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Abstract: The control of interfacial thermal conductivity is the key to two—dimensional hetero-
junction in semiconductor devices. In this paper, by using non—equilibrium molecular dynamics
(NEMD) simulations, we analyze the regulation of interfacial thermal energy transport in graphene
(Gr)/hexagonal boron nitride (h-BN) heterojunctions and reveal the variation mechanism of interfa-
cial thermal energy transport. The calculated results show that 2.16% atomic doping can effectively
improve interfacial heat transport by more than 15.6%, which is attributed to the enhanced phonon
coupling in the mid —frequency region (1525 THz). The single vacancy in both N and B atoms can
significantly reduce the interfacial thermal conductivity (ITC), and the ITC decreases linearly with
the increase in vacancy defect concentration, mainly due to the single vacancy defects leading to an
increased phonon participation rate (PPR) below 0.4 in the low-frequency region (0-13 THz), which
shows the phonon the localization feature, which hinders the interfacial heat transport. Finally, a BP
neural network algorithm is constructed using machine learning to achieve fast prediction of the ITC
of Gr/h-BN two-dimensional heterogeneous structures, and the results show that the prediction error
of the model is less than 2%, and the method will provide guidance and reference for the design and
optimization of the ITC of more complex defect-state heterogeneous structures.

Keywords: graphene heterojunctions; molecular dynamics; interfacial thermal conductivity; neural
network prediction

1. Introduction

Following the successful preparation of graphene, it has received widespread attention
in scientific research and industrial fields for its excellent mechanical, optical, electrical, and
thermal properties [1-5], in addition to driving the rapid development of other members
of the two-dimensional materials family. In recent years, scientists have heterogeneously
integrated nanomaterials with small differences in lattice matching to construct specific
functions or to achieve synergistic enhancement of comprehensive material properties [6,7].
For example, the heterogeneous integration of boron nitride and graphene is based on their
identical molecular structures with small lattice differences [8]. However, the formation of
heterogeneous structures of different materials creates interfacial thermal resistance, which
can greatly affect the thermal transport of heterogeneous materials, a fact also demonstrated
in previous reports [9-11]. Therefore, the interfacial thermal management of heterogeneous
materials is an area worthy of further study. Based on its dielectric properties and high
thermal conductivity, nanoscale boron nitride is widely used as a substrate material for
high-performance devices, effectively enhancing the strength and thermal conductivity of
the devices [12-15]. It is well known that defects such as doping and vacancies are inevitable
in the preparation of Gr/h-BN heterojunctions, and it is worthwhile to investigate how
to regulate the interfacial thermal conductivity of heterojunctions and understand their
thermal transport mechanisms through defect engineering.

The influence of defect states on ITCs with heterogeneous structures is rich and com-
plex and it is difficult to comprehensively describe the influencing factors of the properties.
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Moreover, molecular dynamics simulations cannot achieve large-scale optimization to cal-
culate the physical properties through traditional theoretical calculations [16,17]. In recent
years, the use of deep learning to design the properties of heterogeneous composites has
received much attention [18-20], for example, Li et al. [21] used deep learning algorithms to
establish the mapping between the topological properties of artificial phonon crystals and
acoustic wave propagation properties. Deep learning-based neural networks can establish
the intrinsic connection between macroscopic mechanical properties and microstructure,
in addition, to accurately and efficiently predicting the mechanical properties of multi-
component composites. Wan et al. [22] predicted the thermal conductivity under different
types of graphene void distribution using convolutional neural networks and predicted
the graphene pore structure with the lowest thermal conductivity by the model. Inspired
by their work [23-25], we focus on using machine learning to construct BP neural network
algorithms to predict the interfacial thermal conductivity of graphene/h-boron nitride 2D
heterostructures and improve the interfacial heat transport at GR/h-BN heterogeneous
structures interfaces.

In this paper, a non-equilibrium molecular dynamics (NEMD) approach is used
to investigate how to modulate the interfacial thermal energy transport at the GR/h-
BN heterojunction interface. The ITC for doping and vacancy control of the Gr/h-BN
heterogeneous structures is proposed, and the change mechanism is explained in detail
using PDOS and PPR. The results of the simulation calculations are used as a data set
to construct a BP neural network machine learning model for fast prediction of the ITC
of graphene/h-BN heterojunction and compare it with the ITC calculated by molecular
dynamics simulations, and then evaluate the accuracy of the BP neural network model.

2. Model and Computational Methods

We constructed the Gr/h-BN heterogeneous interface model directly in the massive
atomic/molecular massively parallel simulator package (LAMMPS) and performed the
subsequent simulations using the NEMD method [26,27]. In the simulations, Gr/h-BN has a
zigzag shape along the Y-axis and an armchair shape along the X-axis, and all the simulated
systems have dimensions of 1 = 200 A and w = 50 A in the X- and Y-axes, respectively.
According to the basic principles of molecular dynamics, a suitable potential function
needs to be determined to describe the simulated systems to ensure the reliability of the
computational results. Based on the experience of previous studies, we use the optimized
Tersoff potential [28] to characterize the covalent interactions between C, N, and B atoms.
It is important to note that the optimized Tersoff potential predicts the phonon dispersion
curves of graphite in close agreement with experimental measurements [29], and these
potential parameters set for C, N and B interactions, developed by Kinaci et al. [30], which
are especially improved to examine the thermal properties of nanostructures and they
are given in Table 1. To eliminate the size effects, a periodic boundary condition is used
along the y-direction of the Gr/h-BN, and the z and x directions are kept free. In order to
avoid the influence between adjacent layers, a vacuum region with a 15 A space is placed
above the surface of hybrid Gr/h-BN, and a Langevin thermostat was used to control the
temperatures of the cold and hot baths in the X direction as shown in Figure 1a. The N and
B atom doping as well as the single vacancy structure diagrams are shown in Figure 1b.

The Verlet algorithm was used to integrate the equations of motion in time steps of
0.0005 ps. The temperature of the system is controlled by a Nose-Hoover heat bath. After
the modeling is completed, the velocity of motion of the atoms is initialized given the
corresponding temperatures and the model is energy minimized using the most rapid
descent method (CG). The whole system is relaxed for 1 ns using isobaric isothermal
tandem (NPT) and isobaric isothermal tandem (NVT), respectively, to ensure the steady-
state structure. Finally, the equilibrium system is switched to the NVE system to sample the
local temperature and cumulative energy exchange. The interfacial thermal conductivity K
is obtained from Equation (1).

K:H (1)
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where the heat flow and temperature jumps are | and AT, respectively.
Table 1. The optimized Tersoff interatomic potential parameters for C, N, and B [29,30].
Parameters C N B
A (eV) 1393.6 128.86866 40.0520156
B (eV) 430 138.77866 43.132016
AAD 3.4879 2.8293093 2.2372578
u (A1) 2.2119 2.6272721 2.0774982
B 0.00000015724 0.019251 0.0000016
n 0.72751 0.6184432 3.9929061
c 38.049 17.7959 0.52629
d 4.3484 5.9484 0.001587
h —0.930 0.0000 0.5000
RAD 1.95 2.0 2.0
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Figure 1. Calculation of interfacial thermal conductivity ITC using NEMD method. (a) NEMD
temperature distribution map. (b) Atomic doping and vacancy structure diagram. (c) Schematic

diagram of BP neural network.

The transport of phonons between two interface materials can be determined by the
overlap of the phonon density of states between them. PDOS can be determined [31,32]
using the velocity autocorrelation function of the Fourier transform of all atoms and is

calculated by Equation (2).

PDOS(w) = /

“+oo

—0o0

N — N .
<;{2 vi(t0) — vi(t0 + t)>e2mwfdt
i=1

@

where v(t) is the velocity of the ith atom at time ¢, N is the total number of atoms and the
w represents the phonon frequency, and PDOS (w) equal to 0 means that no phonons are

involved at the frequency.
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To quantify the degree of matching in PDOS, the overlap factor S is used to calculate
the matching degree of PDOS, which is calculated by Equation (3).

5= /0 ~ min{Pe, (), Py_p () e 3)

where P¢, (w) and Py, gy (w) denote the PDOS of graphene and #-BN at frequency w, respectively.

It is important to note that we rely on PDOS alone to explain the interfacial heat
transport mechanism too singularly. Therefore, we further capture the phonon activity
and its effect on ITC in heterogeneous structure systems with different vacancy defect
concentrations. The mechanism of ITC variation at different defect concentrations is
revealed by measuring the PPR. MD simulations can be used to calculate the PPR at
arbitrary temperatures, implicitly for all non-tuning and scattering orders, and in our work,
a PPR > 0.4 is used to guarantee the non-localization of most of the phonon modules, and
the PPR is calculated by Equation (4).

1 (T PDOSi(w)Z)Z
N ¥, PDOS;(w)"

PPR(w) (4)

The BP neural network is a more commonly used artificial neural network, and
its topology structure is shown in Figure 1c. The BP neural network is a multilayer pre-
feedback structure, with no information interaction between neuron nodes in the same layer
and information transfer between different layers according to the connection weights. The
error backpropagation and multilayer design of the BP neural network enable it to reflect
the mapping relationship between input and output more accurately in order to accomplish
complex tasks. The transfer function of the BP neural network is divided into linear and
nonlinear, the nonlinear transfer function generally uses the Sigmoid function, which can
be divided into Log-Sigmoid and Tan-Sigmoid functions according to the different ranges
of output values. The BP neural network is trained by error backpropagation, the error is
calculated by the output layer, and the corrected weights are passed forward layer by layer
through the implicit layer, and the BP neural network stops training after the final error
becomes smaller to meet the system requirements through repeated iterations.

{f(x) = == f(x) €[0,1]
flx) = 55 f(x) € [-1,1]

The BP neural network with a single input layer, three hidden layers, and a single
output layer will be built in this study, where the prediction model is set with five input
variables and one output variable, i.e., Gr/h—BN heterojunction ITC, and the specific
parameters are shown in Table 2. The activation function used for this model is trained,
and the other parameters of the network are: learning rate h = 0.01, training number
epochs = 1000, target error goal = 10~°, training step show = 2, and the training samples are
300 interfacial thermal conductivity and mixing defect data (vacancy, doping, temperature)
of heterogeneous structures calculated from molecular dynamics simulations are used as
the input data set, and the Log-Sigmoid function is used as the transfer function for training
and prediction.

©)

Table 2. Neural network model parameters.

Parameters Range of Values Unit
Input Factor N_SV 0-6.48 %
B_SV 0-6.48 %
N_doped 0-6.48 %
B_doped 0-6.48 Y%
Temperature 300-700 K

Output Factor ITC 6.73-14.97 Gw m2K~!
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3. Results
3.1. Effect of Doped

In this subsection, we investigate the effect of the doping concentration of B and N
atoms in the heterogeneous structure on the ITC of Gr/h-BN at different temperatures.
Here, the ratio of doped atoms to available atoms in other regions of the heterojunction
is used as a measure of the atomic doping concentration. As can be seen in Figure 2a, the
ITC of Gr/h-BN gradually enhances and then shows a decreasing trend as the B-atom
doping concentration increases and reaches a peak at 2.16% B-atom doping concentration.
For example, at a temperature of 300 K, 2.16% B-atom doping can increase the ITC to
15.7 Gw m~2K~!. Figure 2b shows that the trend of ITC for the N atom doping case also
follows the same trend of increasing and then decreasing, while the ITC at the heteroge-
neous interface reaches a maximum value of 15.98 Gw m~2K~! when the N atom doping
concentration is 2.16%. It is noteworthy that the variation in ITC follows the above trend
regardless of the ambient temperature and the ITC increases with increasing temperature.
This is because more high-frequency phonons are excited as the temperature rises, adding
more carriers for interfacial thermal transport. Interestingly, as the temperature rises, the
anharmonicity of atomic interactions at the contact likewise does as well. As a result,
inelastic phonon scattering increases the phonon transmission coefficient. The ITC shows a
decreasing trend when the temperature is increased to 700 K. This temperature effect has
been confirmed by previous studies [33]. To elaborate the mechanism of ITC variation, we
calculated the phonon density of states PDOS and the off-plane phonon coupling degree, so
at the near interface (out-of-plane phonons dominate the interfacial heat transfer channel)
we were able to discover the intrinsic mechanism of ITC variation for different B- and
N-atom doping concentration conditions.

As shown in Figure 2c¢, the out-of-plane overlap factor S, rises and then gradually
decreases with the increase in B-atom doping concentration, for example, S, is 3.928 and
3.621 when the B-atom doping concentration is 2.16% and 6.48%, respectively. This is
consistent with the above ITC variation trend, which indicates that the increase in ITC is
due to the enhanced interfacial phonon coupling by B-atom doping. Further, we found that
in the mid-frequency region (15-25 THz), the PDOS of graphene shows a trend of increasing
and then decreasing with the increase in B-atom doping concentration, which reveals that
the thermal control of the Gr/h-BN heterogeneous interface can be achieved by changing
the phonon density of states in the mid-frequency region (15-25 THz). It is noteworthy
that the decrease in S, is larger for N-doping compared to B-doping, mainly due to the
larger relative molecular mass of N atoms, which in turn has a more dramatic effect on the
thermal conductivity of the heterogeneous interface, and the effect is more drastic.

3.2. Effect of the Single Vacancy

This section discusses the effect of single vacancies of B and N atoms in heterojunctions
on ITC. For comparison with the above calculations, the system dimensions were kept
constant (200 A x 50 A) and the temperatures were set to 300-700 K. The ITC values based
on the concentrations of the two types (i.e., N_SV and B_SV) in the heterojunction are
shown in Figure 3a,b. It can be seen that the ITC decreases linearly as the concentration of
single vacancy defects increases, this has the same trend as the previously reported (from
~(1.8 £0.2) x 103 WmK~! to ~(4.0 = 0.2) x 10> W mK~! near room temperature) intrinsic
thermal conductivity of graphene with defective states [34], and the method of measuring
the thermal conductivity of thin films based on Raman spectroscopy proves the correct-
ness of this trend [35]. The ITC of SV-N and SV-B decreased from 13.6385 Gw m 2K~! to
8.377 Gw m 2K ! and 8.646 Gw m 2K}, respectively, when the single vacancy defect
concentration increased from 0 to 6.48%. According to the research, this is mostly because
of increased phonon scattering at the interface brought on by vacancy defects as well as
decreased phonon transmittance, while at the same time, the atomic vacancies introduce
dangling bonds around the defects, completely destroying the integrity of the heterojunc-
tion plane and possibly leading to a reduction in active sites, which negatively affects the
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ITC of the heterogeneous structure. The linear relationship between ITC and vacancies
indicates that covalent bonds, i.e., C-B bonds at the interface, are essential to the heat
transport channel. According to the results, it can be found that the ITC values of SV-B are
higher than those of SV-N as the concentration of single vacancies increases, regardless
of the ambient temperature, for example, 9.855 Gw m~2K~! and 9.476 Gw m2K~! for a
vacancy concentration of 6.48% at a temperature of 500 K. This indicates that ITC is more
sensitive to the introduction of N atomic vacancies than B atomic vacancies, and therefore
we can regulate the heat conduction by introducing N atom vacancies at the interface.

To further comprehend how a single vacancy affects ITC and the distinction between
N_SV and B_SV, we calculated the PPR in the near-interface region in Gr/h-BN at a
temperature of 300 K and observed a significant difference between them. As shown in
Figure 3c,d, the overall PPR decreases with increasing vacancy defect concentration as
the single vacancy is introduced in the heterojunction, and the PPR of B_SV defects is
higher than that of the heterogeneous structure with SV-N defects, which is consistent
with the above ITC observations. For example, when the single vacancy concentration
increases from 0 to 6.48%, the average PPR of N_SV and B_SV decreases to 0.478 and
0.493, respectively. Additionally, in the low-frequency region of 0-13 THz, as the single
vacancy defect concentration increases, more and more phonons have a PPR below 0.4,
whereas theory suggests that a PPR below 0.4 leads to a localized characteristic of phonons
and hinders phonon thermal transport. Although the PPR of phonons increases with the
increase in single vacancy defect concentration in the mid-frequency region (15-20 THz), the
competition between the two (low and mid frequencies) leads to a significant decrease in the
average PPR, i.e., it shows a linear decrease in the ITC of the heterogeneous structure, which
indicates that phonons in the low-frequency region dominate the interface thermal transport
channel. Thus, the above analysis suggests that the increase in the concentration of atomic
single vacancy defects in the Gr/h-BN heterogeneous structure leads to a more severe
phonon mode localization feature, resulting in a blockage of phonon thermal transport at
the interface, which in turn leads to a gradual decrease in ITC.

3.3. The Prediction of ITC

Previous studies [36] have shown that molecular dynamics simulations are time-
consuming and costly to calculate the interfacial thermal conductivity, therefore, in this
paper, the interfacial thermal conductivity of Gr/h-BN heterogeneous structures under
mixed defects is predicted by BP neural networks. To find the optimal number of hidden
layers as well as the number of neurons, this is performed by comparing the average of
Pearson correlation coefficients (R) between the simulated calculated and predicted values
of the training and prediction networks, where R values include the average of R values
of the training set, validation set, test set and all data sets. A combined comparison of the
R-values of the training and prediction networks reveals that the results of the training
network are slightly better when the number of implied layers is three as opposed to one
or two. From Figure 4c, it can be seen that the R-values of both training and prediction
networks are greater than 0.9 when we use the network specifications (5, 20, 20, 20, 1),
where the R-value of all data sets is 0.91618, which can be used in the ITC prediction model.
The R is calculated by (6).

(S1—51)(S2—S2)

where S is the ITC value calculated by molecular dynamics simulation, S; is the predicted
value, S1 and S, is the average of the ITC of the actual and predicted values, respectively,
and 7 is the number of training samples of the model.

It

R= (6)

(S2-52)°

M=

1
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Figure 2. Effect of atomic doping on ITC. (a) Relationship between ITC and B-atom doping concen-
tration. (b) Relationship between ITC and N-atom doping concentration. (c¢) PDOS plots at different
B-atom doping concentrations. (d) PDOS plots at different N-atom doping concentrations.

In this paper, we use Mean Square Error (MSE) to quantitatively characterize the
accuracy of the training model, and Equation (7) is its mathematical expression.

n, (vi— v )2
MSE=Y ~— @)
i=1 i

where yi denotes the actual value, y;, denotes the predicted value, and n; denotes the
amount of data.
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Figure 3. Effect of atomic single vacancies on ITC. (a) Relationship between ITC and N atomic single
vacancy. (b) Relationship between ITC and B atomic single vacancy. (c) PPR at different N atomic
vacancy concentrations. (d) PPR at different B atomic vacancy concentrations.

After several training sessions using the above network specifications, when the
number of iterations is 120, the MSE at this time is 4.1696 x 10~%, which reaches the
target error, and the generalization ability of the convolutional model is the best at this
time, indicating that the training results of this model have met our needs for prediction
accuracy, and the increase in the number of training sessions may lead to overtraining and
overfitting phenomenon, and the decrease in the number of iterations of calculation may
result in the under-fitting. Using ITC as the target of model validation and error analysis,
the comparison between the predicted values and the actual simulated calculated values of
the prediction model is illustrated in Figure 4b, it is clear from the picture that the projected
values are consistent with the changing trend of the simulated calculated values, which
better reflects the change characteristics of ITC under mixed defects. Overall, the prediction
errors are small, all below 2%. The above error analysis results prove the reasonableness of
the input factors selected and the prediction model constructed in this paper and verify
that the model established in this paper is effective in predicting the ITC of mixed defect
state heterojunctions and can be used for the prediction of the ITC of the Gr/h-BN interface.
Using machine learning to predict the ITC of heterogeneous structures avoids the complex
numerical solution process in molecular dynamics simulations and learns the material
characteristic parameters in depth with the help of neural networks, thus realizing fast
prediction of the thermal conductivity of heterogeneous interfaces, and this method will
provide guidance and reference for the design and optimization of ITC of more complex
defect-state heterogeneous structures.
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Figure 4. The results of BP neural network prediction. (a) R-value of each data set. (b) Fitting of
predicted and real simulated calculated values.

4. Conclusions

In conclusion, the interfacial thermal energy transport of GR/h-BN heterostructures
can be modulated by doping and vacancies of N and B atoms. The doping enhancement
mechanism and vacancy regulation mechanism of GR/h-BN heterostructures were system-
atically investigated by using the NEMD method. The analysis of the results shows that
the ITC of the heterogeneous structure can be appropriately enhanced by atomic doping,
and the ITC increases and then decreases with the increase in the doping concentration
of N- and B-atoms, and when the doping concentration reaches 2.16%, the ITC is the
maximum value of 15.98 Gw m2K~! and 15.7 Gw m~2K~!, respectively, and the doping
mainly enhances the ITC by increasing the phonon mode overlap in the mid-frequency
region (15-25 THz). Atomic single vacancies can significantly reduce the ITC of Gr/h-BN
heterojunctions, for example, when the vacancy concentration increases from 0 to 6.48% at
a temperature of 500 K, the ITC values for N and B atomic vacancies are 9.476 Gw m 2K ™!
and 9.855 Gw m 2K ™!, respectively, which is because that in the low-frequency region
(0-13 THz), as the concentration of single vacancy defects increases, more and more
phonons have PPR below 0.4, leading to the localized characteristics of phonons and hin-
dering phonon thermal transport. Meanwhile, we successfully constructed a BP neural
network model that can rapidly predict the ITC of two-dimensional graphene/boron car-
bide heterostructures, and the average values of Pearson correlation coefficient (R) for the
training and test sets reached 0.94 and 0.90, respectively, and the prediction error of the
model was less than 2%.
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