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Abstract: Transition-metal-doped boron nanoclusters exhibit unique structures and bonding in
chemistry. Using the experimentally observed seashell-like borospherenes C2 B28

−/0 and Cs B29
− as

ligands and based on extensive first-principles theory calculations, we predict herein a series of novel
transition-metal-centered endohedral seashell-like metallo-borospherenes C2 Sc@B28

− (1), C2 Ti@B28

(2), C2 V@B28
+ (3), and Cs V@B29

2− (4) which, as the global minima of the complex systems, turn out
to be the boron analogues of dibenzenechromium D6h Cr(C6H6)2 with two B12 ligands on the top
and bottom interconnected by four or five corner boron atoms on the waist and one transition-metal
“pearl” sandwiched at the center in between. Detailed molecular orbital, adaptive natural density
partitioning (AdNDP), and iso−chemical shielding surface (ICSS) analyses indicate that, similar to
Cr(C6H6)2, these endohedral seashell-like complexes follow the 18-electron rule in bonding patterns
(1S21P61D10), rendering spherical aromaticity and extra stability to the systems.

Keywords: first-principles theory; seashell-like metallo-borospherenes; structures; bonding; spherical
aromaticity

1. Introduction

Extensive joint photoelectron (PE) spectroscopy and first-principles theory investiga-
tions in the past two decades have unveiled a great structural diversity in boron nanoclus-
ters featuring multi-center-two-electron (mc-2e, m ≥ 3) bonding, including the planar or
quasi-planar (2D) Bn

−/0 (n = 3–38, 41, 42) [1–3], cage-like D2d B40
−/0 and C3/C2 B39

− [4,5],
and bilayer D2h B48

−/0[6], with the smallest seashell-like C2 B28
−/0 [7] and Cs B29

− [8]
observed in gas phases competing with their 2D counterparts in experiments. Based on the
experimentally observed cage-like B40

−/0 and B39
−, the borospherene family have been

extended to the Bn
q series (n = 36−42, q = n− 40) in theory [9–11]. Theoretical investigations

have shown that metal-decorated seashell-like B28 may serve as effective potential hydrogen
storage materials [12]. The first theoretically predicted perfect cage-like B80 in 2007 [13,14]
spurred renewed interest in all-boron fullerenes although it was later proved to favor
core–shell structures. The bilayer structural motif observed in B48

−/0 has been extended to
B48-B72 and B84–B98 at the density functional theory (DFT) level, with a bilayer bottom-up
approach based on the experimentally observed C6v B36 proposed for the observed bilayer
BL-α+ borophenes on Ag (111) [15–19]. Mononuclear core–shell B68, B74, B80, B84, B96, B100,
B101, B102, and B112 and binuclear core–shell Cs B180 ((B12)2@B156), Cs B182 ((B12)2@B158),
and Cs B184 ((B12)2@B160) with two interconnected icosahedral B12 cores at the center have
also been predicted at DFT, with Cs B112 and Cs B184 as the most stable mononuclear and
binuclear species reported to date in thermodynamics [20–27], respectively. Transition-
metal doping proves to induce dramatic structural changes in boron nanoclusters. Perfect
transition-metal-centered wheel-like D8h Co©B8

−, D9h M©B9
−(M = Rh, Ir, Re), and D10h
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M©B10
−(M = Ta, Nb), [28–30] half-sandwich C3v CoB12

− and IrB12
−, and double–ring

tubular drum-like D8d CoB16
−, MnB16

−, and RhB18
−, Cs B2–Ta@B18

−, and D10d Ta@B20
−

have been observed in experiments [31–34], with Ta@B20
− possessing the highest coordina-

tion number of CN = 20 in tubular species [35]. Perfect lanthanide-metal-doped inverse
sandwich Dnh La2Bn

− (n = 7–9) and spherical trihedral metallo-borospherenes La3B18
−

and Tb3B18
− have also been reported in experiments [36,37]. With inspirations from these

experimental observations, our group predicted the smallest core–shell spherical trihe-
dral metallo-boronospherene D3h La3[B2@B18]−, perfect spherically aromatic tetrahedral
metallo-borospherenes Td La4B24 and core–shell Td La4B29

0/+/− (La4[B@B4@B24]0/+/−),
endohedral metallo-borospherenes Oh La6&[La@B24]+/0, and the spherically aromatic
trihedral metallo-borospherene D3h La6B30 in a series of recent papers [38–41]. Spheri-
cal trihedral metallo-borospherenes and endohedral Complexes of B20TMn (TM = Sc, Y;
n = 3, 4) were predicted recently [42]. The Ta-centered metallo-borospherenes Ta@B22

−

and Ta@Bn
q (n = 23–28, q = −1–3) which follow the 18-electron rule, the smallest trihe-

dral metallo-borospherene D3h Ta3B12
− with three equivalent octacoordinate Ta centers

in three η8–B8 rings, and spherical tetrahedral metallo–borospherene Td Ta4B18 with four
equivalent nonacoordinate Ta centers in four η9–B9 rings conforming to the 18-electron
principle were proposed recently [43–46]. Alkaline-earth-metal-centered M@B40 (M = Ca,
Sr) [47] and actinide-metal-centered U@B40 [48] were also predicted in theory. However,
to the best of our knowledge, spherically aromatic transition-metal-centered endohedral
metallo-borospherenes based on the experimentally observed seashell-like C2 B28

−/0 and
Cs B29

− as the global minima (GM) of the systems have not been reported in the literature.
As boron analogues of benzene (D6h C6H6), the experimentally observed quasi-planar

C3v B12 with three delocalized π bonds was first utilized as ligands to form the perfect
sandwich-like complex D3d Cr(B12)2 [49,50]. Unfortunately, such a manually designed
complex appears to be a high-lying local minimum of the system unlikely to be produced
in experiments. Using the experimentally observed smallest seashell-like borospherenes
C2 B28

−/0 and Cs B29
− as ligands which contain two B12 ligands on the top and bottom

interconnected by four or five corner boron atoms on the waist and based on extensive
GM searches augmented with first-principles theory calculations, we predict in this work a
series of transition-metal-centered seashell-like metallo-borospherenes C2 Sc@B28

− (1), C2
Ti@B28 (2), C2 V@B28

+ (3), and Cs V@B29
2−(4) which, as the GMs of the systems with two

interconnected B12 ligands on the top and bottom and one transition metal center as the
“pearl” sandwiched in between, follow the 18-electron rule in bonding patterns, making
the transition-metal-doped boron complexes spherically aromatic in nature, highly stable
in both thermodynamics and dynamics and possible to be targeted in future experiments.

2. Results and Discussions
2.1. Structures and Stabilities

The obtained transition-metal-centered seashell-like metallo-borospherenes C2 Sc@B28
−

(1), C2 Ti@B28 (2), C2 V@B28
+ (3), and Cs V@B29

2− (4) as the GMs of the systems at PBE0/6-
311+G(d) [51], TPSSh/6-311+G(d) [52,53], and CCSD(T)/6-31G(d) [54,55] levels are collec-
tively depicted in Figure 1, with more alternative low-lying isomers summarized in Figures
S1–S4 (ESI†). The isovalent Sc@B28

− (1), Ti@B28 (2), and V@B28
+ (3) with the calculated

coordination energies of Ec = 9.56, 7.83, 7.57 eV and lowest calculated vibration frequencies
of 181.13, 186.63, 184.70 cm−1 at PBE0, respectively, turn out to have similar seashell-like
structures in the same symmetry as their parent C2 B28 ligand [7], with two B12 ligands
on the top and bottom interconnected by four corner boron atoms on the waist and one
transition metal pearl comfortably sandwiched in between. These axially chiral endohedral
metallo-borospherene complexes contain a slightly distorted C2 B16 double-ring tube as
the basis of the seashell-like structures, two heptagonal windows on the right and left,
and thirty-six B3 triangles on the cage surface, with a transition metal center sandwiched
comfortably inside the B28 cage along the C2 molecular axis on the upper end of the B16
double-ring tube (see detailed coordination bond lengths tabulated in Table S1). C2 Sc@B28

−
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(1), Ti@B28 (2), V@B28
+ (3) possess the large calculated HOMO-LUMO energy gaps of ∆Egap

= 2.10, 2.97, and 3.20 eV at PBE0, respectively, well supporting their high chemical sta-
bilities. It is noticed that the second isomer C2 Sc&B28

− (1b) in Figure S1, an exohedral
metallo-borospherene with an octacoordinate Sc atom at the lower end of the B16 double-
ring tube, is actually iso-energetic with Sc@B28

− (1) at CCSD(T), suggesting that the two
degenerate C2 isomers may coexist in experiments, while, as shown in Figures S2 and S3,
the endohedral Ti@B28 (2) and V@B28

+ (3) are 0.18 eV and 0.04 eV more stable than their
second lowest-lying isomers at CCSD(T), respectively. Triplet and quintet isomers prove to
be at least 0.85 eV less stable than their singlet GMs.
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Figure 1. Optimized structures of the transition metal-doped seashell-like endohedral metallo-borospherenes
C2 Sc@B28

−(1), C2 Ti@B28 (2), C2 V@B28
+ (3), and Cs V@B29

2− (4) at PBE0/6-311+G(d) level.

The optimized V-centered Cs V@B29
2− (4) also possesses a seashell-like endohedral

structure in the same symmetry as its parent ligand Cs B29
− [8]. It contains two B12 lig-

ands on the top and bottom interconnected by five corner boron atoms on the waist, two
equivalent octagonal windows on the right and left sides, and thirty-eight B3 triangles
on the cage surface, with a vanadium center coordinated inside. With a large calculated
HOMO-LUOM energy gap of ∆Egap = 2.39 eV, coordination energy of Ec = 4.79 eV and one
small imagery vibrational frequency at −54.30 cm−1, Cs V@B29

2−(4) appears to be the vi-
brationally averaged GM of the system between two slightly distorted C1 V@B29

2− isomers
(4b in Figure S4) in an a” vibrational mode in which the top B atom and V center swinging
left and right reversibly. With zero-point corrections included, Cs V@B29

2−(4) turns out to
be 0.02 eV and 0.06 eV more stable than the second seashell-like isomer C1 V@B29

2− (4b)
and third tubular isomer Cs V@B29

2− (4c) at CCSD(T), respectively (Figure S4). Triplet and
quintet isomers are found to be 0.74 eV and 1.81 eV less stable than singlet Cs V@B29

2−(4) at
PBE0 level, respectively, and all the other isomers lying at least 0.15 eV higher than the Cs
GM (4).

Detailed natural bonding orbital (NBO) [56] analyses indicate that transition metal
centers in Sc@B28

− (1), Ti@B28 (2), V@B28
+ (3), and V@B29

2− (4) possess the net atomic
charges 0.76, 0.36, -0.33, and -0.37 |e|, electronic configurations of Sc ([Ar]4s0.193d1.42),
Ti ([Ar]4s0.213d2.02), V ([Ar]4s0.223d4.26), and V ([Ar]4s0.203d4.48), and total Wiberger bond
orders of 4.03, 6.02, 6.70, and 6.44, respectively. Obviously, transition metal coordination
centers in these complexes donate their 4s2 electrons almost completely to the boron ligands,
while in return, accept partial electrons in their partially filled 4d orbitals from the boron
ligands via effective π→3d back-donations, enhancing the thermodynamical stabilities
of systems.

Extensive Born–Oppenheimer molecular dynamics (BOMD) [57] simulations on Sc@B28
−

(1) at 600 K, Ti@B28 (2) at 700 K, and V@B29
2− (4) at 700 K in Figure S5 clearly indicate that

these seashell-like transition metal boron complexes are highly dynamically stable at high tem-
peratures, as evidenced by their small calculated root-mean-square-deviations of RMSD = 0.09,
0.10, 0.10 Å and maximum bond length deviations of MAXD = 0.30, 0.32, 0.33 Å, respectively.
No high-lying isomers were observed during the simulations in 30 ps, with the basic structural
motifs of the complex systems well maintained in reversible thermal vibrations.

2.2. Bonding Pattern Analyses

To better comprehend the high stabilities of these seashell-like endohedral complexes,
detailed adaptive natural density partitioning (AdNDP) [58,59] bonding analyses are
performed on Ti@B28 (2) and V@B29

2− (4) in Figure 2, in comparison with that of the
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prototypic sandwich complex D6h (C6H6)2Cr. As indicated in Figure 2a, D6h (C6H6)2Cr
possesses 12 2c-2e C-C σ bonds and 12 2c–2e C–H σ bonds on the two C6H6 ligands with
the occupation numbers ON = 1.95 |e|. Its remaining nine delocalized coordination bonds
include 3 7c–2e C6 (π)–Cr (dπ/σ) bonds between the Cr center and C6H6 ligand on the top,
3 7c-2e C6 (π)–Cr (dπ/σ) bonds between the Cr center and C6H6 ligand at the bottom, and
3 13c C6 (π)–Cr (dπ/σ)–C6 (π) bonds between Cr center and the two C6H6 ligands with
ON = 1.93~2.00 |e|, well demonstrating that D6h (C6H6)2Cr satisfies the 18-electron rule.
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with the occupation numbers (ON) indicated.

Detailed AdNDP analyses presented in Figure 2b indicate that neutral seashell-like C2
Ti@B28 (2) contains 34 3c–2e σ bonds on 34 B3 triangles on the cage surface and 1 4c–2e σ

bond shared by two edge-sharing B3 triangles on the upper end, forming the σ-framework
of the seashell-like complex. Its remaining nine delocalized coordination bonds include
three 13c–2e B12 (π)–Ti (dπ/σ) bonds between the Ti center and B12 ligand on the top,
three 13c–2e B12 (π)–Ti (dπ/σ) between the Ti center and B12 ligand at the bottom, and
three 27c–2e B13 (π)–Ti (dπ/σ)–B13 (π) bonds mainly between Ti and its two B12 ligands on
the top and bottom with ON = 1.88~2.00 |e|. Such a delocalized coordination bonding
pattern possesses a one-to-one correspondence relationship with that of D6h (C6H6)2Cr in
Figure 2a, indicating that, similar to (C6H6)2Cr, Ti@B28 (2) follows the 18-electron principle
in coordination bonding pattern. Both the isovalent C2 Sc@B28

− (1) and C2 V@B28
+ (3) are

found to follow similar bonding patterns (Figure S6).
Cs V@B29

2− (4) appears to possess a similar bonding pattern. As shown in Figure 2c,
it has 38 3c–2e σ bonds on 38 B3 triangles on the cage surface, forming the σ-framework of
the B29

− ligand. The remaining nine delocalized coordination bonds include three 13c–2e
B12 (π)–V(dπ/σ) bonds between the V center and B12 ligand on the top, three 13c–2e B12
(π)–V (dπ/σ) between the V center and B12 ligand at the bottom, and three 27c–2e B14 (π)–V
(dπ/σ)–B12 (π) bonds mainly between V and its two B12 ligands on the top and bottom
with ON = 1.91~1.99 |e|, again well corresponding to bonding pattern of D6h (C6H6)2Cr
in Figure 2a, showing that V@B29

2− (4) also matches the 18-electron rule in coordination
bonding pattern.

The eigenvalue spectra of D6h (C6H6)2Cr, C2 Ti@B28 (2), and Cs V@B29
2− (4) compared

in Figure S7 indicate that these transition metal-centered complexes possess nine delo-
calized atomic-like canonical molecular orbitals (CMOs) in the pseudo-superatomic [60]
electronic configuration of 1S21P61D10 via effective spd-π interaction/hybridizations, indi-
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cating that they follow the 18-electron principle and match the 2(n + 1)2 electron counting
rule (n = 2), making them spherically aromatic in nature and chemically stable both ther-
modynamically and dynamically.

The calculated iso-chemical shielding surfaces (ICSSs) [61] of Ti@B28 (2) and V@B29
2−

(4) based on the ZZ components of the calculated nuclear-independent chemical shifts
(NICS-ZZ) shown in Figure 3a,c appear to be similar with that of the experimentally
known spherically aromatic C2 B28 (Figure 3b) [7] and Cs B29

− (Figure 3d) [8], respectively,
well supporting the spherical aromaticity of these endohedral seashell-like endohedral
complexes. The spaces inside the boron cage or within 1 Å above the cage surface in vertical
directions with negative NICS–ZZ values belong to chemical shielding regions (highlighted
in yellow), while the belt-like region outside the cage in the horizontal direction around the
waist belongs to the chemical de-shielding area (highlighted in green).
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−,

respectively.

2.3. IR, Raman, and PE Spectral Simulations

Joint experimental spectroscopic and first-principles theory investigations have proven
to be the most effective method to characterize gas phase clusters [62]. The infrared (IR)
and Raman spectra of C2 Sc@B28

− (1), C2 Ti@B28 (2), and Cs V@B29
2− (3) are simulated at

PBE0/6-311+G(d) in Figure 4 to facilitate their future spectroscopic characterizations. As
shown in Figure 4a, C2 Sc@B28

− (1) exhibits strong IR active peaks at 257 (a), 461 (b), 593
(a), 872 (a), 912 (a), 936 (b), 1030 (a), 1210 (a), and 1365 (a) cm−1 which mainly belong to the
vibrational modes of the B28 skeleton, while its strong Raman active vibrations occur at 181
(a), 258 (b), 411 (a), 515 (a), 621 (a), 1210 cm−1 (a), with the 411 cm−1 (a) peak corresponding
to typical “radial breathing mode” (RBM) [63] of the C2 B28 ligand which can be used to
characterize hollow boron nanostructures. The IR and Raman spectra of Ti@B28 (Figure 4b)
is similar to that of Sc@B28

−, with the IR active vibrational modes at 268 (a), 351 (b), 403 (a),
935 (a), 1050 (a), and 1400 (a) and Raman active vibrations at 187 (a), 245 (b), 410 (a), 530 (a),
and 631(a) cm−1, respectively, with the 530 cm−1 (a) peak belonging to typical RBM. The
strong IR peaks of V@B29

2− (4) occur at 306 (a′), 441 (a′), 572 (a′), 850 (a′), 1022 (a′ ′), 1234
(a′ ′), and 1386 (a′ ′), while its Raman features are located at 253 (a′), 499 (a′), 557 (a′), 648
(a′), 854 (a′ ′), 1100 (a′), and 1373 (a′ ′) (Figure 4c). Simulated IR and Raman spectra of (a) C2
V@B28

+ are shown in Figure S8.
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The red bars in (d), (e,f) stand for the positions of calculated PE features, with the long and short red
bars in (e,f) representing triplet and singlet final states in the neutrals, respectively.

The simulated PE spectra of C2 Sc@B28
− (1) and C1 Ti@B28

− and Cs V@B29
− derived

from C2 Ti@B28 (2) and Cs V@B29
2− (4) are shown in Figure 4d–f using the time-dependent

TD-PBE0/6-311+G(d) approach [64,65], with their first calculated vertical detachment ener-
gies (VDEs) located at 3.55, 2.73, and 3.36 eV and first adiabatic detachment energies (ADEs)
located at 3.33, 2.41, and 3.21 eV, respectively. Detachment of one electron from singlet C2
Sc@B28

− (1) leads to doublet final states in its neutral, with the major spectroscopic features
at 3.55, 3.73, 4.18, 4.57, 5.10, 5.30, 5.61, 5.75, 6.21, and 6.43 eV, respectively (Figure 4d). De-
tachment of one electron from the open-shell doublet C1 Ti@B28

− and Cs V@B29
− generates

both singlet or triplet final states in their neutrals, with the major spectral peaks located at
2.73, 3.55, 3.92, 4.19, 4.55, 5.31, 5.83, and 6.12 eV for Ti@B28

− and 3.36 3.66, 4.00, 4.30, 4.74,
5.29, and 6.36 eV for V@B29

−, respectively (Figure 4e,f).

3. Computational Details

Extensive GM searches were performed on Sc@B28
−, Ti@B28, and V@B28

+, V@B29
2−

at DFT level with electronic multiplicities considered, using both the TGmin2 [66,67] and
Minima Hopping (MH) [68,69] codes, in conjunction with manual constructions based
on the experimentally observed C2 B28

−/0 and Cs B29
− at PBE/DZVP, with about 3500

stationary points probed for each species on its potential surface. The low-lying isomers
were then fully optimized at both PBE0/6-311+G(d) [51] and TPSSh/6-311+G(d) [52,53]
levels using the Gaussian 09 program, with vibrational frequencies checked to make
sure all the obtained low-lying isomers are true minima of the systems. Single point
CCSD(T)/6-31G(d) calculations were performed on the five lowest–lying isomers to further
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refine their relative energies employing the Molpro (2013) program [54,55], with the T1
diagnostics checked to make sure that multi-reference interactions make non-significant
contributions in these closed-shell complexes. Natural bonding orbital (NBO) analyses
were carried out using the NBO 6.0 program [56]. Extensive Born–Oppenheimer molecular
dynamics (BOMD) simulations were performed on C2 Sc@B28

−(1) at 600 K, C2 Ti@B28
(2) at 700 K, and V@B29

2−(4) at 700 K for 30 ps using the CP2K program [57] utilizing the
hybrid Gaussian and plane waves method, with the GTH–PBE pseudopotential and DZVP–
MOLOPT–SR–GTH basis set for boron and transition metal, respectively. Detailed bonding
analyses were carried out utilizing the adaptive natural density partitioning (AdNDP)
approach [58,59]. Iso-chemical shielding surfaces (ICSS) [61] were calculated using the
Multiwfn 3.8 software [70]. Bonding analyses and ICSS surfaces were visualized using the
visual molecular dynamics (VMD) [71] software. The IR and Raman spectra of C2 Sc@B28

−

(1), C2 Ti@B28 (2), Cs V@B29
2− (4) were simulated at PBE0/6-311+G(d). The PE spectra of

C2 Sc@B28
− (1), C1 Ti@B28

− and Cs V@B29
− were simulated using the time-dependent DFT

approach (TD-DFT) at PBE0/6-311+G(d) level [64,65]. An overall calculation scheme used
in this work is presented in Figure S9.

4. Conclusions

Based on the experimentally observed seashell-like C2 B28
−/0 and Cs B29

− and ex-
tensive first-principles theory calculations, we propose in this work the transition-metal-
centered endohedral seashell-like metallo-borospherenes Sc@B28

− (1), Ti@B28 (2), V@B28
+

(3), and V@B29
2− (4) which, as the boron analogues to the well-known sandwich complex

Cr(C2H6)2 highly stable both thermodynamically and dynamically, follow the 18-electron
rule in coordination bonding patterns and are spherically aromatic in nature. The IR,
Raman, and PE spectra of the concerned species are theoretically simulated to facilitate
their future spectroscopic characterizations in gas-phase experiments via laser ablations of
boron-transition-metal mixed binary targets. Further combined theoretical and experimen-
tal investigations on metal-doped boron complexes are expected to unveil novel structures
and bonding in chemistry and materials science and shed new insights on boron-based
nano-devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28093892/s1, Figure S1: Low-lying isomers of C2 Sc@B28

−

with their relative energies; Figure S2: Low-lying isomers of C2 Ti@B28 with their relative energies;
Figure S3: Low-lying isomers of C2 V@B28

+ with their relative energies; Figure S4: Low-lying isomers
of Cs V@B29

2− with their relative energies; Figure S5: Molecular dynamics simulations of (a) Sc@B28
−

(1) at 600 K, (b) Ti@B28 (2) at 700 K, and (c) V@B29
2− (4) at 700 K; Figure S6: AdNDP Analysis of (a) C2

Sc@B28
− and (b) C2 V@B28

+; Figure S7: Molecular orbital energy levels of (a) D6h (C6 H6)2Cr, (b) C2
Ti@B28 and (c) Cs V@B29

2−; Figure S8: Simulated IR and Raman spectra of (a) C2 V@B28
+; Figure S9: An

overall scheme of the theoretical procedures adapted in this work. Table S1: The bond lengths rSc-B of C2
Sc@B28

−, rTi-B of C2 Ti@B28, rV-B of C2 V@B28 and r’V-B of Cs V@B29
2−; Table S2: Cartesian coordinates

of the optimized low-lying isomers.
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