Skip to main content
. 2023 May 5;24(9):8326. doi: 10.3390/ijms24098326

Table 3.

Performance evaluation of the DTA prediction models on the KIBA dataset.

Methods Proteins Compounds MSE ↓ CI ↑ rm2 Pearson ↑
KronRLS Smith–Waterman Pubchem-Sim 0.411 0.782 0.342 -
SimBoost Smith–Waterman Pubchem-Sim 0.222 0.836 0.629 -
DeepDTA CNN CNN 0.194 0.863 0.673 -
WideDTA CNN + PDM CNN + LMCS 0.179 0.875 - 0.856
GraphDTA CNN GAT − GCN 0.139 0.891 - -
MGraphDTA MCNN MGNN 0.128 0.902 0.801 -
WGNN-DTA GCN GCN 0.144 0.885 0.781 0.888
WGNN-DTA GAT GAT 0.130 0.898 0.791 0.899
DGraphDTA GCN GCN 0.126 0.904 0.786 0.903
MSGNN-DTA GAT GAT + GAT 0.117 0.908 0.818 0.910

Note: Bold indicates the best result in the evaluation metrics. These results are not reported from original studies.