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Abstract: The microbiota is now recognized as one of the major players in human health and diseases,
including cancer. Regarding breast cancer (BC), a clear link between microbiota and oncogenesis still
needs to be confirmed. Yet, part of the bacterial gene mass inside the gut, constituting the so called
“estrobolome”, influences sexual hormonal balance and, since the increased exposure to estrogens is
associated with an increased risk, may impact on the onset, progression, and treatment of hormonal
dependent cancers (which account for more than 70% of all BCs). The hormonal dependent BCs
are also affected by environmental and dietary endocrine disruptors and phytoestrogens which
interact with microbiota in a bidirectional way: on the one side disruptors can alter the composition
and functions of the estrobolome, ad on the other the gut microbiota influences the metabolism of
endocrine active food components. This review highlights the current evidence about the complex
interplay between endocrine disruptors, phytoestrogens, microbiome, and BC, within the frames of a
new “oncobiotic” perspective.
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1. Introduction

Breast cancer (BC) is currently one of the most prevalent cancers, with an estimated
number of 2.3 million new cases worldwide [1]. It represents the fifth most common cause
of cancer-related deaths [2].

BC incidence is expected to increase further, particularly in low- income countries,
due to the westernization of lifestyles (e.g., lack of physical activity and poor diet), and
improved cancer detection [3]. Current projections indicate that by 2030, the number of
new cases diagnosed will reach 2.7 million annually [4].

The World Health Organization (WHO) distinguishes at least 18 different histological
BC types among a wide spectrum of tumors featuring different morphologies, molecular
characteristics, and clinical behaviors [5]. Invasive BC can be categorized into molecular
subtypes based on mRNA gene expression levels independently of histological subtypes. In
2000, Perou et al. identified four molecular subtypes from microarray gene expression data:
Luminal, HER2-enriched, Basal-like, and Normal Breast-like [6]; further studies allowed to
divide the Luminal group into two subgroups (Luminal A and B) [7–11].

Luminal A tumors are characterized by the presence of estrogen-receptor (ER) and/or
progesterone-receptor (PR) and absence of HER2. This subtype [12,13] is associated to a low
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expression of genes related to cell proliferation and shows a better prognosis, compared to
Luminal B tumors, which are ER positive but may be PR negative and/or HER2 positive.

Overall, 80% and 65% of patients are diagnosed with BC positive for estrogen receptor
(ER) and progesterone receptor (PR), respectively [9].

A new classification has recently been proposed for HER 2 tumors with a score of 1+
or 2+ without amplification by the ISH method (in situ hybridization); these are nicknamed
HER 2 low breast cancer and account for more than half of all breast cancer cases.

On the basis of the latest studies, it has been seen that this subcategory of tumors
could benefit from new anti-HER 2 drugs. However, we are far from being able to define
HER 2 low tumors as a separate clinical entity with its prognosis and specific features [14].

Validation of techniques to identify HER2 heterogeneity in order to effectively treat
tumors with non-uniform HER2 expression is needed [15].

BC is a multifactorial disease, and several genetic and environmental aspects are
recognized as risk factors for its onset and progression [16]. Among them, age, and
modifiable factors such as obesity, type II diabetes, sedentary habits, alcohol, radiation,
hormonal replacement therapy, and periodontal disease have direct implications on gut
microbiota composition, so that recent studies have highlighted the association between
microbial alterations and those risk factors for BC, through metabolic and immunitary
pathways, hormonal balance, and cancer microenvironment [17–19].

Regarding the sexual hormonal balance, estrogens, and endocrine active compounds
play a role in shaping the gut microbiome, potentially impacting the clinical management
of hormone-dependent cancers [20].

2. Endocrine Disruptors, Phytoestrogens and Breast Cancer

An Endocrine Disruptor (ED) is defined by the U.S. Environmental Protection Agency
(EPA) as “an exogenous agent that interferes with synthesis, secretion, transport, metabolism,
binding action, or elimination of natural blood-borne hormones that are present in the body
and are responsible for homeostasis, reproduction, and developmental process” [21].

Both estrogens and EDs, binding to estrogen receptors, elicit downstream gene activa-
tion and trigger intracellular signalling cascades [22] in a variety of tissues, thus affecting
reproductive health and hormonal dependent cancers risk [23–25].

Endocrine disruptors are a group of highly heterogeneous molecules, grossly divided
into synthetic and natural compounds (phytoestrogens).

2.1. Synthetic Endocrine Disruptors

The synthetic chemicals with endocrine activities have multiple uses, such as industrial
solvents/lubricants (polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs)),
plastics (bisphenol A (BPA)), plasticizers (phthalates), pesticides (methoxychlor, chlor-
pyrifos, dichlorodiphenyltrichloroethane (DDT)), fungicides (vinclozolin), pharmaceutical
agents (diethylstilbestrol (DES)) and heavy metals such as cadmium [25,26].

The most common pathways of exposure to EDs are by inhalation, food intake,
transplacental and skin contact [25,27,28]. By these means, EDs enter the food chain
and accumulate in animal tissues up to humans mainly in adipose tissue, since most of EDs
are highly lipophilic [29–31].

The mechanisms of action of EDs include a variety of possible pathways involved in
endocrine and reproductive systems: via nuclear receptors, nonnuclear steroid hormone
receptors (e.g., membrane estrogen receptors (ERs)), nonsteroid receptors (e.g., neurotrans-
mitter receptors such as serotonin, dopamine, norepinephrine), orphan receptors [e.g., aryl
hydrocarbon receptor (AhR)], enzymatic pathways involved in steroid biosynthesis and/or
metabolism [25].

Another mechanism is the aromatase up-regulation (e.g., phenolic EDs) and increased
estradiol biosynthesis, which is linked to ER-positive breast cancer cell proliferation
in vitro [32].
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Furthermore, an epigenetic action, such as DNA methylation and/or acetylation
and histone modifications, may be involved in mechanisms related to endocrine
disruption [33–35].

The exposure to EDs has been related to multiple diseases, such as diabetes, metabolic
syndrome, obesity, cardiovascular and neurological disorders [29–37]. Some EDs such as
bisphenol A (BPA), dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls
(PCBs) are also associated with infertility and cancer [29–40].

According to the International Agency for Research on Cancer (IARC) classifica-
tion, some of the EDs (BPA, DDT and PCBs) have key characteristics of human carcino-
gens, since they can alter cell proliferation, cell death or nutrient supply; are genotoxic;
have immunosuppressive activity; induce epigenetic alterations, oxidative stress and
chronic inflammation [39]. In addition, BPA by interacting with the estrogen receptor-α
(ERα), induces cell proliferation and reduces apoptosis rate, affecting the prognosis of BC
patients [40–42].

A growing number of studies have investigated the correlations between EDs and BC
onset and progression [43]. Breast tissue is particularly susceptible to carcinogenic effects
during the third trimester of the first pregnancy, and prolonged exposure to low levels of
EDs [44–46] can raise the risk of developing cancer in the following years [47,48].

Some pesticides, including DDT, dichloro-diphenyl-dichloroethylene (DDE), aldrin,
and lindane, have been linked in pre- and post-menopausal women to a higher risk of
BC [49,50], either estrogen receptor-positive (-hexachlorocyclohexane and Pentachloroth-
ioanisole) [51] or HER2-positive tumors (DDT) [52–54]. Among the heavy metals, cadmium
was positively associated with BC [55,56].

Interestingly, women with an altered body composition and an excess of fat mass have
shown a greater likelihood of BC after exposure to PCB [57], due to the lipophilic nature of
these molecules.

Some EDs, such as Bisphenol S (BPS), are also involved in enhancing the progression
and the metastatic spread of BC cells, by inducing tumor proliferation and epithelial-
mesenchymal transition [58,59]. The Interplay between endocrine disruptors and micro-
biota with potential drivers of BC are summarized in Table 1.

Table 1. Interplay between endocrine disruptors and microbiota with potential drivers of breast cancer.

Source Molecules Microrganisms Outcome References

Foods Lignans
Isoflavones

C. methoxybenzovorans
B. pseudocatenulatum

WC 401
Firmicutes

Bacteroidetes
F. prausnitzii
Lactobacillus
Enterococcus

Estrogen
Bioavailability [60–64]

Plastics BPA
BPS

Helicobacteraceae
Firmicutes
Clostridia

Lipogenesis
Gluconeogenesis

Tumor proliferation
Metastatic spread

[58,59,65,66]

Pesticides

Organophosphates
DDT
DDE
PCB

Bacteroides,
Burkholderiales
Clostridiaceae

Erysiopelotrichaceae
Coprobacillus

Lachnospiraceae
Staphylococcaceae

Gluconeogenesis
Oxidative stress

Changes in insulin
and ghrelin secretion

[49,50,65,66]
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Table 1. Cont.

Source Molecules Microrganisms Outcome References

Heavy metals
Arsenic

Lead
Cadmium

Bacteroides
Firmicutes

Proteobacteria

Altered gluconeogenesis
Lipogenesis

Inflammation
Body fat

[65,66]

BPA, Bisphenol A; BPS, Bisphenol S; DDT, dichloro-diphenyl-trichloroethane; DDE, Dichloro-diphenyl-
dichloroethylene; PCB, polychlorinated biphenyl.

2.2. Phytoestrogens

Due to their chemical structures and/or activities similar to 17-estradiol (E2) [38,67,68],
some plant-derived polyphenolic non-steroidal substances, defined phytoestrogens, are clas-
sified as endocrine disruptors, with both potentially favorable (reduced risk of osteoporosis,
heart disease, and menopausal symptoms) and harmful health consequences [69,70].

In epidemiological studies, Asian populations who consume on average much more
soy products than Western populations, have lower rates of hormone-dependent breast and
endometrial cancers [71] and a lower incidence of menopausal symptoms and osteoporosis.
Soy is the main dietary source of isoflavones. Isoflavones have a chemical structure
similar to the human hormone oestrogen. However, they bind to the body’s oestrogen
receptors differently, and function differently. Activation of some receptors seems to
promote cell growth, but isoflavones more often bind to oestrogen receptors with other
effects, potentially acting as a tumour suppressor [71].

Different kinds of oestrogen receptors are present in different parts of the body. Acti-
vation of some receptors seems to promote cell growth. But studies suggest that isoflavones
more often bind to oestrogen receptors with other effects, potentially acting as a tumour
suppressor. Nevertheless, in Asian immigrants living in Western nations, whose diet in-
cludes more proteins and lipids and less fibers and soy, the risks for hormone-dependent
cancers reach the same levels as the western population [72].

The main groups of phytoestrogens are lignans, coumestans, stilbenes and isoflavones.
Lignans, as components of plant cell walls, are found in many fiber-rich foods such

as seeds (flax, pumpkin, sunflower, and sesame), whole grains (such as rye, oat, and
barley), bran (such as wheat, oat, and rye), beans, fruits (especially berries), and cruciferous
vegetables such as broccoli and cabbage [73].

The richest dietary source of plant lignans is flaxseed (Linum usatissimum), and crush-
ing or milling flaxseed can increase lignan bioavailability [74].

Compared to isoflavones and lignans, coumestans are less prevalent in the human diet.
Coumestans are primarily found in legume shoots and sprouts, primarily in clover and
alfalfa, though small amounts have also been found in spinach and brussel sprouts [75].
Coumestrol is also found in trace levels in a variety of legumes, including split peas, pinto
beans, lima beans, and soybean sprouts [75].

The most prevalent and studied stilbene, resveratrol, may be found in a number of
plants and acts as a phytoalexin to ward off fungus infections. The skin of grapes (Vitis
vinifera), red wine, and other highly pigmented fruit juices are the most recognized sources
of resveratrol. Resveratrol is also present in pistachios, notably the papery skin surrounding
the nut, and peanuts (Arachis). While flavonoids and resveratrol both have vascular effects
that are frequently addressed, only the trans isomers of resveratrol have been found to
have some phytoestrogenic effects [76].

Isoflavones are present in berries, wine, grains, and nuts, but are most abundant in
soybeans, soy products, and other legumes [67,68].

Phytoestrogens, particularly isoflavones, exhibit both agonistic and antagonistic ef-
fects on ERβ and ERα receptors, depending on their concentration and affinity for various
estrogen receptors [77]. This mechanism explains why phytoestrogens have a dual impact
in ER-positive breast cancer cells, stimulating growth at low doses while inhibiting devel-
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opment at higher concentrations [78]. Coumestrol, genistein, and equol have a stronger
affinity for ERβ [79,80].

Overall, phytoestrogens and their analogs inhibit cell cycle progression across different
breast carcinomas by reducing mRNA or protein expression levels of cyclin (D1, E) and
CDK (1, 2, 4, 6) and enhancing their inhibitors (p21, p27, p57) and tumor suppressor
genes (APC, ATM, PTEN, SERPINB5) [73]. Even isoflavones, lignans, and resveratrol
analogs influence cell cycle regulator expression, impacting different kinds of BC cell lines
in vitro [81].

They also suppress the expression of oncogenic cyclin D1, as well as raise the levels
of a variety of cyclin-dependent kinase inhibitors (p21, p27, and p57). Phytoestrogens,
analogues, and derivatives may potentially influence BC behaviour, by interfering with
estrogen production and metabolism as well as showing antiangiogenic, antimetastatic,
and epigenetic effects. Furthermore, these bioactive molecules have the potential to re-
verse multi-drug resistance [81]. The benefits of phytoestrogens on human health, and
particularly in BC patients, may also depend on their metabolism affected by the host’s
microbiota present in the small and large intestine. For instance, genistein, equol, enterolig-
nans, urolithins and other metabolites with higher binding affinity for estrogen receptors
are more likely to yield beneficial effects.

Despite several research, the topic of whether phytoestrogens are useful or hurtful to
people with BC remains unanswered: The answers are challenging and may vary with age,
health state, and even gut microbial composition [82] (Table 2).

Table 2. Interplay between phytoestrogens and their metabolites with microrganism.

Chemical Family Molecules Microrganisms References

Lignans

Anhydrosecoisolariciresinol
Secoisolariciresinol

diglucoside
Syringaresinol

C. methoxybenzovorans
B. pseudocatenulatum WC 401

Firmicutes
Bacteroidetes

[60–62,64]

Isoflavones

Coumestrol
Genistein

Equol
Daidzein

F. prausnitzii
Lactobacillus
Enterococcus

[63]

Steroids Estradiol
Estrone

Collinsella, Edwardsiella,
Alistipes, Bacteroides,

Bifidobacterium, Citrobacter,
Clostridium, Dermabacter,

Escherichia, Faecalibacterium,
Lactobacillus, Marvinbryantia,
Propionibacterium, Roseburia,

Tannerella

[22,83–87]

Prenylflavonoids Xanthohumol
Desmethyxanthohumol E. limosum [88]

Stilbenes

Resveratrol
Trans-resveratrol

Dihydroresveratrol
3,4′–dihydroxybibenzyl,

3,4′-dihydroxy-trans-stilbene

Firmicutes
Bacteroidetes,
Actinobacteria

Verrucomicrobia,
Cyanobacteria

[89–93]

3. Estrobolome

The gut microbiota regulates the levels and bioavailability of estrogens, steroid hor-
mones, and cytokines [94], all of which have a role in the development, progression, and
outcome of the majority of BCs [95–98]. In addition to steroid hormones, BC may be
influenced by adipose tissue hormones such as leptin and insulin, which are also regulated
by intestinal microbiota.



J. Clin. Med. 2023, 12, 3158 6 of 14

Two main pathways have been identified through which microbiome influences the
sexual hormonal balance. In the deconjugation-independent pathway, some phytoestro-
gens contained in food, such as plant lignans, are metabolized by specific intestinal bacteria
into bioactive compounds. In the deconjugation-dependent pathway, several genera such
as Collinsella, Edwardsiella, Alistipes, Bacteroides, Bifidobacterium, Citrobacter, Clostridium,
Dermabacter, Escherichia, Faecalibacterium, Lactobacillus, Marvinbryantia, Propionibacterium,
Roseburia, Tannerella, constituting the so called “estrobolome”, by the means of hydrolytic
enzymes such as β-glucuronidases and β-glucosidases, can deconjugate estrogens excreted
by the liver into the intestinal lumen as well as endocrine active food components, in-
creasing their reabsorption through the entero-hepatic circulation [22,83–85]. Progesterone
and testosterone bioavailability can also be affected by the sulfatase activity of certain gut
microrganisms which convert circulating steroids into active hormones [85–87].

In premenopausal women following a “Western diet”, estrogen levels were found to
be three times higher in feces and 15% to 20% lower in serum compared to a population
of vegetarians eating a high fiber, moderate fat diet [99]. In another research, Asian
immigrants showed 30% lower systemic estrogen levels compared to a similar population
of American women consuming a diet higher in fats [100], probably due to the estrobolome
composition, even though other variables such as lifestyle and oral supplements may also
play a role [101]. Changes in the estrobolome composition induced by diet, physical activity,
antibiotics and chemotherapeutics affect the systemic levels of estrogen and its metabolites
through the entero-hepatic circulation [102] and this mechanism has been related to cancer
progression in hormonal dependent BC patients and survivors [86,103,104].

Several studies showed that cancerogenesis can also be promoted by enhanced local
exposures of breast tissue to hormonal triggers, both from estrogen and progesterone
metabolites: an abundance of β-glucuronidase signalling has been found in nipple aspirate
fluid of BC survivors [105], while BC tissue shows higher concentrations of estrogen metabo-
lites compared to normal breast tissue [100,106]. Among the possible mechanisms leading
to an increased production of progesterone metabolites in tumour microenvironment,
Bacillus cereus seem to play a role in promoting cancer cells proliferation [107–110]. Among
the gram-negative family of Sphingomonadaceae, Sphyngomonas yanoikuyae, relatively en-
riched in paired normal breast tissue as compared to cancer tissue [111], has shown the abil-
ity to digest monocyclic compounds and degrade estrogens within the breast tissue [112],
which could interfere with cancerogenesis through the local estrogen bioavailability.

4. Interplay between Human Microbiota, Endocrine Disruptors, and Phytoestrogens

The complex relationship between microbiota and endocrine active compounds de-
rived from diet act in a bidirectional way: enteric commensals can metabolize EDs into
biologically active or inactive forms, while EDs may selectively induce the growth of
specific bacterial populations.

The biotransformation of lignans is an intriguing example of how deeply the micro-
biota affect the metabolism of some xenobiotics: for instance, anhydrosecoisolariciresinol
is converted by the gram-positive Clostridium methoxybenzovorans [60,61], the secoisolar-
iciresinol diglucoside by B. pseudocatenulatum WC 401 and other Bifidobacterium strains
through deglucosylation [62]. Among prenylflavonoids, a subgroup of chalcones and
flavanones, the most significant are xanthohumol (XN) and desmethyxanthohumol (DMX)
derived from hops, which are widely used in beer industry [113]: XN’s metabolite 8-
prenylnaringenin (8-PN), produced in the gut by the commensal [114], is one of the most
potent phytoestrogens [88], with a noticeable affinity for the ERα receptor [115,116].

These dietary-induced interactions between gut microbiota and hormonal balance
may lead to a dysbiosis, thus affecting human health and diseases [117].

5. Role of the Endocrine Disruptors on Microbiota Composition

Several studies underline the association between EDs exposure and metabolic disor-
ders, diabetes, obesity, and some neurobehavioral disorders [118], which have been related
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to gut dysbiosis, suggesting a role of gut microbiome and its products (post-biotics) as
mediators of the effects induced by EDs in human metabolism [65].

Both the exposure to EDs and their bioactive metabolites may disrupt the micro-
biota composition and lead to dysbiosis [66], but also alter the microbiome functions and
metabolic activities [119]. According to data from animal models, changes in the gut micro-
biota may have an im-pact on the host’s hepatic enzyme levels in addition to the levels of
microbial enzymes [120].

Several EDs have been proved to promote dysbiosis or avoid bacterial growth both
in vitro and in vivo [65], suggesting a significant influence on gut colonization with a
consequence on host health. Furthermore, a “leaky gut” wall facilitates circulating EDs to
flow into the intestinal milieu directly and, interacting with the enteric nervous system,
could impact the composition and functions of the gut microbiota [121–123].

Clavel et al. showed that the isoflavone daidzein and its metabolites modulate the com-
position of gut microbiota in postmenopausal women after two months supplementation,
finding an association between the equol production and the increase of the F. prausnitzii
and Lactobacillus-Enterococcus groups [124]. In a long-term study exploring the effects
of isoflavones supplementation on the faecal microbiota of healthy menopausal women,
a significant change of microbial populations was recorded, but without any difference
between equol-producers and non-producers [63].

In another study a 4 weeks supplementation with a pomegranate extract, ellagitannin
and its metabolites reveal changes in the composition of gut microbiota (Actinobacter,
Firmicutes, and Verrucomicrobia) on healthy subjects [125].

Luo et al. investigated the in vivo anti-obesity effect of flaxseed gums (FG) in obese
rats and found the FG diet decreased the relative abundance of Clostridiales and increased
the Clostridium, Sutterella, Veillonella, Burkholderiales and Enterobacteriaceae family in their
gut microbiota [126]. The supplementation with syringaresinol, a plant lignan, increases
the Firmicutes/Bacteroidetes ratio in an aging mouse model [64].

The resveratrol mechanisms of action are largely attributed to the modulation of gut
microbiota and its metabolites. An in vitro study demonstrated a different conversion of
trans-resveratrol into dihydroresveratrol, 3,4′–dihydroxybibenzyl, also known as lunularin,
and 3,4′-dihydroxy-trans-stilbene, depending on the bacterial diversity of each individual’s
faecal samples [89]. Chen et al. (2016) observed that modulation of gut microbiota induced
by resveratrol reduced the levels of trimethylamine-N-oxide (TMAO) by inhibiting mi-
crobial trimethylamine (TMA) production and increased hepatic bile acid (BA) de novo
synthesis [90]. An increase in Bacteroides/Firmicutes ratio was also observed in vivo after
resveratrol supplementation in animal studies along with other effects, such as anti-diabetic
effect [91], improved carbohydrate metabolism [92] and glucose homeostasis [93]. Giuliani
et al., using an advanced gastrointestinal stimulator, showed that an extract containing
a combination of t-resveratrol and ε-vinifrin induced changes in microbial functions and
composition together with a strong decrease in the levels of SCFA and NH4

+ [127].

6. Different Metabolic Pathways of Endocrine Disruptors Depending on
Gut Microbiota

Gut microbiota are crucial in the conversion of EDs and phytoestrogens, such as
isoflavones, ellagitannins, and lignans, into compounds with biological activity (equol,
urolithins, and enterolignans, respectively) [61,128].

The enzymatic degradation of plant lignans, such as secoisolariciresinol, into phy-
toestrogens enterodiol and enterolactone by various gut bacteria, such as Eggerthella lenta
and Peptostreptococcus productus, provides a model for the deconjugation-independent pro-
cess [124]. Enterodiol and enterolactone may serve as selective estrogen modulators with
anticancer properties [19,129] and a favorable prognostic impact in postmenopausal BC
patients [130].
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Van de Wiele et al. [131] reported that colonic microbiota can metabolize polyaromatic
hydrocarbons into 1-hydroxy pyrene and 7-hydroxybenzo[a]pyrene, biologically active
estrogen metabolites.

A recent review of Velmurugan et al. [66] focused on the role of gut microbiota in glu-
cose dysregulation, glucose intolerance and insulin resistance induced by several classes of
EDs from plastics, pesticides, synthetic fertilizers, electronic waste and food additives. They
included bisphenols, dioxins, phthalates, organochlorines, organophosphates, fungicides,
polychlorinated biphenyls and polychlorinated dibenzofurans, and other waste pollutants.

On the other hand, hyperglycemia induces changes of microbiota composition, favor-
ing the growth of non-commensal germs, at the expense of beneficial phyla such as Bacilli
(e.g., Lactobacillus), Bacteroidetes, Proteobacteria and Actinobacteria [66]. Lactobacilli can reduce
pesticide toxicity and protect against EDs-induced oxidative stress by limiting contaminant
absorption in the gut, strengthening tight junctions in the intestinal barrier, and activating
host immunity [132]. Exposure to EDs, such as polychlorinated biphenyls, may impair
intestinal permeability by suppressing the expression of tight junction proteins [133,134].

Gut dysbiosis is linked with many disorders such as obesity, diabetes, endocrine and
immunological diseases [117,135–140], which have been proven as risk factors for BC in
both pre- and post-menopausal women [141,142].

Furthermore, all major classes of EDs (bisphenols, phthalates, polychlorinated
biphenyls, organochlorine pesticides, dioxins, and parabens) may increase the risk of
obesity, developing insulin resistance and diabetes [143] by enhancing adipogenesis via
hormone regulation of food intake, appetite, and disruption of pancreatic β-cell func-
tion [144–149]. Even the fungicide tributyltin, which has been shown to reduce gut mi-
crobial richness and microbiome composition in mice [150], stimulates adipogenesis by
interacting with nuclear PPAR γ and its heteromeric companion retinoid X receptor.

The interplay between EDs and human microbiota affects BC risk and clinical man-
agement not only through the sexual hormonal balance, but also through the innate as well
as the acquired immunity [132,151–154], but these fundamental pathways are beyond the
topic of the present review.

Beside this, a plethora of studies show that the gut microbiome affects the side ef-
fects, the toxicity and the outcomes of anticancer treatments such as radiation therapy,
chemotherapy, immunotherapy and hormone therapy.

On the other hand, anticancer agents such as letrozole, an aromatase inhibitor, are
associated with a time-dependent reduction of phylogenetic richness in the gut microbiota
and a significant decrease in overall species [107].

Based on these results, the gut microbiota could become a key part of a microbiota-host-
cancer triad as a new paradigm in order to better predict patients’ response to therapies
and build a more tailored approach to cancer patients.

7. Conclusions

Endocrine disruptors and phytoestrogens interact with the human microbiota both at
the intestinal and the breast tissue levels, affecting estrogens’ balance, bioavailability, and
functions. This complex interplay results in a modification of BC cells behaviours, at least
for hormonal dependent tumors, which account for more than 70% of cases globally.

A better understanding of this interplay, as well as the chance of modulating the
exposure to EDs and targeting the microbiome composition (via dietary interventions
and probiotics) could pave the way to a new oncobiotic approach in order to improve the
clinical management of BC patients.
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