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Malignant pleural mesothelioma (MPM) is a rare tumour characterized by a long
latency period after asbestos exposure and poor survival. Due to the complexity of the risk
assessment of exposed subjects, the studies focused on the biological mechanisms need to
be improved. Stress-related measures are involved in a multitude of disease phenotypes,
including cancer.

An important modulator of stress responses is FK506-binding protein 51
(FKBP5/FKBP51), which, among other functions, acts as a co-chaperone that modulates
glucocorticoid receptor (GR) activity. These results suggest that FKBP5 may be a key factor
in the stress response and that transcriptomic data can provide insight into stress-related
pathophysiology [1].

A recent list of reports indicates a strong association of FKBP5 functions with several
neurological diseases, including posttraumatic stress disorder (PTSD) [2–4]. Epigenetic
activation of the FKBP5 gene has increased stress sensitivity and the risk of psychiatric
disorders [5]. By modulating GR signaling, FKBP5 has the potential to modulate the
actions of glucocorticoids, hormones with pleiotropic effects that can affect essentially
every body tissue [6]. Although in psychiatry and neuroscience, FKBP5 is most discussed
as a modulator of glucocorticoid signaling, it is important to highlight that it also interacts
with a host of other molecular partners, affecting several cellular processes. However, none
of the GWAS meta-analyses showed strong associated signals for this genetic locus yet.

More consistent are reports of FKBP5 × specific environmental stress interactions
altering the risk for psychiatric disorders. Furthermore, FKBP5 functions have also been
correlated with multiple other diseases and processes, including type 2 diabetes, adipogen-
esis, fatty acid metabolism, and cancers [7]. In several cancers, a strong negative correlation
of FKBP5 expression with a severity of disease has been observed [8–11]. Epigenetics can
represent one concrete possibility to improve the mechanical characterization of the disease
with the goal of early detection and prognosis stratification.

DNA methylation differences in white blood cells (WBCs) between MPM cases and
asbestos-exposed cancer-free controls highlighted some interesting differences [12], in-
cluding asbestos exposure-related hypo-methylation of FKBP5 in the top marker of risk
assessment; interaction analysis showed that considering DNAm levels at FKBP5 together
with asbestos exposure levels may help to better define MPM risk for asbestos-exposed
subjects [13]. Another recent paper identified hypomethylation of the same CpG in FKBP5
as a predictor of overall survival in MPM cases with better performance than traditional
inflammation-based scores such as lymphocyte-to-monocyte ratio (LMR) [14]. FKBP5 is an
immunophilin and has an important role in immunoregulation and protein folding and
trafficking. It plays a role in transcriptional complexes and acts as a co-transcription factor,
along with other proteins in the FKBP family [15]. During the last few years, the hypothesis
of a possible role of FKBP5 in the development and progression of different types of cancer
has stemmed from several studies. High protein expression has been linked to either
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suppression or promotion of tumor growth, depending on tumor type and microenviron-
ment [16,17]. FKBP5 has been involved in the NF-kB and AKT signaling pathways, both
of which are implicated in tumorigenesis [18]. Notably, NF-kB appears to be frequently
constitutively activated in malignant tumors and involved in the modulation of genes
linked to cell motility, neoangiogenesis, proliferation, and programmed cell death [19].
The epigenetic upregulation of FKBP5 could promote NF-kB activation [20]. STAT3-NFkB
activity is involved in chemoresistance in MM cells, and NFkB was shown to be consti-
tutively active because of asbestos-induced chronic inflammation [21]. Previous studies
conducted on various cancer types showed that upregulation of FKBP5 gene expression
is associated with drug resistance [22]. The tissue- and context-specific FKBP5 expression
should be considered when examining the consequences of FKBP5 dysregulation and when
considering FKBP5 as a candidate therapeutic target. A similar study supported this obser-
vation by making FKBP5 an effective biomarker for sensitivity to chemotherapy; patient
responses to chemotherapy may be determined by the variation in FKBP5 levels [17]. One
study on ovarian cancer cell lines denoted that the upregulation of FKBP5 may increase
the resistance to chemotherapeutic agents, whereas the gene silencing sensitized ovarian
cancer cells to taxol [23].

Lastly, the risk for stress-related disorders is shaped by complex interactions among
multiple environmental stressors and many genes with small individual effects on ex-
pressed phenotypes. Elucidating these complex interactions at a systems level is a chal-
lenging task but may contribute to improving the holistic understanding of stress-related
disorders. Furthermore, aging-related epigenetics measures should show interesting asso-
ciations between stress-related phenotypes and disease to better characterize clusters of
exposed subjects. This editorial further supports the notion that stress can affect cancer
outcomes in exposed subjects, perhaps by interfering with neuro mechanisms involved in
controlling the oncogenesis pathway for early detection, prognosis, and treatment.
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