., 2011). Five thousand streamlines
were generated using unidirectional seeding and a max
length threshold of 100 mm. The resulting raw streamlines
were manually filtered to remove obvious erroneous stream-
lines (e.g., crossing the midline outside the cerebellar decus-
sation, or following the IC before turning sharply and
entering the superior aspect of the thalamus). For the

FIG. 2. CST estimation. Left panel: ROIs used to reconstruct face, upper extremity, and lower extremity CST bundles.
Right panel: (A) (i) The whole-brain tractogram was combined with the ROIs to extract; (ii) streamlines passing through
all regions; (iii) Streamlines resampled into a track density image and each voxel color coded red (face), green (upper ex-
tremity), or blue (lower extremity) to help visualize any distinct separation between bundles. (B) Streamlines were generated
manually using the ROIs as seed and inclusion masks. (C) The CST anatomical pathway model was nonlinearly transformed
into subject space. CST, corticospinal tract; ROIs, regions of interests.
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whole-brain approach, the same two ROIs were used to ex-
tract streamlines that passed through the specified regions.

For manual tractography of the PT pathway, globus pallidus
internus (GPi) volume was used as the seed mask, and the thal-
amus mask was used as the termination mask (Fig. 4). Five
thousand streamlines were generated using unidirectional
seeding and a max length threshold of 50 mm. The resulting
streamlines were manually filtered to remove implausible tra-
jectories such as those exiting the superior aspect of the GPi or
streamlines entering the thalamus through regions clearly not
consistent with the thalamic fasciculus. For the whole-brain
approach, the same two ROIs were used to extract streamlines
that passed through the specified regions.

Results

This study compared streamline estimates of axonal tra-
jectories in the CST, CBT, and PT pathways that were de-
fined within the context of HCP datasets. Each pathway
modeling method provided a collection of streamlines for
each pathway in each brain we analyzed. However, the dif-
ferent methods produced noticeably different estimates for

each pathway (Fig. 5) in each subject (Supplementary
Figs. S2–S4). The fitted atlas pathways were highly stereo-
typed and exhibited low variability in their streamline trajec-
tories. Manual tractography resulted in pathway estimates
that generally corresponded with the fitted atlas pathways,
but with a higher degree of variability in the individual
streamlines. Pathway reconstructions derived from whole-
brain tractography exhibited the highest degree of variability
and struggled to create anatomically realistic representations
for either the CBT or PT pathways (Fig. 5).

Each method provided reasonable estimates for the CST,
which were in general agreement with each other (Fig. 5;
Supplementary Figs. S2 and S5). However, at the level of
the thalamus, the tractographic reconstructions exhibited a
posterior bias in the position of the streamlines within the
IC, relative to the fitted atlas pathways (Fig. 2; Supplemen-
tary Fig. S5). In addition, the somatotopic organization of
the CST streamlines were generally maintained with manual
tractography, but not with whole-brain tractography (Fig. 2;
Supplementary Fig. S5).

The manual tractography and fitted atlas pathways both
provided reasonable estimates of the CBT pathway, which

FIG. 3. CBT pathway estimation. Left panel: Tracking ROIs and streamline criteria for a valid trajectory. Right panel: (A)
(i–ii) Streamlines extracted from the whole-brain tractogram. (B) (i–ii) Manual tractography was seeded from the SCP with
the contralateral thalamus used as termination mask. (iii) The resulting streamlines were manually filtered to select (iv) a
bundle of plausible streamlines. (C) The CBT anatomical pathway model was nonlinearly transformed into subject space.
CBT, cerebellothalamic; SCP, superior cerebellar peduncle.
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were in general agreement with each other (Fig. 5; Supple-
mentary Figs. S3 and S6). The manual tractography CBT
streamlines spanned a larger volume of tissue than the fitted
atlas pathways (Fig. 3; Supplementary Fig. S6). However,
this discrepancy could conceivably be adjusted by defining
a more focused termination mask that was specifically fo-
cused on the cerebellar receiving area of the thalamus. Alter-
natively, the CBT pathway streamlines estimated from
whole-brain tractography were not consistent with the
expected anatomical trajectory (Fig. 5; Supplementary
Fig. S6).

Each method provided differing estimates for the trajec-
tory of the PT pathway (Fig. 5; Supplementary Fig. S4 and
S7). The anatomically defined trajectories of the ansa lentic-
ularis and lenticular fasciculus project from the pallium,
cross the IC, enter the fields of Forel above the subthalamic
nucleus (STN), and then make a relatively dramatic dorsal
turn into the pallidal receiving area of thalamus (Gallay
et al., 2008; Parent and Parent, 2004). However, the stream-
lines from manual tractography got pulled ventrally in the IC

as they exited the pallidum. Once they crossed the IC, they
generally emerged several millimeters below and anterior
to the fields of Forel, and then wrapped around the medial
side of the STN, before eventually reaching the thalamus
(Figs. 4 and 5). Some of the PT streamlines from whole-
brain tractography followed a similar trajectory as described
for manual tractography, but most of them got pulled into the
IC and exhibited spurious paths before eventually reaching
the thalamus (Figs. 4 and 5). Alternatively, the PT stream-
lines of the fitted atlas pathways followed the expected ana-
tomical trajectory.

Overall, whole-brain tractography generated the most ex-
treme examples of erroneous streamlines for the pathways
we simulated (Fig. 5). All of the streamlines displayed in
the figures passed through all of the inclusion masks. How-
ever, in some instances the whole brain streamlines could
loop back on themselves and continue until they hit a gray
matter region as determined by the tractography algorithm.
Erroneous streamlines typically occur because of the imper-
fect nature of streamline propagation guided by local

FIG. 4. PT pathway estimation. Left panel: Tracking ROIs and streamline criteria for a valid trajectory following the AL
sweeping around the IC or the LF crossing through the IC. Right panel: (A) (i–ii) Streamlines extracted from whole-brain
tractogram. (B) (i–ii) Manual tractography seeded from the GPi with the contralateral thalamus used as termination mask.
(iii) The resulting streamlines were manually filtered to select (iv) a bundle of plausible streamlines. (C) The anatomical path-
way model of the PT pathway was nonlinearly transformed into subject space. AL, ansa lenticularis; LF, lenticular fasciculus;
PT, pallidothalamic; IC, internal capsule.
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diffusion orientations that are gross approximations of the
underlying tissue microstructure. In addition, some errone-
ous streamlines appear in the results due to slight mis-
matches between the interpolated partial volume tissue
map (used for anatomical constraints in the ACT genera-
tion pipeline) and the binary cortical ROIs (used for path-
way extraction).

Discussion

The creation of axonal pathway models within subject-
specific MRI datasets has utility in both scientific and clinical
analyses (Elam et al., 2021; Horn and Fox, 2020). However,
there are many different approaches to estimate structural
connectivity in the human brain, and the pathway estimates
generated by any given method are dependent upon the qual-
ity of the imaging data that is available for the analysis
(Maier-Hein et al., 2017). As such, different tractography ap-
proaches are commonly compared with each other (Schilling
et al., 2019). Unfortunately, the general lack of consistency
in the anatomical accounts of WM pathways in the human
brain (Bullock et al., 2022), makes it difficult to define one
tractography method as superior to all others (Schilling
et al., 2021). Alternatively, our recent work has focused on
transitioning away from pathway estimation based on DWI
data, and pivoted toward the creation of human axonal path-

way priors derived from histological results and anatomical
landmarks (Petersen et al., 2019).

We hypothesize that a detailed pathway atlas can be
quickly and easily fit to a de novo subject brain to provide
a higher degree of anatomical accuracy, reproducibility,
and robustness than is possible with traditional tractographic
approaches (Table 1 and Fig. 5). Along this line, we propose
that atlas pathway fits are especially relevant when attempt-
ing to study focal brain regions with smaller scale pathways
that cross each other and/or follow tortuous trajectories. One
such example is the subthalamic region (Emmi et al., 2020;
Jeon et al., 2022), which is pertinent to the analysis of clin-
ical deep brain stimulation (DBS) for the treatment of Par-
kinson’s disease.

Recent trends in subthalamic DBS research have gravi-
tated toward estimating the activation of axonal pathways
from the stimulation and subsequently correlating those pre-
dictions with behavioral outcome metrics (e.g., Chaturvedi
et al., 2010; Horn et al., 2019; Vanegas-Arroyave et al.,
2016). The basic goal of these kinds of analyses is to identify
specific axonal pathways whose activation is linked to the
generation of a specific therapeutic effect, or side effect, of
the stimulation. Along this line, the CST, CBT, and PT path-
ways are directly relevant to DBS research. DBS of the CST
is known to generate motor contraction side effects (e.g.,
Tommasi et al., 2008). Strong evidence implicates activation

FIG. 5. Pathway estimate comparison. Examples of the streamlines associated with different axonal pathways, as simulated
by different modeling methods from a single representative subject. All of the methods generated reasonable approximations
of the CST (red: face, green: arm, blue: leg streamlines). Whole-brain tractography was not effective at reconstructing the
CBT (orange streamlines) or PT (blue streamlines) pathways. Manual tractography generated reasonable approximations
of the CBT pathway, but failed to capture the anatomical trajectory of the PT pathway. Yellow volume: thalamus, red vol-
ume: red nucleus, blue volume: pallidum.
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of the CBT pathway with the control of tremor (e.g., Coenen
et al., 2014). Evolving results suggest that stimulating the PT
pathway might improve rigidity (e.g., Butson et al., 2011).
Continued examination of these hypotheses on a patient-
specific level requires the creation of the axonal pathway
models within the context of their individual MRI datasets
(Noecker et al., 2021). However, there is ongoing debate
on the best method for estimating the pathway trajectories
in patient-specific brain models (Wang et al., 2021).

The goal of this study was to provide a side-by-side com-
parison of different techniques to represent the CST, CBT,
and PT pathways in individual subject brains. Our results
demonstrate that the specific methods used to estimate the
pathways are likely to influence the pathway activation pre-
dictions from DBS simulations. This is because the trajectory
of the streamline dictates its proximity to the implanted DBS
electrode contacts. Then, the neural response to DBS is
highly dependent upon the extracellular voltage distribution
along the trajectory of the axon model (Gunalan et al., 2018).
Therefore, attention should be paid to not only the accuracy
of electrode localization in the brain of each subject, but also
the anatomical validity of the streamline trajectories used to
estimate the pathways (Noecker et al., 2021).

Our results suggest that anatomical pathway models, non-
linearly transformed into subject space, are likely to be the
most accurate approach currently available to estimate axo-
nal trajectories in the subthalamic region. This is because
even when great care is taken when simulating tractography
streamlines to represent subthalamic axonal pathways, the
results are highly variable and not necessarily consistent
with current anatomical understanding (Fig. 5).

Given the widespread use of Lead-DBS (Horn et al., 2019),
the most common approach for estimating structural connec-
tivity in clinical DBS research studies has been to use a
whole-brain tractogram. Whole-brain tractography has the
theoretical advantage of generally representing many of the
structural connections in the brain, all within a single dataset.
However, constructing a whole-brain tractogram is a time-
consuming process (Table 1), and the anatomical accuracy
of the simulated axonal trajectories are questionable (Fig. 5).
Alternatively, when an a priori definition of the axonal path-
way of interest is available, then seed-to-target tractography
approaches can be employed to define anatomically inspired
pathway models (Petersen et al., 2017). These methods can
generate results with a higher degree of anatomical fidelity
(Schilling et al., 2021), but they often require substantial levels
of manual intervention to define the specific streamlines that
constitute the pathway model (Figs. 2–4). Unfortunately,
these general issues associated with tractography-based ap-
proaches are difficult to overcome because of the reliance
on relatively low-resolution DWI data that are describing a
water diffusion displacement profile in an underdetermined in-
verse problem (Thomas et al., 2014).

Recent trends in human structural connectivity modeling
have begun to embrace the concept of using anatomically de-
fined axonal pathway priors in parallel with tractographic al-
gorithms to define the trajectory of specific connections in
the brain (Bullock et al., 2022). Such strategies represent a
welcome advance to the field of human brain connectomics.
However, they also introduce the question, if detailed ana-
tomical pathway priors exist, what additional value is pro-
vided by clinical-grade DWI data when attempting to

define subject-specific structural connectivity models?
Therefore, we attempted to begin to address this question
in the subthalamic region with side-by-side comparisons of
tractography-based pathway estimates and anatomical path-
way priors fitted to the same subjects (Fig. 5).

The nonlinear fitting of an anatomical pathway atlas to a
de novo subject brain can bypass the use of subject-specific
DWI data in structural connectivity modeling (Fig. 1). This
is advantageous when high-quality DWI data are not avail-
able for a subject, or when trying to reconstruct pathways
that are known to be difficult for tractography algorithms
(e.g., CBT or PT pathways). However, fitted pathway atlases
generate stereotyped results that may fail to capture the real
intersubject variability in the pathways (Fig. 5). This is a
major limitation in applications where the goal is to compare
the density or integrity of a given pathway across subjects in
the study. Alternatively, when considering DBS pathway ac-
tivation studies, stereotyped pathways could be considered
an advantage. From the perspective of population-based sta-
tistics, if every streamline in the analysis (i.e., activated or
not activated by the stimulus) is consistent across every sub-
ject in the study, this can help to standardize the pathway ac-
tivation calculations. Therefore, the most appropriate
method for subject-specific structural connectivity modeling
is likely to be highly dependent upon the scientific question
that is being explored.

Our results provide a side-by-side comparison of the
streamline trajectories generated by different structural con-
nectivity modeling methods, but they do not answer the ques-
tion of streamline accuracy. This is because no real ‘‘gold
standard’’ exists for these pathways in the human brain
(Petersen et al., 2019). There are countless different ap-
proaches to simulating streamlines and brain connectivity
with tractography algorithms (Schilling et al., 2021). We
choose two example methods that we propose generate rep-
resentative streamline estimates for either whole-brain or
manual tractography analyses. However, a key limitation
of this study was the possibility that another tractography
method could have generated better results than the exam-
ples we presented.

Tractographic pathway modeling efforts are dependent
upon the quality of DWI data used for the analyses
(Maier-Hein et al., 2017). In this study, we used HCP data-
sets that are measurably superior to typical clinical brain im-
aging data (Elam et al., 2021). Nonetheless, an important
limitation of HCP datasets is that they were acquired on
young, healthy, normal subjects. Given that the anatomical
pathway models were also derived from normative datasets,
they are likely to be best suited to simulate the anatomy of
other normal subjects. Alternatively, a powerful feature of
tractographic approaches is that they can be directly applied
to patient-specific datasets to evaluate brain connectivity in
subjects with abnormal anatomy. Therefore, it remains un-
clear how well anatomical pathway model fits perform
within the context of brains of subjects suffering from differ-
ent disease states.

Conclusion

Different methods to simulate axonal pathways near the
subthalamic region of the brain generate noticeably different
estimates for the streamline trajectories. Our results
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demonstrate that anatomical pathway models can be applied
to de novo subjects to estimate the location of pathways, and
when considering pathways that are difficult to reconstruct
with tractography, likely provide estimates that are more an-
atomically realistic. Therefore, we currently rely on nonlin-
ear fits of anatomical pathway models to patient-specific
imaging data as our preferred strategy for connectomic
DBS modeling in the subthalamic region because of the
speed, simplicity, reproducibility, and realism of the results
relative to tractographic approaches.
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