Skip to main content
. 2023 May 5;24(9):8326. doi: 10.3390/ijms24098326

Table 2.

Performance evaluation of the DTA prediction models on the Davis dataset.

Methods Proteins Compounds MSE ↓ CI ↑ rm2 Pearson ↑
KronRLS Smith–Waterman Pubchem-Sim 0.379 0.871 0.407 -
SimBoost Smith–Waterman Pubchem-Sim 0.282 0.872 0.644 -
DeepDTA CNN CNN 0.261 0.878 0.630 -
WideDTA CNN + PDM CNN + LMCS 0.262 0.886 - 0.820
GraphDTA CNN GIN 0.229 0.893 - -
GEFA GCN GCN 0.228 0.893 - 0.847
MGraphDTA MCNN MGNN 0.207 0.900 0.710 -
WGNN-DTA GCN GCN 0.208 0.900 0.692 0.861
WGNN-DTA GAT GAT 0.208 0.903 0.691 0.863
DGraphDTA GCN GCN 0.202 0.904 0.700 0.867
MSGNN-DTA GAT GAT + GAT 0.195 0.906 0.719 0.871

Note: Bold indicates the best result in the evaluation metrics. These results are not reported from original studies.