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Abstract: It has long been known that high-grade mucoepidermoid carcinoma (MEC) has a poor
prognosis, but the detailed molecular and biological mechanisms underlying this are not fully
understood. In the present study, the pattern of chymase-positive mast cells, as well as chymase gene
expression, in high-grade MEC was compared to that of low-grade and intermediate-grade MEC
by using 44 resected tumor samples of MEC of the parotid gland. Chymase expression, as well as
chymase-positive mast cells, was found to be markedly increased in high-grade MEC. Significant
increases in PCNA-positive cells and VEGF gene expression, as well as lymphangiogenesis, were also
confirmed in high-grade MEC. Chymase substrates, such as the latent transforming growth factor-
beta (TGF-β) 1 and pro-matrix metalloproteinase (MMP)-9, were also detected immunohistologically
in high-grade MEC. These findings suggested that the increased chymase activity may increase
proliferative activity, as well as metastasis in the malignant condition, and the inhibition of chymase
may be a strategy to improve the poor prognosis of high-grade MEC of the parotid gland.
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1. Introduction

Major salivary glands consist of parotid, submandibular, and sublingual glands. Sali-
vary glands are made up of different kinds of cells and cancers can start in any of these cell
types. Therefore, many different types of cancer can develop in each type of salivary gland.
Parotid carcinomas represent 70% of all salivary gland malignancies and mucoepidermoid
carcinoma (MEC) has been reported to be the most common histological type [1]. Based on
histological scoring, the degree of necrosis, mitoses, atypical nuclei, and size of the cystic
component in the tumor tissues, MEC is typically classified into three histological grades,
i.e., low, intermediate, and high [2,3]. Generally, histological grading is an important prog-
nostic factor, and the mortality rate usually tends to increase in higher-grade carcinoma
and decrease in lower-grade carcinoma [4,5]. In fact, McHugh et al. reported that the
five-year disease-specific survival (DSS) rate of parotid MEC was significantly lower in
the high-grade MEC population (67.0%, p < 0.001) [4]. On the other hand, they found no
significant difference in five-year DSS rates between the low-grade and intermediate-grade
MEC populations (98.8% vs. 97.4%). So far, the detailed molecular and biological mech-
anisms underlying the differential survival rates that exist between these groups are not
fully understood.

Recently, research on the relationship between chymase and malignant tumor pathol-
ogy has attracted a great deal of attention. For example, Kinoshita et al. recently reported
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that the number of chymase-positive mast cells, as well as chymase gene expression, was in-
creased markedly in carcinoma ex pleomorphic adenoma (CXPA) of the parotid gland when
compared to the benign parotid tumor, pleomorphic adenoma (PA) [6]. Chymase-positive
cells were also significantly increased in human lung and gastric cancers [7,8], indicating
the importance of chymase in cancer. Chymase was first demonstrated as an angiotensin
(Ang) II-forming enzyme in cardiovascular tissue ([9,10] and, since then, the various roles
of chymase have gradually emerged. For example, chymase was reported to enzymatically
activate the latent transforming growth factor-beta (TGF-β) 1 and pro-matrix metallopro-
teinase (MMP)-9 to their active forms [11,12]. As is known, TGFβ1 activation through the
suppression of T cells’ anticancer function [13] decreases the immune surveillance function
against cancer generation. On the other hand, to initiate cancer metastasis cancer cells must
become motile and invasive, as well as intravasate. All of these steps require the breakdown
of cell–cell and cell–extracellular matrix (ECM) contacts, as well as the basement membrane
of the vasculature or lymphatic vessels; MMP-9 is a powerful degrading enzyme in these
processes [14]. Interestingly, it was also reported that the chymase-mediated Ang II can
also promote both angiogenesis and lymphangiogenesis [15] through the chymase-Ang II-
vascular endothelial growth factor (VEGF)-dependent pathway. Taken together, one can see
that the mast cell-derived chymase may promote not only cancer development but also can-
cer metastasis through the activation of TGFβ1, MMP-9, and VEGF. Therefore, the present
study aimed to evaluate if there were significant differences in the number of chymase-
positive mast cells and chymase expression among high-grade, intermediate-grade, and
low-grade conditions by examining paraffin-embedded samples of salivary gland MECs.
Since the survival rates of the intermediate-grade and low-grade MEC populations are
equally high [4], the resected samples from the intermediate-grade and low-grade MECs
were grouped together as a good prognosis group (I–L group), and they were compared
with the high-grade MECs as the poor prognosis group (H group) in the present study.

2. Results
2.1. Subject Profile

Table 1 shows the demographic and clinicopathological features of the enrolled patients.

Table 1. Demographic and clinicopathological features of the enrolled patients.

High-Grade
(n = 18)

Intermediate-Grade
(n = 9)

Low-Grade
(n = 17) p Value

Sex
Male (Age range) 12 (42–85) 4 (22–72) 5 (19–59) p < 0.05

Female (Age range) 6 (42–82) 5 (23–79) 12 (19–69)

Anatomic location of parotid tumor Superficial 14 8 10 p = 0.83
Others 4 1 7

Symptom of pain Yes 11 3 8 p = 0.22
No 7 6 9

Facial paralysis Yes 3 0 0 p < 0.05
No 15 9 17

Lymph node metastasis Yes 11 2 1 p < 0.001
No 7 7 16

Recurrence
Yes 8 0 2 p < 0.01
No 10 9 15

p value listed above is the result of statistical analysis that was calculated between the H and I-L groups. H
group contain 18 high-grade MEC. I-L group contain 26 MEC samples from both the intermediate-grade and low-
grade populations.

As indicated in Table 1, the present study enrolled a total of 44 patients, with
18 high-grade MEC patients (H group). As mentioned above, since the clinical prog-
nosis of the intermediate-grade and low-grade MECs was similar, the remaining 26 samples
were combined as one group (I–L group) in the present study. The male-to-female ratio was
double in the high-grade MEC group, whereas the proportion of females in the low-grade
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MEC group was more than double that of males, and the male-to-female ratio was similar
in the intermediate-grade MEC group. The age of the high-grade MEC group ranged
from 42 to 85 years for males and from 42 to 82 years for females, whereas the low-grade
MEC group tended to be young, with ages ranging from 19 to 59 years for males and from
19 to 69 years for females. Regardless of grade, the most common anatomic location of
MEC was the superficial lobe of the parotid glands. In the present study, rates of facial
nerve paralysis, lymph node metastasis, and recurrence were significantly higher in the H
group than in the I–L group, but there was little difference in pain or tenderness between
the two groups (Table 1).

2.2. The Histological Features of MEC

Figure 1 shows the representative HE-stained and Azan Mallory-stained cross-sections
from the I–L and H groups. Black hashes indicate cystic lesions and black asterisks in-
dicate solid tumor sites. As can be seen, the cystic lesions were frequently observed in
the I–L group, whereas the H group was occupied mainly by solid tumor tissues. The
majority of solid tumor tissues in the I–L group were separated into tumor islands by the
collagen-deposited (blue color) stroma, and the contours of tumor islands were mostly clear
and smooth. On the other hand, the solid tumor tissues in the H group were separated
irregularly by intermittent, thin, collagen-deposited stroma, and the contours of tumor
islands were neither clear nor even.
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Figure 1. Representative HE and Azan Mallory staining in the cross-sections from the I–L and H
groups. Black hashes indicate cystic lesions and black asterisks indicate solid tumor tissues.

2.3. The Identification of Fibroblasts and Cancer-Associated Fibroblasts

Figure 2 shows representative vimentin and α-SMA-immunostained serial cross-
sections from the I–L and H groups. The yellow frames of vimentin and α-SMA im-
munostaining correspond to the positions of the yellow frames of Azan-Mallory staining,
positioned in the boundary of the solid tumor. Vimentin is a marker protein for mes-
enchymal origin cells that is mainly expressed in fibroblasts and myofibroblasts, as well
as endothelial cells [16]. Though α-SMA as a contractile protein is mainly expressed in
contractile vascular smooth muscle cells, it is also expressed in myofibroblasts after the phe-
notypic change from fibroblasts has occurred [17]. Therefore, the proportions of fibroblasts
and myofibroblasts among tumors can be calculated with the combination of vimentin and
α-SMA immunostaining. As shown in Figure 2, the vimentin-positive cells in the I–L group
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were mainly distributed at the stroma site. As shown in the yellow frame of Azan Mallory
staining, the blue color at the boundary of the solid tumor was dark, suggesting the deposi-
tion of a large amount of collagen in that area. The yellow frame photograph of vimentin
staining on the right shows the area inside the yellow frame of Azan Mallory staining. In
addition, α-SMA immunostaining performed in the serial section adjacent to the vimentin
immunostaining confirmed that the α-SMA-positive cells were partially overlapped with
the vimentin-positive cells, indicating the mixed presence of fibroblasts and myofibroblasts
in the boundary of solid tumors. A similar pattern was also observed in the H group. As
shown in the bottom of Figure 2, almost all vimentin-positive cells overlapped with the
α-SMA-positive cells, indicating that myofibroblasts are the major cellular portion in these
sites. In the present study, the expression ratio of myofibroblasts tended to increase in the
H group, which may indicate the presence of more cancer-associated fibroblasts (CAFs) in
the malignant condition. The concept of CAFs is new, and the prevalence of this population
was reportedly correlated with a poor prognosis for malignancy [18].
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Figure 2. Representative vimentin and α-SMA immunostaining in the serial cross-sections from the
I–L and H groups. The yellow frames of the vimentin and α-SMA immunostaining correspond to the
positions of the yellow frames of Azan-Mallory staining.

2.4. Identification of Type of Mast Cells

Figure 3 shows representative toluidine blue staining, as well as the calculated number
of mast cells in the I–L and H groups. As shown in the bar graph of Figure 3, the num-
bers of mast cells in the H group tended to increase compared to the I–L and H groups
(p = 0.057).
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Figure 3. Representative toluidine blue staining, as well as the calculated number of mast cells in
the I–L and H groups. Red arrows indicate mast cells. As can be seen in these photographs, the
cytoplasm of mast cells is stained purple with toluidine blue.

Figure 4 shows the chymase immunostaining and the calculated numbers of chymase-
positive cells, as well as the gene expression of chymase in the tumor tissues from the
I–L and H groups. As shown in the bar graph, the number of chymase-positive cells was
significantly higher in the H group than in the I–L group. The gene expression level of
chymase also tended to be higher in the H group than in the I–L group (p = 0.054). Similarly,
the number of tryptase-positive cells, as well as tryptase gene expression, were significantly
higher in the H group than in the I–L group (Figure 5).
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Figure 5. Representative tryptase immunostaining and the calculated number of tryptase-positive
cells, as well as tryptase gene expression in the I–L and H groups. Navy blue arrows indicate
tryptase-positive cells.

According to the contents of neutral proteases in secretory granules, two types of
human mast cells have been recognized. If mast cells contain both tryptase and chymase
in their secretory granules, these cells belong to the MCTC subtype, and if they contain
only tryptase, these cells belong to the MCT subtype [19]. In the present study, staining
with toluidine blue, chymase, and tryptase was performed on three serial cross-sections
to clarify which types of mast cells were expressed in MECs of the parotid glands. The
diameter of mast cells is usually about 20 µm. Therefore, if the cross-sections are made to
be within 4-µm-thick, the rate of appearance of the same mast cell in three respective serial
cross-sections is comparatively high.

As can be seen in Figure 6, the locus of mast cells, confirmed by toluidine blue
staining, was largely overlapped with that of chymase-positive and tryptase-positive cells
(HPF 1000×, yellow arrows), indicating that mast cells were the main cellular source for
these neutral proteases in the MEC. Moreover, the mean number of mast cells, chymase-
positive, and tryptase-positive cells were found to be similar in the respective two groups,
suggesting that the MCTC type is the major expressing mast cell in both the I–L and
H groups.



Int. J. Mol. Sci. 2023, 24, 8267 7 of 15

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 15 
 

 

As can be seen in Figure 6, the locus of mast cells, confirmed by toluidine blue stain-
ing, was largely overlapped with that of chymase-positive and tryptase-positive cells 
(HPF 1000×, yellow arrows), indicating that mast cells were the main cellular source for 
these neutral proteases in the MEC. Moreover, the mean number of mast cells, chymase-
positive, and tryptase-positive cells were found to be similar in the respective two groups, 
suggesting that the MCTC type is the major expressing mast cell in both the I–L and H 
groups. 

 
Figure 6. Representative toluidine blue, chymase, and tryptase staining in the serial cross-sections 
positioned before and after toluidine blue staining. Yellow arrows indicate mast cells, chymase-
positive, and tryptase-positive cells, respectively. Mast cells confirmed by toluidine blue staining 
are almost in the same position as the chymase-positive and tryptase-positive cells (HPF 1000×), 
indicating that mast cells are the main cellular source in these tumors. 

2.5. Examination of Proliferative Cells, Neovascularization, and Lymphangiogenesis 
Figure 7 shows representative PCNA immunostaining, as well as the estimated num-

ber of PCNA-positive cells in the I–L and H groups. PCNA is highly expressed in prolif-
erating cells, especially during the G1 and S phases of the cell cycle [20], and an increase 
in PCNA-positive cells in tumor tissues may indicate a poor prognosis [21]. As can be seen 
in the bar graph of Figure 7, the PCNA-positive cells were significantly higher in the H 
group than in the I–L group. 

200 X 

200 X 

1000 X 

1000 X 

Figure 6. Representative toluidine blue, chymase, and tryptase staining in the serial cross-sections
positioned before and after toluidine blue staining. Yellow arrows indicate mast cells, chymase-
positive, and tryptase-positive cells, respectively. Mast cells confirmed by toluidine blue staining
are almost in the same position as the chymase-positive and tryptase-positive cells (HPF 1000×),
indicating that mast cells are the main cellular source in these tumors.

2.5. Examination of Proliferative Cells, Neovascularization, and Lymphangiogenesis

Figure 7 shows representative PCNA immunostaining, as well as the estimated number
of PCNA-positive cells in the I–L and H groups. PCNA is highly expressed in proliferating
cells, especially during the G1 and S phases of the cell cycle [20], and an increase in PCNA-
positive cells in tumor tissues may indicate a poor prognosis [21]. As can be seen in the bar
graph of Figure 7, the PCNA-positive cells were significantly higher in the H group than in
the I–L group.
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Figure 7. Representative PCNA immunostaining, as well as the estimated numbers of PCNA-positive
cells in the I–L and H groups.

Figure 8 shows representative podoplanin and vWF immunostaining, as well as
the gene expression levels of VEGF in the I–L and H groups. Podoplanin is specifically
expressed in lymphatic cells [22,23], and vWF is a marker of vascular endothelial cells [24];
these are useful markers for differentiating lymphatic and blood vessels in tumor tissues.
VEGF is a product of macrophages and tumor cells and not only promotes blood vascular
angiogenesis, but also lymphangiogenesis [25,26]. In comparison with the I–L group, the
gene expression level of VEGF tended to be higher in the H group. Figure 8, displaying
podoplanin and vWF staining, shows the serial cross-sections from the I–L and H groups.
As can be seen in the upper imaging photograph, the areas of podoplanin-positive circle
staining (blue arrow) are few in the I–L group. However, the areas of vWF-positive circle
staining (green arrow) in the lower imaging photograph are observed in large numbers.
In Figure 8, areas of podoplanin and vWF staining in the right panel are also the images
from the serial cross-sections of the H group. In contrast to the I–L group, the areas of
podoplanin-positive circle staining (blue arrow) in the H group are observed in large
numbers, whereas the areas of vWF-positive circle staining (green arrow) in the H group
are few.
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Int. J. Mol. Sci. 2023, 24, 8267 9 of 15

2.6. Identification of MMP-9, MMP-2, TGFβ-1 and SCF-Positive Cells

Figure 9 shows the representative staining results for HE and Azan Mallory in the H
group. The images of immunostaining for MMP-9, MMP-2, TGFβ1, and SCF are also serial
cross-sections from the same individual. As can be seen in these photographs, MMP-9-
positive staining could be observed in both the tumor-like cells (enlarged photograph of
black frame) and fibroblast-like spindle cells (enlarged photograph of green frame). On
the other hand, MMP-2-positive staining was only found in the tumor-like cells (enlarged
photograph of black frame) and their staining densities were lighter than those of the
areas of MMP-9-positive staining. Areas of SCF immunostaining were also found in the
tumor-like cells (enlarged photograph of black frame), as well as in the fibroblast-like
spindle cells (enlarged photograph of green frame), whereas TGFβ1 immunostaining was
mainly found in the tumor-like cells (enlarged photograph of black frame).
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3. Discussion

Salivary gland tumors account for about 5% of all neoplasms of the head and neck,
with most of them occurring in the parotid glands, which are the largest of the three sets
of major salivary glands [27]. Of parotid gland tumors, malignant tumors account for
20%, and MEC is the most common histological type [1]. MEC is usually classified into
three histological grades [2,3] and mortality rates among the three grades differ greatly.
According to the results of the treatment at our department, the five-year DSS for the
intermediate-grade and low-grade patients both reached above 95%, whereas the five-year
DSS for high-grade patients decreased to 53.8% [28]; these data are similar to previous
reports [4]. The poor prognosis of MEC patients can be estimated based on the combination
of the histological grade and the clinical stage. Of these criteria, the presence or absence
of distant metastases affects the survival rate the most [29]. Distant metastases may occur
through either vascular or lymphatic vessels and the mobility of tumor cells in the metastatic
processes is the most critical condition. In general, whether normal or tumor cells, these
cells adhere to the extracellular matrix (ECM) and cannot migrate. Therefore, detachment
from the restricted ECM to become a mobile tumor cell is essential for distant metastasis.
Then, the tumor cells need to intravasate to the vasculature or lymphatic vessels and
become survivable circulating tumor cells (CTCs) until colonization at a distant organ
through extravasation. In this step, breaking the basement membrane of the vasculature
or lymphatic vessels is also indispensable. In this way, many metastatic processes need to
break down ECM proteins, and MMPs are believed to be the main degradative enzymes.
As mentioned in the introduction, the mast cell-derived chymase is not only a powerful
Ang II-forming enzyme but is also an activator for both latent TGF-β1 and pro-MMP-
9 [11]. Interestingly, the activated TGF-β1 was also able to induce pro-MMP-9 protein
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expression in metastatic tumor cells, indicating the presence of an additive effect on MMP-9
action after chymase activation [30]. On the other hand, it has been reported that chymase,
through the activation of protease-activated receptor (PAR)-2, increases the gene expression
of MMP-2 [31]. Although MMP-2 and MMP-9 share the ability to degrade denatured
collagen, they can also degrade laminin and elastin [32]. Previously, we also found that
chymase itself could degrade fibronectin [33]. Considering the above direct and indirect
actions of chymase, the increased chymase activity may not only detach cell–cell and
cell–extracellular matrix (ECM) adhesions but may also break down the integrity of the
basement membrane in the vasculature or lymphatic vessels under certain conditions. In
the present study, the chymase-positive mast cells, as well as chymase gene expression,
were markedly increased in the H group (Figure 4). Areas of MMP-9 and MMP-2 positive
staining were also detectable in the tumor cells and fibroblast-like cells (Figure 9). As
indicated in Table 1, the prevalence of lymph node metastases was significantly higher in
the H group than in the I–L group. These findings may suggest the presence of aggressive
chymase-dependent MMP activation in the high-grade MEC. In the present study, SCF
immunostaining was confirmed in tumor-like cells and fibroblast-like spindle cells. SCF not
only acts as a major chemotactic factor for mast cells and their progenitors, but also elicits
cell–cell and cell–substratum adhesion, facilitates proliferation, and sustains the survival,
differentiation, and maturation of mast cells [34]. Interestingly, it has been reported that
mast cell-derived chymase [35] could enzymatically cleave the membrane-bound SCF to
release the bioactive form of SCF, suggesting that the increase in chymase-positive cells in
the H group may be a result of chymase and tumor cell surface SCF interactions.

In the present study, there was also a marked increase in PCNA-positive tumor
cells, as well as in the gene expression levels of VEGF in the H group (Figures 7 and 8).
Moreover, consistent with the increased VEGF gene expression levels, a large amount of
lymphangiogenesis was observed in the H group (Figure 8). Although no photograph of
angiogenesis in the H group has been provided, aggressive angiogenesis was also found
in this group. VEGF can promote both angiogenesis and lymphangiogenesis, and may
increase the frequency of blood and lymphatic metastases. Angiogenesis can also increase
nutrient supply and contribute to tumor growth. Therefore, a marked increase in PCNA-
positive tumor cells may be associated with the presence of more aggressive angiogenesis
in the H group.

On the other hand, TGF-β1-positive staining was also detectable in the H group.
TGF-β1 is not only a key player in fibrosis in some organs, but it also acts as the tumor
microenvironment (TME) and as a carcinomatous transformation regulator in cancer patho-
physiology [36]. The tumor mass consists not only of a heterogeneous population of cancer
cells, but also the so-called TME, which includes infiltrating host cells, secreted factors,
and extracellular matrix proteins, as well as various tumor-associated cells, such as CAFs.
These microenvironments seem to be important in cancer invasion and metastasis, as well
as in angiogenesis, and TGF-β1 is an important mediator for building up the TME. For
example, TGF-β1 plays an important role in cancer migration due to its mediation of CAF
contractility and MMP secretion, where CAFs produce MMPs that destroy the structure
of the TME architecture [37,38]. In the present study, α-SMA-positive cells occupied the
major cellular portion in the H group (Figure 2), suggesting that CAFs are abundant in
such malignant environments. On the other hand, it has been reported that increased
TGF-β1 levels not only suppress T cells’ anticancer function [13], but they also inhibit
T-cell proliferation by decreasing the expression of interleukin-2 [39]; thus, the immune
surveillance by T cells tends to decrease. Therefore, a significant increase in PCNA-positive
tumor cells in the H group may also result from the decrease in immune surveillance by
the activated TGF-β1.

Henceforth, the true roles of chymase in the pathology of parotid gland carcinoma
should be confirmed in animal models or human clinical studies by using a chymase-
specific inhibitor. Unfortunately, since an animal model that reflects the pathology of
parotid gland cancer has not yet been established, we could not verify this issue in the
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present study. However, previous animal studies seem to suggest the important roles of
the renin-angiotensin system on cancer growth and metastasis. For example, specific AT1R
blockade reportedly suppressed VEGF production, resulting in reduced tumor angiogenesis
and slow progression of tumor growth in a mouse prostate cancer (C4-2 cells) xenograft
model [40]. Interestingly, it was reported that the angiotensin activation ability in CT26
mouse colon cancer cells was dependent mainly on the renin-chymase pathway, rather than
the renin-ACE pathway [41]. Moreover, when compared with untreated mice, treatment
with chymostatin, a chymase inhibitor, not only largely suppressed liver metastasis of CT26
cells, but also significantly improved the survival rate of CT26 cells in a spleen-injected
model. Taken together, these findings strongly suggest that an increase in chymase activity
and chymase-positive mast cells in the TME might worsen the prognosis of cancer.

Limitations

The present study only focused on the features of the histological distribution and the
degree of chymase expression between the two groups. However, since mast cells contain
several mediators, including tryptase and carboxypeptidase A3, these are also reported
to be involved in tumor pathophysiology. Therefore, the distribution characteristics of
proteases in the MEC should also be clarified in the future.

4. Materials and Methods
4.1. Sample Collection and Grouping

Of the surgically resected parotid gland tumors in our hospital (1999–2020),
44 formalin-fixed and paraffin-embedded blocks of MEC were obtained from the De-
partment of Pathology. Per the criteria of the American Forces Institute of Pathology
(AFIP) [2,3], these samples included 18 high-grade, 9 intermediate-grade, and 17 low-grade
MEC samples. As mentioned above, the good prognosis group contained 26 MEC samples
from both the intermediate-grade and low-grade populations, which constituted the I–L
group in the present study. On the other hand, the poor prognosis group contained the
18 high-grade MEC samples and constituted the H group in the present study. This study
was performed following the ethical principles regarding human experimentation in the
Declaration of Helsinki and was approved by the Research Ethics Committee of Osaka
Medical and Pharmaceutical University (authorization number: 2866-1).

4.2. General Histological and Immunohistological Studies

For histological and immunohistological staining, 4-µm-thick, serial cross-sections
were prepared from paraffin blocks of low-grade, intermediate-grade, and high-grade MEC
samples using a microtome (LITORATOMU, REM-710, Yamato Koki Kogyo Ltd., Saitama,
Japan). The first serial cross-sections from each of the paraffin blocks were stained with
hematoxylin and eosin (HE) to observe their general structures. For the second sections,
Azan Mallory staining was performed to identify fibrotic areas. HE staining and Azan
Mallory staining were performed per the standard staining protocols. Toluidine blue
staining was performed on the fourth sections to identify mast cell distribution. In brief,
deparaffinized sections were immersed in 0.5% toluidine blue solution (pH 4.8) for around
15 min, fractionated with 0.5% glacial acetic acid solution, and mounted after drying.

The third and fifth sections were used to show the distribution of chymase and
tryptase using an anti-chymase antibody (mouse monoclonal antibody against human
mast cell chymase, 2D11G10D, 1:1000 dilution; a gift from Suzuki, Katakura Industries
Co., Saitama, Japan) and anti-tryptase antibody (M7052, 1:800 dilution; Dako, Glostrup,
Denmark), respectively. The sixth sections were used to stain for TGF-β1 (ARP37894-P505,
1:100 dilution; Aviva Systems Biology, San Diego, CA, USA). The seventh and eighth
sections were used to stain for MMP-9 (RB1590-P1, 1:50 dilution; Lab Vision Co., CA,
USA) and MMP-2 (RB1537-P1, 1:50 dilution; Lab Vision Co.). To evaluate mesenchymal
cellular components (such as fibroblasts and myofibroblasts) within the tumor tissues, vi-
mentin (1:70 dilution; Cell Signaling Technology, Danvers, MA, USA) and α-smooth muscle
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actin (α-SMA) (1:200 dilution; Dako) immunostainings were performed on the ninth and
tenth sections. The eleventh sections were used to stain for von Willebrand factor (vWF)
(1:100 dilution; Dako) to evaluate the degree of angiogenesis. Podoplanin is a lymphatic
marker because the expression of podoplanin has been detected in lymphatic but not blood
vascular endothelium, and it is useful as the marker of tumor-associated lymphangio-
genesis [22]. To evaluate lymphangiogenesis in the MEC, podoplanin immunostaining
(11629-1-AP, 1:100 dilution; Proteintech Group, Rosemont, IL, USA) was performed on
the twelfth sections in the present study. The thirteenth sections were used to stain for
SCF (26582-1-AP, 1:200 dilution; Proteintech Group). To identify the growth activity of the
tumors, proliferating cell nuclear antigen (PCNA) (1:100 dilution; Dako) immunostaining
was also performed on the fourteenth sections.

Immunostaining with the abovementioned antibodies was performed following the
protocols described elsewhere [6,42]. In brief, deparaffinized sections were incubated
with the respective antibodies overnight at 4 ◦C, followed by a reaction with components
from a labeled streptavidin-biotin peroxidase kit (Dako LSAB kit; Dako, Carpinteria, CA,
USA). Thereafter, these sections were incubated with 3-amino-9-ethylcarbazole (AEC) for
color development, counterstained with hematoxylin, and, finally, mounted with cover
glasses. The three densest areas in each cross-section were counted in a high-power field
(HPF:200×) to count the cellular number, and the average value of the three areas was used
for statistical analysis.

4.3. Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)

A value of ten sheets of the 10-µm-thick paraffin sections were cut out from the
respective formalin-fixed, paraffin-embedded tissue blocks using the microtome. Then,
the RNA was extracted from these tissues, using methods described elsewhere [6]. Briefly,
total RNA was extracted by the protocol provided in the total RNA isolation kit (ISOGEN
PB Kit, Nippon Gene Co., Ltd., Tokyo, Japan). Total RNA (2.5 µg) was transcribed into
cDNA with SuperScript VILO (Invitrogen, Carlsbad, CA, USA). Then, mRNA levels were
measured by RT-PCR on a Stratagene Mx3000P (Agilent Technologies, San Francisco,
CA, USA) using Taq-Man fluorogenic probes. RT-PCR primers and probes for tryptase,
chymase, vascular endothelial growth factor (VEGF), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) were designed by Roche Diagnostics (Tokyo, Japan).

The primers were as follows: 5′-gatgctgagcctgctgct-3′ (forward) and 5′-gacgatacccgcttgctg-
3′ (reverse) for tryptase, 5′-cattaacgggttcagttccag-3′ (forward) and 5′-agcaggaagggtcggttc-3′

(reverse) for chymase, 5′-gcagcttgagttaaacgaacg-3′ (forward) and 5′-ggttcccgaaaccctgag-3′

(reverse) for VEGF, and 5′-agccacatcgctcagacac-3′ (forward) and 5′-gcccaatacgaccaaatcc-3′

(reverse) for GAPDH. The probes were as follows: 5′-ctgcccca-3′ for tryptase, 5′-cagaggaa-3′

for chymase, 5′-ctccttcc-3′ for VEGF, and 5′-tggggaagg-3′ for GAPDH. The mRNA levels of
tryptase, chymase, and VEGF were normalized to those of GAPDH.

4.4. Statistical Analysis

All numerical data are expressed as means ± SEM. Significant differences in mean
values between the two groups were evaluated with Student’s t-test. Significant differences
in the presence or absence of the symptom of pain, facial paralysis, lymph node metastasis,
and recurrence between the two groups were evaluated with the Chi-squared test. In all
analyses, a p-value less than 0.05 was considered significant.

5. Conclusions

In comparison with the intermediate-grade and low-grade MECs, the numbers of
chymase-positive mast cells and PCNA-positive tumor cells, as well as chymase and
VEGF gene expressions, were all markedly increased in the high-grade MEC. Given chy-
mase’s powerful enzymatic effects on Ang I, latent TGF-β1, and pro-MMPs, increased
chymase activity may increase proliferation, as well as metastasis, in the malignant condi-
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tion. Therefore, the inhibition of chymase may be a strategy to improve the poor prognosis
of high-grade MEC.
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