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Abstract: The accurate prediction of drug–target binding affinity (DTA) is an essential step in drug
discovery and drug repositioning. Although deep learning methods have been widely adopted
for DTA prediction, the complexity of extracting drug and target protein features hampers the
accuracy of these predictions. In this study, we propose a novel model for DTA prediction named
MSGNN-DTA, which leverages a fused multi-scale topological feature approach based on graph
neural networks (GNNs). To address the challenge of accurately extracting drug and target protein
features, we introduce a gated skip-connection mechanism during the feature learning process to
fuse multi-scale topological features, resulting in information-rich representations of drugs and
proteins. Our approach constructs drug atom graphs, motif graphs, and weighted protein graphs
to fully extract topological information and provide a comprehensive understanding of underlying
molecular interactions from multiple perspectives. Experimental results on two benchmark datasets
demonstrate that MSGNN-DTA outperforms the state-of-the-art models in all evaluation metrics,
showcasing the effectiveness of the proposed approach. Moreover, the study conducts a case study
based on already FDA-approved drugs in the DrugBank dataset to highlight the potential of the
MSGNN-DTA framework in identifying drug candidates for specific targets, which could accelerate
the process of virtual screening and drug repositioning.

Keywords: drug–target binding affinity prediction; graph neural networks; feature representation
learning

1. Introduction

Drug discovery is a complex and time-consuming process that may span more than a
decade and cost billions of dollars from screening to market [1]. Contrarily, drug reposition-
ing provides a promising approach to overcoming the temporal and financial bottlenecks
of new drug discovery. This strategy involves identifying FDA-approved drugs that ex-
hibit a binding affinity for specific targets, alter the expression of abnormal proteins, and
exert pharmacological effects [2–4]. The accurate identification of potential drug–target
interactions is crucial for successful drug repositioning [5], and the strength of drug–target
binding affinity (DTA) serves as an important indicator for drug screening [6–10]. Tradi-
tional methods of measuring DTA are resource-intensive and time-consuming. The rapid
advancement of computer technology has facilitated accurate and efficient prediction of
DTA, thereby assisting biological experiments [11]. Currently, DTA prediction methods
can be classified into three categories: structure-based methods, machine learning-based
methods, and deep learning-based methods.

In computer experiments, structure-based approaches typically utilize molecular
docking and molecular dynamics simulations for DTA prediction. Molecular docking
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explores potential binding sites by considering the 3D structure of the receptor and ligand,
and a scoring function based on the molecular position is defined to calculate the binding
energy [12]. For proteins with known structural information, binding affinity can be
obtained directly by docking the drug molecule [13]. However, this approach necessitates
high-precision 3D protein structures, which may be unattainable for a massive number of
proteins with unknown structural information. Even with extensive homology modelling,
reliable structural information may not be acquired [14].

Conventional machine learning methods have been applied for DTA prediction.
Pahikkala et al. [15] proposed KronRLS, an approach based on Kronecker regularized
least squares, which utilizes the Smith–Waterman algorithm and PubChem structural clus-
tering server to build similarity matrices for proteins and drugs, and then calculate the
Kronecker product to predict the DTA. He et al. [16] introduced Simboost, which utilizes
a gradient booster to extract features from drugs, targets, and drug–target pairs. These
methods have limitations in achieving significant performance improvement, as they heav-
ily rely on intricate feature engineering, which typically requires a high level of domain
expertise [17].

Deep learning is widely used in many research areas of bioinformatics [18], various
deep learning-based methods have been applied in DTA prediction, where it can capture
complex hidden information from massive data. Öztürk et al. [9] proposed DeepDTA,
which employs two convolutional neural networks (CNNs) to extract local sequence infor-
mation and then feed it into several fully connected layers for DTA prediction. Similarly,
Öztürk et al. [19] proposed another CNN-based model, called WideDTA, which takes
advantage of two additional text-based information sources, namely protein interaction
domains and ligand maximum common structure words, obtaining four representations
that further improve the DTA prediction performance. Furthermore, attention-based meth-
ods have been introduced to improve interpretability in DTA prediction. Chen et al. [20]
proposed TransformerCPI, which retains the decoder of the transformer but modifies its en-
coder and the final linear layer to increase interpretability. In another work, Yang et al. [21]
developed ML-DTI, which uses a mutual information mechanism to capture the interac-
tion relationship between drug and protein encoders, bridging the gap between the two
encoders and enabling the identification of new drug–target interactions.

Although CNN-based methods have demonstrated remarkable achievements in DTA
prediction, their exclusive utilization of 1D representations of drugs and proteins fails to
capture the spatial structural information of molecules, such as the distance and angle
between residues that determine molecular function. Graph neural networks (GNNs),
renowned for their efficacy in tackling an array of challenges, have been implemented
in various models representing drugs as graphs for DTA prediction. Nguyen et al. [10]
devised GraphDTA, a graph-based model encoding drugs as undirected graphs repre-
sented by a feature matrix and an adjacent matrix. Experimental results and theoretical
analyses suggest that graph-based drug representations may further bolster performance.
Lin et al. [22] proposed DeepGS, leveraging advanced embedding learning techniques that
consider molecular topology, SMILES string, and protein sequence for DTA prediction.
Yang et al. [23] developed MGraphDTA, constructing a 27-layer ultra-deep GNN that learns
multi-scale features and capitalizes on topological information while avoiding gradient dis-
appearance. Furthermore, Jiang et al. [24] created DGraphDTA, which predicts the contact
map using amino acid sequence, thereby constructing the protein graph to boost prediction
performance further. When producing the protein contact map, WGNN-DTA [25] obviates
the need for sophisticated processes such as multiple sequence alignment (MSA), which
effectively enhances the execution speed.

In general, graph-based DTA prediction models only employ a limited number of
GNN layers, typically ranging from two to four layers. However, such shallow GNNs
are incapable of capturing the intricate topological information of molecules, leading to
insufficient representation learning. To fully capture topological information, multiple
layers of GNN should be stacked, which is also infeasible due to the problems of vanishing
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gradients and node feature degradation [26]. Furthermore, motifs have special meanings in
drug molecules, such as carbon rings and NO2 groups that are prone to mutagenesis [27].
The motifs can exert their practical value when considered as a whole, and it would be
meaningless if the chemical bonds in the ring are isolated separately. Therefore, motifs
deserve more attention during the feature extraction process. Additionally, topological
features at different scales are extracted from various GNN layers, but previous models only
used single-scale features for DTA prediction, resulting in a loss of prediction performance.
Therefore, the fusion of multi-scale features is necessary, and the model should be capable
of adaptively fusing essential features to improve prediction performance.

In response to the aforementioned challenge, we present a novel GNN-based model
for DTA prediction that leverages multi-scale topological feature fusion. Our proposed
approach underscores the significance of motifs by creating drug motif-level graphs, where
motifs are viewed as holistic entities and mapped as graph vertices. This design choice
captures the practical value of motifs and effectively extracts meaningful features that
contribute to accurate predictions. To further exploit the topological information of drug
molecules, we introduce a gated skip-connection mechanism during the GNN-based rep-
resentation learning process. This mechanism enables the model to dynamically adapt
and selectively fuse features from different scales, thus avoiding the problems of node
gradient vanishing and feature degradation. The learned enhanced representations are
informative and enable accurate predictions. The experimental evaluations demonstrate
that our model outperforms existing models on benchmark datasets, with low prediction
error and high stability. We believe that our approach has practical applications in drug dis-
covery and development by providing a more comprehensive and interpretable approach
to DTA prediction.

This paper’s significant contributions are summarized as follows:

• To make full use of the topological information of drugs and proteins, we simultane-
ously construct drug atom graphs, motif graphs, and weighted protein graphs to learn
drug and protein representations from multiple perspectives.

• To extract and fuse multi-scale topological information, a gated skip-connection mech-
anism is introduced in the feature learning based on GNNs, and topological features
at different scales are selectively preserved.

• To improve the adaptive capability of the model, we incorporate an attention mecha-
nism in the prediction phase, which enables the model to concentrate on the crucial
features of multi-scale and further strengthen the DTA prediction performance.

2. Results
2.1. Evaluation Metrics

DTA prediction is a regression task using the mean squared error (MSE) as a loss
function. MSE measures the error between the ground and predicted values, with a smaller
MSE indicating that the predicted value is closer to the true value. MSE is defined as
follows:

MSE =
1
N

N

∑
i=1

(yi − pi)
2 (1)

where yi is the true value of the ith sample and pi is the predicted value of the ith sample.
Another evaluation metric is the concordance index (CI), which measures whether

the predicted values of two randomly selected drug–target pairs have a consistent relative
order with the true dataset. A larger CI indicates better model prediction performance. It is
defined as shown in Equation (2).

CI =
1
z ∑

yi>yj

h
(

pi − pj
)

(2)



Int. J. Mol. Sci. 2023, 24, 8326 4 of 17

where pi is the prediction value for the larger affinity yi, pj is the prediction value for the
smaller affinity yj, and h(x) is step function. Z is the normalization constant that maps the
values to [0,1]. The step function is defined as shown in Equation (3).

h(x) =


0 if x < 0
0.5 if x = 0
1 if x > 0

(3)

The Pearson correlation coefficient was calculated by Equation (4). cov(p, y) is the
covariance between the predicted value p and true value y, and σ(.) is the standard
deviation. A higher Pearson coefficient suggests greater predictive accuracy.

Pearson =
cov(p, y)
σ(p)σ(y)

(4)

Regression toward the mean (r2
m) is a metric for evaluating the external predictive

performance of a model. If a variable is extremely large or extremely small at this measure-
ment, r2

m indicates how close to the mean it tends to be at the next measurement. The index
calculation process is depicted in Equation (5).

r2
m = r2×

(
1−

√
r2 − r2

0

)
(5)

where r is the correlation coefficient with intercept and r0 is the correlation coefficient
without intercept.

2.2. Experimental Setup

MSGNN-DTA is built with PyTorch [28], which is an open-source machine learning
framework. The GNN models are implemented using PyTorch Geometric (PyG) [29].
We evaluated the performance of the proposed model on two benchmark datasets, the
Davis [30] and KIBA datasets [31]. To ensure a fair comparison, we adopted the same
strategy for data partitioning as DeepDTA [9], which randomly divided the datasets into six
equal parts, with one part reserved for independent testing and the remaining five parts
used for model training.The hyperparameter settings for our experimental part are shown
in Table 1.

Table 1. Experimental hyperparameter settings.

Parameters Setting

Epoch 2000
Batch size 512

Leaning rate 0.0005
Optimizer Adam

Dropout rate 0.2
Graph convolutional layers 3

Input dimension of the three layers in GNN N, 4 N, 4 N
Output dimension of the three layers in GNN N, 4 N, 4 N

Fully connected layer hidden unit 1024, 512
Note: N represents the dimension of the initial features.

2.3. Performance Comparison with Benchmark Models

To evaluate the superiority of MSGNN-DTA, we compared it with the state-of-the-art
models on two benchmark datasets, Davis and KIBA, respectively. We compared MSGNN-
DTA with KronRLS [15], SimBoost [16], DeepDTA [9], WideDTA [19], GraphDTA [10],
MGraphDTA [23], GEFA [32], WGNN-DTA [25], and DGraphDTA [24], which are currently
widely used benchmark methods for DTA prediction. To ensure a fair comparison, we
adopted the same training and testing sets as well as performance metrics for evaluation.
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The performance results, along with those reported in the original publications for the
baseline methods, are summarized in Tables 2 and 3.

According to the experimental results, the proposed MSGNN-DTA achieved the best
performance compared to state-of-the-art methods in all datasets, demonstrating its gener-
alization and robustness. The model decreased the MSE by 3.5% and 7.1% and increased
the CI by 0.2% and 0.4% on the Davis and KIBA datasets, respectively, underscoring the
model’s ability to outperform other models in terms of predictive accuracy and reliability.
Additionally, the model showed advantages in the other two evaluation metrics, r2

m and
Pearson. The considerable improvements over the second best model of 1.3% and 0.5%
in the Davis dataset and 2.1% and 0.8% in the KIBA dataset, respectively. Overall, the
MSGNN-DTA model’s superior performance across all metrics and datasets makes it an
essential tool for researchers seeking to predict drug–target affinity values.

Table 2. Performance evaluation of the DTA prediction models on the Davis dataset.

Methods Proteins Compounds MSE ↓ CI ↑ r2
m ↑ Pearson ↑

KronRLS Smith–Waterman Pubchem-Sim 0.379 0.871 0.407 -
SimBoost Smith–Waterman Pubchem-Sim 0.282 0.872 0.644 -
DeepDTA CNN CNN 0.261 0.878 0.630 -
WideDTA CNN + PDM CNN + LMCS 0.262 0.886 - 0.820

GraphDTA CNN GIN 0.229 0.893 - -
GEFA GCN GCN 0.228 0.893 - 0.847

MGraphDTA MCNN MGNN 0.207 0.900 0.710 -
WGNN-DTA GCN GCN 0.208 0.900 0.692 0.861
WGNN-DTA GAT GAT 0.208 0.903 0.691 0.863
DGraphDTA GCN GCN 0.202 0.904 0.700 0.867

MSGNN-DTA GAT GAT + GAT 0.195 0.906 0.719 0.871
Note: Bold indicates the best result in the evaluation metrics. These results are not reported from original studies.

Table 3. Performance evaluation of the DTA prediction models on the KIBA dataset.

Methods Proteins Compounds MSE ↓ CI ↑ r2
m ↑ Pearson ↑

KronRLS Smith–Waterman Pubchem-Sim 0.411 0.782 0.342 -
SimBoost Smith–Waterman Pubchem-Sim 0.222 0.836 0.629 -
DeepDTA CNN CNN 0.194 0.863 0.673 -
WideDTA CNN + PDM CNN + LMCS 0.179 0.875 - 0.856

GraphDTA CNN GAT − GCN 0.139 0.891 - -
MGraphDTA MCNN MGNN 0.128 0.902 0.801 -
WGNN-DTA GCN GCN 0.144 0.885 0.781 0.888
WGNN-DTA GAT GAT 0.130 0.898 0.791 0.899
DGraphDTA GCN GCN 0.126 0.904 0.786 0.903

MSGNN-DTA GAT GAT + GAT 0.117 0.908 0.818 0.910
Note: Bold indicates the best result in the evaluation metrics. These results are not reported from original studies.

Our proposed model achieves significant performance gains, which can be attributed
to the following factors. Firstly, we utilize graph-based representations for both compounds
and proteins, providing a more comprehensive and informative approach to encoding
molecular structures compared to traditional sequence-based methods. By constructing
three types of graphs, including drug molecule graphs, motif graphs, and protein graphs,
our model captures the molecular structure and functional information from multiple
perspectives, allowing for more accurate predictions of DTA. Secondly, during the feature
representation learning stage, our model integrates multi-scale feature information using
graph neural networks (GNNs). This enables the learning of enriched and informative
molecular representations, leading to further improvements in predictive performance.
Thirdly, the incorporation of attention mechanisms during the DTA prediction phase allows
the model to adaptively fuse critical features, resulting in even higher accuracy. Importantly,
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experimental results demonstrate the potential of MSGNN-DTA for practical applications
in drug discovery and development.

Figure 1 displays the relationship between the predicted binding affinity and the true
value. Upon analysing the model prediction, the linear regression curves between the true
and predicted values are almost indistinguishable from the diagonal line, indicating an
excellent fit between the predicted and true values. Moreover, the distribution trend of the
sample size between the predicted and actual values closely aligns, further validating the
model’s accuracy in making precise predictions.

Figure 1. Scatter plot of true and predicted values on the Davis (a) and KIBA datasets (b), in which the
horizontal coordinates represent the predicted binding affinity and the vertical coordinates represent
the true binding affinity. The bar charts above and right show the distribution of the sample size.

2.4. Performance Comparison of Various GNN Models and Pooling Methods

To achieve effective feature extraction with rich information during GNN-based repre-
sentation learning, selecting the appropriate GNN model and pooling method is crucial.
In this study, we conducted an evaluation of two different graph convolution methods,
namely GCN and GAT, along with two distinct pooling methods, max pooling and average
pooling, to obtain the graph-level representations of drugs and proteins, as presented in
Table 4. Our experimental findings reveal that GAT-based feature extraction outperforms
GCN-based feature extraction in almost all performance metrics. This superiority can be
attributed to the multi-head attention mechanism employed by GAT, which aggregates
neighbouring node features and considers node correlation by computing attention scores,
whereas GCN assigns the same attention weight to different neighbouring nodes. Further-
more, we observed that the max pooling method yields higher prediction accuracy than
the average pooling method on both benchmark datasets. This finding highlights the im-
portance of selecting a suitable pooling method in GNN-based models for DTA prediction.

Table 4. Performance comparison of different GNN models and pooling methods.

Dataset GNN Model Pooling Method MSE ↓ CI ↑ r2
m ↑ Pearson ↑

Davis

GCN Max 0.203 0.903 0.713 0.864
GCN Mean 0.201 0.904 0.723 0.866
GAT Max 0.196 0.906 0.719 0.871
GAT Mean 0.202 0.905 0.716 0.865

KIBA

GCN Max 0.122 0.904 0.789 0.906
GCN Mean 0.121 0.904 0.795 0.907
GAT Max 0.117 0.908 0.818 0.910
GAT Mean 0.122 0.906 0.794 0.906

Note: Bold indicates the best result of the evaluation metrics.
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2.5. Ablation Experiments

To investigate the key factors influencing the predictive performance of our model, we
conducted a series of ablation experiments using the following variants of MSGNN-DAT:

• Without Attention: This model does not incorporate an attention mechanism to fuse
the feature representations of the three channels, instead it directly concatenates the
features to predict DTA, which is equivalent to giving the three parts equally important
weight parameters.

• Without Motif-Level: This model does not construct a motif graph to learn drug
motif-level feature representation, instead it only constructs a drug atom graph and a
weight protein graph, and fuses two parts to predict DTA

• Without Skip-Connection: This model does not incorporate the gated skip-connection
mechanism during the feature learning process, the node features of the previous-hop
are not preserved when aggregating the next-hop neighbour information, and the
hidden features at different scales are discarded.

Through these ablation experiments, we can gain insight into the relative importance
of each component in our proposed model and the effectiveness of our design choices.
Table 5 depicts the results of our ablation experiments on the two benchmark datasets,
highlighting the superior performance of MSGNN-DTA over all other variants. Particularly
noteworthy is the considerable performance gap between MSGNN-DTA and the other
variants when the attention mechanism is not employed. This finding highlights the crucial
role of attention in our model, as it permits the discerning integration of critical information
during the feature aggregation process. Furthermore, we observe that the absence of
motif-level results in comparatively poorer performance than MSGNN-DTA, emphasizing
the importance of learning drug features from diverse perspectives and exploiting the
topological information of drugs more comprehensively. Lastly, we note that the gated skip-
connection mechanism can selectively preserve the features of different scales, resulting in
further improvements in prediction performance.

Table 5. Performance comparison of ablation experiments.

Dataset Variants MSE ↓ CI ↑ r2
m ↑ Pearson ↑

Davis

Without Motif-Level 0.200 0.903 0.715 0.867
Without Skip-Connection 0.201 0.903 0.728 0.866

Without Attension 0.203 0.897 0.709 0.865
MSGNN-DTA 0.195 0.906 0.719 0.871

KIBA

Without Motif-Level 0.123 0.905 0.790 0.906
Without Skip-Connection 0.122 0.904 0.788 0.906

Without Attension 0.124 0.906 0.808 0.905
MSGNN-DTA 0.117 0.908 0.818 0.910

Note: Bold indicates the best result of the evaluation metrics.

2.6. Case Study

To evaluate the generalization capability of our model, we conducted experiments
on a set of FDA-approved drug candidates from the DrugBank [33] database, excluding
those contained in the KIBA dataset and retaining 2092 drug candidates. Subsequently,
we selected a specific protein, epidermal growth factor receptor (EGFR), which is known
to be associated with various types of cancer and is a popular target for cancer therapy.
Among the 2092 candidates, 9 are known to have interactions with EGFR. We used the
trained model on the KIBA dataset to calculate the interaction scores between all of the
drug candidates with EGFR, ranked in descending order of scores for further analysis.

The results presented in Table 6 demonstrate that out of the top 11 small molecule
compounds, 6 of them are EGFR inhibitors, while the remaining 3 compounds are ranked
at positions 17, 32, and 43. Several other top-ranking drugs belong to tyrosine kinase
inhibitors, which are targeted therapies for various types of cancer. Given that EGFR is a
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member of the tyrosine kinase family, these drugs possess a high possibility to be ligands
for binding to EGFR. This assertion is supported by existing literature, where the mode of
action of ibrutinib with mutant EGFR kinases has been investigated [34,35].

Table 6. The predicted KIBA score ranking of drug candidates with EGFR.

Rank DrugBank ID Drug Name Predict KIBA Score

1 DB09053 Ibrutinib 12.98426
2 DB00317 Gefitinib 12.94488
3 DB12267 Brigatinib 12.91385
4 DB09063 Ceritinib 12.86993
5 DB12095 Telotristat ethyl 12.86020
6 DB01254 Dasatinib 12.71807
7 DB01259 Lapatinib 12.66030
8 DB05294 Vandetanib 12.61738
9 DB11828 Neratinib 12.61046
10 DB01167 Itraconazole 12.60930
11 DB00530 Erlotinib 12.58477

Note: Bold in the table denotes a drug that has known interactions with EGFR.

To further validate the predicted drug–target interactions, we downloaded the crystal
structure of EGFR (UniProt P00533) with PDB ID 5YU9 from the Protein Data Bank (PDB)
and performed molecular docking using Autodock [36]. We used the lowest affinity energy
output as a candidate binding site for specific ligands and receptors, thereby visualizing the
hydrogen bonds formed by docking between drug molecules and amino acids of proteins
using Pymol, as shown in Figure 2.

Figure 2. (a) Molecular docking and hydrogen bonding colouring results between 5YU9 and ibrutinib
(DB09053). (b) Molecular docking and hydrogen bonding colouring results between 5YU9 and
ceritinib (DB09063); the target protein is shown as a cartoon (green), the ligand molecule is shown
as a stick structure (pink), the hydrogen bonding is shown in yellow, and the amino acid residues
connected to the ligand by hydrogen bonding are shown as stick structures (purple).

Our results demonstrate that the MSGNN-DTA exhibits a strong generalization per-
formance in identifying potential drug candidates that have a high likelihood of binding to
specific targets among a massive number of candidates. This makes it a valuable tool for
screening potential drug candidates and prioritizing those with a higher predicted binding
affinity for further testing. Ultimately, this could lead to the development of more effective
drugs with improved therapeutic outcomes and fewer side effects.

3. Discussion

In this study, we introduce a novel approach for predicting drug–target binding affinity
named MSGNN-DTA. Our method utilizes a graph neural network that introduces a gated
skip-connection mechanism, which integrates multi-scale topological features to improve
the accuracy of predictions. Specifically, we construct drug atom-level graphs, motif-level
graphs, and weighted protein graphs to capture more sufficient information about drugs
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and proteins. Additionally, we incorporate an attention mechanism to adaptively fuse the
multi-scale features, which enhances the performance of DTA prediction. The proposed
method has the potential to significantly advance drug discovery and contribute to the
development of more effective treatments.

The results demonstrate that our proposed method significantly outperforms the
baseline approach. In practical applications, our pre-trained model can predict the affinity
value by simply inputting the SMILES string of the drug and the amino acid sequence
of the protein. This provides a powerful tool for the virtual screening of target proteins,
facilitating the discovery of lead compounds. Although MSGNN-DTA shows superior
performance in DTA prediction, there is still scope for further improvements.

The overall 3D geometry of a compound plays a crucial role in the interactions between
drugs and protein targets. For instance, the active site of a protein often has specific
geometric constraints, and the overall 3D shape of a drug must match it to effectively bind
and exert its function. Furthermore, for compounds with multiple chiral centres, different
optical isomers can have distinct biological activities, particularly for compounds such as
protein kinase inhibitors. Thus, the correct selection and optimization of optical isomers are
crucial in drug design and discovery. In this study, we did not consider the optical isomers
and the overall 3D geometry of compounds, which may limit the predictive ability of our
method. Although our method achieved good results in predicting based on molecular
topological structure, its predictive ability may be limited for some complex compounds.

In future research, we will further explore how to incorporate optical isomers and
the overall 3D geometry of compounds into our model. This will include using advanced
computational tools to simulate the 3D shape of molecules and developing new models
to process this information. We believe that this work will help improve the predictive
performance of our method and apply it to a wider range of compounds and proteins.

4. Materials and Methods
4.1. Datasets

In this research, we performed a comprehensive performance evaluation of MSGNN-
DTA on two widely recognized and publicly available datasets, namely the Davis [30] and
KIBA [31] datasets. To ensure a fair and objective comparison, we employed a standard
dataset split approach by randomly dividing the dataset into five parts, out of which four
parts were used for training purposes while the remaining part was reserved for testing.
We conducted five-fold cross-validation and reported the average performance as the
final evaluation.

The Davis dataset contains 442 kinase proteins and their associated 68 inhibitors, with
the binding affinity obtained through the measurement of dissociation constants (Kd),
which are expressed in units of nanomolar. To more graphically describe the relationship
between Kd and binding affinity, the Kd was converted to logarithmic space with pKd [16],
and the process of taking the negative logarithm is expressed in Equation (6). The higher
value of pKd indicates a stronger binding affinity, with values ranging from 5.0 to 10.8.
The boundary value 5.0 is considered the true negative drug–target pairs that exhibit either
extremely weak binding affinities or are not detected in wet laboratory experiments.

pKd = − log10

(
Kd
109

)
(6)

The KIBA dataset is a comprehensive and expansive resource. The interaction value
was recorded using the KIBA score, derived from the combination of heterogeneous infor-
mation sources, including the inhibition constant (Ki), Kd, and the half-maximal inhibitory
concentration (IC50), with values ranging from 0.0 to 17.2. The dataset is of superior
quality, as the integrated heterogeneous measurements mitigated the data inconsistency
arising from relying on a single information source. For further clarity, Table 7 presents a
comprehensive overview of both benchmark datasets.
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Table 7. Summary of the Davis and KIBA datasets.

Dataset Compounds Proteins Interactions

Davis 68 442 30,056
KIBA 2111 229 118,254

4.2. Model Architecture

Our prediction task aims to predict the binding affinity between drug–target pairs,
given the SMILES of drugs and the amino acid sequence of target proteins as the original
input. To achieve this goal, we propose a new approach called MSGNN-DTA, which
involves constructing drug and protein graphs from multiple perspectives. For each drug,
we simultaneously construct an atom graph and a motif graph, where individual atoms
and motifs are represented as nodes, respectively. Meanwhile, for each protein, we predict
residue contact maps using a protein structure prediction model and construct a weighted
protein graph accordingly. To obtain multi-scale topological feature representations of
drugs and proteins, we parallelize the constructed graphs through a GNN-based feature
learning module. This module enables us to obtain two representations of the drug and
one representation of the protein. Subsequently, we apply an attention mechanism to
adaptively fuse the drug–target representations and obtain a joint representation, which
is then fed into multiple fully connected layers to predict DTA. The main architecture of
our model is illustrated in Figure 3, which depicts the detailed workflow of each module.
In the following sections, we will provide a comprehensive description of each module.

Figure 3. The main architecture of MSGNN-DTA.

4.3. Graph Construction for Drugs and Proteins
4.3.1. Construction of Drug Atom-Level Graph

Drugs are commonly represented by SMILES (simplified molecular input line entry
specification) [37]. The structural information of the molecule is missing when using the
string representation directly. Therefore, we use the open-source molecular processing
software Rdkit [38] to construct the atom-level graph of drugs based on SMILES, where
nodes represent atoms, edges represent chemical bonds, and the graph topology is repre-
sented by an adjacency matrix A. The initial feature vector of each atom is obtained based
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on chemical and structural properties. The detailed meaning of node features is illustrated
in Table 8, represented by a 78-dimensional vector.

Table 8. The node features for a drug atom-level graph.

Feature Name Dimension

Atomic symbol 44
Degree of atom 11

Total number of connected hydrogen atoms (implicit and explicit) 11
Implicit valence of atoms 11

Whether the atom is aromatic or not 1

4.3.2. Construction of Drug Motif-Level Graph

It is widely recognized that some motifs in drugs, such as the benzene ring, are inti-
mately related to molecular properties. The benzene ring is meaningful when considered
as a whole, but it loses meaning when the chemical bonds within the ring are separated
individually. However, several layers of GNN cannot capture all of the information in
the ring to which an atom belongs, resulting in incomplete information being extracted.
Therefore, in MSGGN-DTA, the motif-level graph for drugs is constructed simultane-
ously. Cyclic structures and individual chemical bonds, which do not belong to any cyclic
structures, along with their connected pairs of atoms, are considered the fundamental build-
ing blocks of molecules and are represented as nodes in the molecular motif graph [39].
Specifically, cyclic structure nodes represent a group of atoms and chemical bonds con-
nected cyclically, while nodes representing individual chemical bonds along with their
connected pairs of atoms represent the relationships between atoms and chemical bonds.
This approach provides a better reflection of the structural information of the molecule,
thus facilitating motif graph generation and model training. The edges represent whether
two nodes are connected by a chemical bond. The construction process of a drug motif
graph is depicted in Figure 4. Similar to the molecular graph, the initial features of nodes
also need to be extracted. The detailed meaning is described in Table 9, represented by a
92-dimensional vector.

Figure 4. The construction process of a drug motif-level graph, where the nodes represent motifs and
edges represent whether two nodes are connected by a chemical bond.
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Table 9. The node features for a drug motif-level graph.

Feature Name Dimension

Atomic symbols contained in the motif 44
Number of atoms in the motif 11

Number of edges connecting to other motifs 11
Total number of hydrogen atoms connected by motif (implicit & explicit) 12

Implicit valence of motif 12
Whether the motif is a simple ring 1

Whether the motif is chemically bonded or not 1

4.3.3. Construction of Weighted Protein Graph

Proteins are conventionally represented as 1D sequences consisting of 25 distinct
amino acids, but such a representation fails to reflect the entire spatial structure information.
The spatial structure of proteins is determined by various interactions, including hydrogen
bonds, ionic bonds, and hydrophobic interactions, among others [40]. Consequently, sole
reliance on a 1D representation proves inadequate to capture the intricate spatial structure
information of proteins, thereby posing a challenge in extracting an effective protein
representation. Despite the exponential growth of protein databases, the structures of the
majority of proteins remain unknown. However, recent advances in natural language
processing techniques have facilitated the development of several cutting-edge protein
language models [41–43], which can accurately predict protein structures solely from the
input protein sequences.

In this study, we employed the ESM-1b model proposed by Rives et al. [42] to predict
the contact map of proteins. The ESM-1b model is an unsupervised protein language
modelling approach based on transformer architecture that leverages large-scale protein
sequence and structure exploration through pre-training. It can accurately and efficiently
predict protein contact maps by directly inputting the 1D protein sequence. We selected
this model because ESM-1b can predict protein contact maps accurately without requiring
multiple sequence alignment (MSA), which greatly enhances the prediction efficiency.

The contact map predicted by the ESM-1b model is represented as a probability matrix,
where each element represents the interaction probability between different residues,
ranging from 0 to 1. According to the construction process of the weighted protein graph
in the WGNN-DTA model [25], if a value in the probability matrix exceeds the threshold of
0.5 is retained, while those below are set to 0. The weighted protein graph is constructed
using residues as nodes, residue interactions as edges, and probability values as the weight
of the edges. Since the ESM-1b model is trained with a fixed context size of 1024 tokens for
position embedding, the sequence length is limited. To handle longer protein sequences
(over 1000 residues), WGNN-DTA employs a truncation and splicing strategy to construct
the contact map. The entire sequence is divided into multiple fixed-length subsequences
of length L with a step size of L/2, and the contact map of each subsequence is predicted
sequentially by the ESM-1b model, followed by splicing together, with overlapping parts
averaged. Algorithm 1 describes the specific construction process of the contact map.
Additionally, features of each residue node, such as residue type, polarity, hydrophobicity,
weight, group dissociation constant, and more, are extracted to generate an initial feature
vector for each node, represented by a 33-dimensional vector.
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Algorithm 1 Construction of a protein contact map
Input: protein amino acid sequence: seq
Output: contact map
Initialization: contact map← zeros(Len(seq), Len(seq)),

windowsize ← 500
1: if Len(seq) <= 1000 then
2: contact map← ESM-1b (seq)
3: else
4: L← len(seq)/windowsize
5: for i = 0→ L− 2 do
6: start← i ∗ windowsize
7: end← min{(i + 2) ∗ windowsize, len(seq)}
8: subsequences← seq[start, end]
9: temp contact map← ESM-1b (subsequences)

10: row, col ← The non-zero rows and columns in the contact map [start, end]
11: row← row + start, col ← col + start
12: contact map [start, end]← contact map [start, end] + temp contact map
13: contact map [row, col]← contact map [row, col]/2
14: end for
15: end if
Return: contact map

4.4. Feature Learning Based on Graph Neural Networks

Through the process of graph construction, we obtain the drug atom-level graph, the
motif-level graph, and the weighted protein graph. GNN can effectively extract hidden
features using the spatial topological structure information of the graph, and obtain a
graph-level representation by aggregating features of nodes. Below is a brief description of
the graph convolutional network (GCN) [44] and the graph attention network (GAT) [45].

For a graph G = (V, E), V is the set of nodes and E is the set of edges. The initial
feature vector of each atom is Xi, a graph is represented by a feature matrix X ∈ RN∗F

and an adjacency matrix A ∈ RN∗N , where N is the number of nodes, F is the feature
dimension, and the adjacency matrix represents the interaction relationship between nodes.
The propagation mechanism of the GCN layer is described in Equation (7).

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
(7)

where Ã is the adjacency matrix added to a self-loop, D̃ is the degree matrix of the graph,
and H(l) represents the feature matrix of the lth layer. H(l+1) represents the output of the
feature representation after message propagation. σ is the ReLU activation function. W is a
learnable weight matrix. The input layer H(0) is equal to the input feature matrix X.

GAT learns the hidden representation of nodes based on the self-attentive mechanism.
First, the nodes are linearly transformed by a weight matrix W ∈ RF′∗F, and F′ denotes the
feature dimension of hidden layer nodes. For a given node i, the attention coefficient with
its neighbour j is calculated by Equations (8) and (9). The attention weights are then nor-
malized with their neighbouring nodes using the Softmax function to ensure that the sum
of attention weights of all neighbouring nodes is equal to one, indicating the importance
between node pairs. The LeakyReLU activation function is used to improve the model’s
stability and robustness, especially when processing negative inputs, outperforming the
ReLU activation function [45]. Equation (10) aggregates the features of neighbouring nodes
according to the attention score to obtain the feature representation of the hidden layer.

eij = a
(
WXi‖WXj

)
(8)
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αij = softmax
(
eij
)
=

exp
(
LeakyReLU

(
eij
))

∑k∈Ni
exp(LeakyReLU(eik))

(9)

hi = σ

(
∑

j∈Ni

αijWXj

)
(10)

where Xi is feature vector of node i, Ni is the set of neighbouring nodes of node i, eij denotes
the attention coefficient between node i and node j, αij denotes the normalized attention
coefficient, hi is the hidden layer feature of node i, σ is the non-linear activation function,
and a, W is the learnable weight matrix.

In MSGNN-DTA, node-level feature representations z ∈ RN∗F are learned through
three consecutive GNN layers. To obtain representation vectors of the same length for
drugs containing different atom numbers and proteins with different residue numbers,
we add pooling layers after the last GNN layer, aggregating node-level features to obtain
graph-level representations. Finally, a 128-dimensional vector is obtained by several fully
connected and dropout layers.

Gated Skip-Connection Mechanism

To aggregate neighbour information at long distances in a specific central atom, stack-
ing multiple GNN layers is necessary. However, the side effects of gradient disappearance
and node degradation appear as the number of GNN layers increase. We incorporate a
gated skip-connection mechanism [46] in the representation learning of each hidden layer,
fusing features from different hidden states by adjusting the rate of forgetting and updating.
Along with the increase in model depth, each node can aggregate the information carried
by remote nodes and preserve the unique features of the node themselves.

The gated skip-connection mechanism is described in Equations (11) and (12).

zi = sigmoid
(

U1H(l+1)
i + U2H(l)

i + b
)

(11)

H(l+1)
i = zi H

(l+1)
i + (1− zi)H(l)

i (12)

where U1 and U2 are trainable parameters, b is bias, H(l)
i and H(l+1)

i denote the lth and
l+1th layer feature vectors of node i, respectively, and zi is the learned proportion coefficient
that retains the information of the previous hidden layer. Here we have chosen a sigmoid
activation function to ensure that the learned proportion coefficient falls within the range
of 0 to 1.

4.5. Prediction of Drug–Target Binding Affinity

With three representation learning modules running in parallel, we obtain drug atom-
level (Zd), drug motif-level (Zm), and protein (Zp) representations. The three parts are
concatenated into a complete vector and then fed into three consecutive fully connected
layers to predict DTA.

Compared with many previous models that employ simple concatenation, the at-
tention mechanism allows the model to adaptively integrate the critical features, further
improving prediction accuracy. Let αd, αm, and αp denote the attention scores of Zd, Zm,
and Zp, respectively. Firstly, the weight scores wd, wm, and wp are calculated by Equa-
tion (13). Here we choose the tanh activation function, which increases the speed of
model convergence.

wi = W2 tanh(W1Zi) i = d, m, p (13)

where W1 and W2 are learnable weight vectors and can be adjusted during training, and
then normalized using by the Softmax function to map the above-learned weight scores to
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the (0,1) interval to obtain the attention scores, which represent the importance of each part
in determining the final prediction.

αi = softmax(wi) =
ewi

ewd + ewm + ewp
(14)

Finally, we connect the three components of the representation by the learning atten-
tion scores.

Zc = αdZd‖αmZm‖αpZp (15)

where Zc denotes the connected feature vector of the drug–target pair.

5. Conclusions

The study proposes a novel approach, MSGNN-DTA, for predicting drug–target
binding affinity that integrates multi-scale topological features using graph neural networks.
We concurrently construct drug atom-level graphs, motif-level graphs, and weighted
protein graphs for learning enhanced multi-scale features that represent the rich information
of drugs and proteins. The novelty of this approach lies in its ability to capture the multi-
scale topological features of drugs and proteins and fuse them adaptively using an attention
mechanism. This allows for more a accurate prediction of the drug–target binding affinity
and has the potential to aid in the development of more effective and safe drugs with fewer
adverse effects.

The proposed method is evaluated through a series of experiments, which demonstrate
it outperforms existing state-of-the-art models in all evaluation metrics, indicating its
potential as a powerful tool for accurate DTA prediction. Furthermore, we conducted an
analysis of candidate drugs for the epidermal growth factor receptor (EGFR) based on
FDA-approved drugs, and the predicted scores of drugs known to interact with EGFR
were consistently ranked among the top positions, further validating the effectiveness
and generalization ability of the proposed method. These results collectively highlight
the potential of MSGNN-DTA as an efficient and reliable approach for advancing drug
discovery and design. These results collectively highlight the potential of MSGNN-DTA as
an efficient and reliable approach for advancing drug discovery and design.

In future work, we plan to investigate the feature representation learning process
further by integrating a broader range of features, including evolutionary, structural, func-
tional, and physicochemical features, among others. Additionally, we will explore the
construction of networks using similarity matrices to enhance the accuracy of DTA predic-
tion. Our research directions aim to continue advancing the field of drug–target interaction
prediction and contribute to the development of more effective therapeutic interventions.
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DTA Drug–Target Binding Affinity
GNNs Graph Neural Networks
CNN Convolutional Neural Networks
GCN Graph Convolutional Network
GAT Graph Attention Network
SMILES Simplified Molecular Input Line Entry Specification
MSA Multiple Sequence Alignment
MSE Mean Squared Error
CI Concordance Index
r2

m Regression Towards the Mean
Kd Dissociation Constants
Ki Inhibition Constant
IC50 Half-Maximal Inhibitory Concentration
PYG PyTorch Geometric
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