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Abstract: Many biological processes (physiological or pathological) are relevant to membrane proteins
(MPs), which account for almost 30% of the total of human proteins. As such, MPs can serve as
predictive molecular biomarkers for disease diagnosis and prognosis. Indeed, cell surface MPs are
an important class of attractive targets of the currently prescribed therapeutic drugs and diagnostic
molecules used in disease detection. The oligonucleotides known as aptamers can be selected against
a particular target with high affinity and selectivity by iterative rounds of in vitro library evolution,
known as Systematic Evolution of Ligands by EXponential Enrichment (SELEX). As an alternative to
antibodies, aptamers offer unique features like thermal stability, low-cost, reuse, ease of chemical
modification, and compatibility with various detection techniques. Particularly, immobilized-aptamer
sensing platforms have been under investigation for diagnostics and have demonstrated significant
value compared to other analytical techniques. These “aptasensors” can be classified into several
types based on their working principle, which are commonly electrochemical, optical, or mass-
sensitive. In this review, we review the studies on aptamer-based MP-sensing technologies for
diagnostic applications and have included new methodological variations undertaken in recent years.

Keywords: aptamers; aptasensor; biosensor; diagnostics; membrane proteins; SELEX

1. Introduction

The biological membranes are essential for cellular life. They form and organize cells’
defining boundaries, e.g., by separating the interior from the outside environment. Most
cell membranes consist of about half lipid and half protein by weight. Membrane proteins
(MPs) are proteins embedded or attached to biological membranes and are thus classified
as peripheral or integral. Integral MPs fully span the lipid bilayer, while peripheral MPs
partially associate with the lipid bilayer or with integral MPs (Figure 1). MPs are broadly
amphipathic, having hydrophobic and hydrophilic regions, and they distribute asymmetri-
cally through the membrane, with some being modified with carbohydrate moieties [1].
The hydrophobic nature of the lipid bilayer core limits the possible transmembrane protein
structures to α-helix and β-barrel structures. MPs perform most of the specific functions
of membranes. For example, receptors and transporters play critical roles in transmitting
information and molecules into a cell or organelle. Cell receptors sense external cues and
integrate them to respond through coordinated signal transduction pathways. Considering
their important physiological roles, MPs are crucial in medicine, pharmacology, and drug
discovery representing the vast majority of therapeutic drug targets [2]. These clinical
drug targets include channels, transporters, and in particular, G protein-coupled receptors
(GPCRs) [3].
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Figure 1. Simplistic overview of membrane proteins in a lipid bilayer.

Functional characteristics of organelles and cells are determined by the protein com-
positions at different physiological states [4]. Changes in genetic composition or level of
MPs are associated with various diseases, for which rapid and early identification become
possible with the development of specific recognition elements for these MPs [5]. In the
last three decades, nucleic acid aptamers have been selected and optimized for numerous
MPs, and they have become antibody alternatives to be integrated into diagnostic tools.
Here, we summarized “aptasensors” for MPs developed based on electrochemical, optical,
or mass-sensitive technologies. As MPs serve as disease biomarkers and key virulence
factors of bacterial and viral pathogens, we believe that advancements in aptamer-based
diagnostic tools with novel methodological variations will help early diagnosis of diseases
and future events like the COVID-19 pandemic or other unexpected outbreaks.

2. Membrane Proteins: Role in Diseases and Potential as Biomarkers

Approximately 30% of the total human proteome is composed of MPs [4,6]. Having
important physiological roles, MPs are critical in the development and progress of various
pathological conditions. For example, G-protein-coupled receptors (GPCRs) are a well-
characterized class of membrane receptors encoded by more than 800 human genes [7].
They are dynamic signaling receptors that play roles in major signaling pathways, such as
those related to the actions of drugs, toxins, hormones, and neurotransmitters, sensing light
and odors, and regulating water reabsorption and blood calcium levels [8,9]. Acquired
and inherited genetic mutations result in GPCR dysfunctions and, thus, disorders like
retinitis pigmentosa, hypo- and hyperthyroidism, nephrogenic diabetes insipidus, fertility
disorders, and different carcinomas [10]. Channelopathies, such as long QT syndrome and
cystic fibrosis, are another group of disease conditions that can arise from defects in the class
of transmembrane proteins comprising ligand- and voltage-activated ion channels [11,12].
These channels are known to regulate ion and water balance, membrane potentials, and
signal transduction.

Receptor tyrosine kinases (RTKs) involve a class of membrane receptors encoded
by 60 human genes and participate in important functions, such as regulation of cell
survival, metabolism, proliferation, and differentiation [13]. Dysfunctional RTKs result
in developmental problems leading to diseases, including diabetes, atherosclerosis, and
cancer. For example, RTKs are well-studied and targeted therapeutics for cancer [14] and
diabetes [15].

Transporter proteins are another important class of MPs encoded by 10% of human
genes [16,17]. They include families of active, ATP-dependent transporters known as
ATPases that are responsible for cell survival by achieving different ionic equilibria of
sodium, potassium, calcium, and H+ ions (i.e., P-type ATPases) [18,19]. Malfunction in
these transporters leads to various diseases ranging from migraines, heritable deafness,
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and balance disorder to renal diseases, copper-related disorders, and cancers [20,21]. Trans-
porters are emerging as attractive drug targets [22]. Solute carrier (SLC) proteins are a
rich and diverse group of transporters that facilitate the transport of various molecules,
including glucose, amino acids, fatty acids, urea, bile salts, large organic ions, nucleosides,
and neurotransmitters [17]. Defects in SLC transporters, therefore, have implications in
neurodegenerative diseases [23] and many metabolic disorders [17].

ATP-binding cassette (ABC) proteins include a group of transporters with various
unique functions like the transport of peptides, phospholipids, bile materials (e.g., salts,
cholesterol, etc.), and surfactants, and the presentation of antigens [4,24]. Multidrug resis-
tance (MDR)-ABC proteins are involved in the metabolism and transport of many foreign
materials, including endo- and xenobiotics, anticancer drugs, and partially detoxified drug
metabolites. Alterations in the structure and expression of MDR-ABC transporters have
implications for cancer drug resistance and can also alter the toxicity of many drugs [17].

Finally, the epithelial cell adhesion molecule (EpCAM) is a structural MP that plays
various roles in physiological processes and diseases such as cancer [25,26] and is known
to be overexpressed in cancerous cells [27,28]. In cancers, including pancreatic, breast,
colorectal, and prostate, the presence of circulating tumor cells (CTCs) in the peripheral
blood was described [29]. These CTCs detach from primary tumors and enter the circulatory
system, ultimately causing malignancies in distant secondary organs.

A critical factor that unites all the above-mentioned MPs is the outcome of their ab-
normal manifestation (i.e., mutated, overexpressed, etc.), upon which they can potentially
serve as disease biomarkers detectable by diagnostic means [4]. In general, biomarkers
must fulfill the following defining guidelines: (i) are relevant to the phenotype under
investigation, (ii) can be assayed reliably, (iii) readily available (stable) for detection, and
(iv) recognizable by current clinical methods [4]. Infectious diseases caused by pathogenic
agents (e.g., viruses, bacteria, parasites, and fungi) can pose serious public health issues,
so they get significant attention for clinical diagnosis using similar biomarker-based ap-
proaches [30–32]. For example, hemagglutinin (HA) is a well-known surface glycoprotein
of the influenza virus [33] that attracted the development of targeted diagnostic procedures
for HA-driven infections [34]. More recently, angiotensin-converting enzyme II (ACE2) and
the SARS-CoV-2 spike and nucleocapsid proteins have all become important diagnostic
and therapeutic targets in the fight against COVID-19 [35,36].

3. Diagnostic Technologies for Cell Surface Biomarkers

Conventional analytical techniques such as flow cytometry, mass spectrometry, liquid
chromatography, and nuclear magnetic resonance have contributed vastly to the deter-
mination of analyte concentrations (including MPs) and their biochemical and structural
characterization [37–39]. However, when diagnostic applications are considered, such
techniques have major disadvantages, including limited availability, high costs, time con-
sumption, and labor-intensive nature. They do not offer quantitative measurement of
MPs in sensitive and reliable high-throughput assay formats. To tackle these challenges,
antibodies raised against cell surface biomarkers are extensively used for cellular pheno-
typing, functional studies, and assessing expression profiles of MPs. In diagnostics, almost
all hematopoietic diseases, for example, are detected using a panel of antibodies against
a cluster of differentiation (CD) specificities, along with many other molecular imaging
agents [5,40]. Antibodies are also used for the detection of CTCs based on the expression of
epithelial markers, such as EpCAM [41,42]. However, this antibody-based approach can
be limited as CTCs can lose their epithelial characteristics (e.g., EpCAM downregulation)
due to epithelial-mesenchymal transition and can have antigen expression profiles that
are shared with normal cells [29]. In this case, neither can antibodies detect CTCs nor
discriminate between malignant and benign cells.

Flow cytometry is one of the most widely used and accessible antibody-based diag-
nostic methods to evaluate cell surface biomarkers [43]; other antibody-based technolo-
gies include Western blotting, enzyme-linked immunosorbent assays (ELISA), and tissue
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immunostaining [44]. Although immunoassays can be highly efficient and sensitive in
detecting cell surface biomarkers, they have some limitations, including high cost, risks of
interferences, the need for quality controls, labor-intensiveness, the requirement for special
expertise and instrumentation, difficulties in quantifying MPs, and the inaccessibility to
MPs as possible targets.

Biological sensors, on the other hand, have become ubiquitous platforms in many
areas of applied sciences, including clinical diagnostics. These attractive and rapidly
evolving tools are advantageous over many of the other traditional and bulk methods in
several aspects, like providing results fast, on-site, and with minimal sample collection.
In addition to their applicability in biomarker-based diagnosis, biosensors are applied
to drug discovery, forensics, food control, environmental monitoring, and biomedical
research [45–47]. In principle, ideal biosensors must be easy to use, portable, cheap, and up
scalable for mass production. On the technical side, they must (i) respond to their targets
(e.g., MP biomarker) in a highly specific and selective manner, (ii) be stable by resisting
degradation, and (iii) output constant signals that are unaffected by ambient disturbances
(e.g., temperature) to produce precise and reproducible readouts.

The high affinity of the recognition element to its target in the biosensor is a fundamen-
tally important factor that contributes to the sensor’s reliable use, as it should interact with
its target strongly. That is, high-performing biosensors are also defined by their ability to
generate reproducible results with high sensitivity (i.e., low limit of detection) over a wide
concentration range and in a linear fashion. Figure 2 summarizes the two main components
of a typical biosensor and its mechanism. The recognition element interacts with the desired
target based on its affinity, and then the interaction is converted into physically detectable
signals by the signaling component [48–50].
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4. Aptamers and Their Value

Aptamers, often referred to as ‘chemical antibodies’, are typically small-sized RNA or
DNA nucleic acids made up of 20–100 nucleotides [51–54]. These nucleic acid aptamers are
capable of binding to various desired targets such as small molecules (e.g., environmental
and food contaminants, such as ochratoxin A and bisphenol A), proteins, viruses, as well
as whole cells, in a specific manner and with high affinity. Affinities are often reported as
the dissociation constant (Kd) that generally ranges from picomolar (pM) to micromolar
(µM) values.

Aptamers have the propensity to fold into secondary structures like stems, loops,
bulges, pseudoknots, G-quadruplexes, and kissing hairpins that help form unique three-
dimensional (3D) shapes. The high affinity and specificity of aptamers against their cognate
targets are attributed to their 3D structures that often undergo conformational changes
upon target binding. The types of interactions that characterize aptamer-target binding
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include hydrophobic and electrostatic interactions, hydrogen bonds, van der Waals forces,
shape complementarity, and stacking.

In 1990, three different groups contributed independently to the isolation of novel RNA
motifs by an in vitro selection process [55–57]. Tuerk and Gold, particularly, achieved the
first selection using a random pool of RNA sequences against T4 DNA polymerase [55]. The
process of aptamer selection was termed the Systematic Evolution of Ligands by Exponential
Enrichment (SELEX), an iterative procedure involving a certain number of selection rounds
used to continuously enrich a random pool with the sequences potentially having the
highest affinity against a target of interest. Briefly, a SELEX round constitutes three parts:
(i) incubation of the target with the pool, (ii) separation of the bound from unbound
oligos, and (iii) amplification of bound species for use in the next selection round. The
synthetic oligonucleotide libraries used in modern selection studies typically contain about
1015 different random sequences and can be used for selection against virtually any target.

Compared to antibodies, aptamers are highly malleable [58,59]. That is, they are
responsive to different intrinsic (by chemical modifications) or environmental (e.g., ions,
temperature) cues, allowing them to undertake different forms, often without the irre-
versible loss of functional capacity. However, this also dictates a certain level of control to
optimally utilize their capacities for given purposes. Nonetheless, RNA and DNA aptamers
are prone to nuclease degradation; hence, stabilizing modifications might be necessary [60].
For example, RNAs have a half-life of minutes in human serum, while DNAs have a longer
half-life of approximately 60 min. Post-SELEX optimization strategies such as chemical
modifications, truncations, and mutagenesis provide, among other benefits (e.g., enhanced
affinity), stability for the selected aptamers against degradation, favoring their storage and
utilization in both diagnostic and therapeutic applications [61,62]. Although antibodies
have been the most used probes in diagnostics to bind a broad range of targets with high
affinities [63–65], studies have constantly shown that aptamers are worthy candidates to
provide new opportunities and overcome issues related to the use of antibodies as diag-
nostic and therapeutic tools [51,59]. Table 1 lists different examples of aptamers selected
for applications in diagnostics. The availability of such data presents new and possibly
more desirable means outside the conventional to probe targets of interest. Indeed, like
antibodies, aptamers recognize and bind their targets with high affinity and specificity.
However, unlike antibodies, aptamers have little immunogenicity. Their toxicity is also low,
and they can be selected against a broader range of targets, including non-immunogenic
and toxic targets. In terms of size, aptamers are small molecules, allowing penetration
through the blood-brain barrier and versatility to bind small epitopes inaccessible to the
relatively larger antibodies. Regarding the production of antibodies, the process is generally
done in vivo and involves the suffering of animals, yields batch-to-batch variations, and
requires expensive and time-consuming downstream processes [31,66,67]. On the other
hand, the selection of aptamers is a quicker, easier, and cost-effective process, and their
chemical synthesis is highly reproducible and yields aptamers with high purity [59,67,68].

Antibodies are prone to denaturation (especially at high temperatures), frequently lose
their functionality after use once or a few times, and are difficult to label at specific sites.
Furthermore, assays that involve the utilization of antibodies often require immobilizations
and extensive washing and are difficult to perform with homogeneity. Aptamers, on the
other hand, are highly thermostable and renature easily after repetitive denaturation cycles,
can be stored for longer periods of time (years), and can be repeatedly used without any
loss of binding capacity. Their small size allows for achieving higher densities during
immobilization. Aptamers can also be more sensitive compared to antibodies and, thus,
are capable of differentiating target isoforms [69]. Finally, aptamers can be easily inte-
grated onto solid supports such as polymer, carbon nanotube, and metals (e.g., gold) by
means of electrostatic, hydrophobic, and covalent interactions as well as a self-assembled
monolayer. Some linkers commonly used to carry out specific interactions for surface
immobilization include biotin, streptavidin, avidin, neutravidin, and amine-, carboxyl- or
thiol-groups [70–72].
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SELEX is a continuously optimized process to obtain aptamers more efficiently and
with minimal labor. Aptamers as analytical tools with the potential for target detection
by their use in solution-based analyses, their integration into solid supports, or through
in vivo applications, is a topic reviewed in greater detail in previous publications [68,73–75].
So, in the next sections of this review, we re-address this potential briefly, but in the context
of MPs and the diagnosis of MP-related pathologies, with a focus on exploiting different
physicochemical properties for the purpose of biosensing.

Table 1. Aptamers were selected recently against MPs (from 2011 to 2022). These MP-targeting
aptamers can be integrated into aptasensor arrays for future diagnostic applications.

Aptamer Name Target Protein Backbone Aptamer Applications Reference

EpCAM aptamer

The transmembrane
Glycoprotein epithelial

cellular adhesion molecule
(EpCAM).

DNA Important candidate for deep-tumor
treatment and drug delivery. [76]

Aptamer 1-717
The transmembrane p24

trafficking protein 6
(TMED6)

RNA

Easily conjugatable aptamers with
imaging reagents for β cell mass

quantification and RNA therapeutics
for the efficient non-viral

transfection of human β cells

[77]

C7 aptamer SARS-CoV-2 Spike (S)
protein DNA Sensitive sandwich-FLAA test for

SARS-CoV-2 detection [78]

CoV2-RBD-1C RBD protein S SARS-CoV-2 DNA COVID-19 disease biomarker
detection [79]

CA125 aptamer
Blood tumor marker,

carbohydrate antigen 125
(CA125)

RNA Ovarian cancer detection [80]

I17 aptamer Intercellular Adhesion
Molecule-1 (ICAM-1) DNA Early detection of atherosclerosis [81]

Np-A48 aptamer SARS-CoV-2 nucleocapsid
protein (Np) FQ-ssDNA Diagnostic tools for COVID-19 [82]

MSA1 and MSA5
SARS-CoV-2 spike protein

(S1 protein) DNA Diagnostic tools for COVID-19 [83]

V11 and V21 Enterovirus 71 (EV-A71
protein) DNA Early detection and treatment of

EV-A71 [84]

S6-1b Glioma SHG44 cells ssDNA
Effective molecular diagnostic tools
to detect early stages of malignant

gliomas
[85]

40L and A40s Ephrin type-A receptor 2
(EphA2) RNA Radiotherapy and chemotherapy for

glioblastoma (GBM) treatment [86]

Aptamer-protamine-
siRNA nanoparticle

(APR)
ErbB3 positive MCF-7 cells RNAi Genetic treatment for breast cancers [87]

V8 and V13 Vibrio vulnificus ssDNA Detection of Vibrio vulnificus [88]

R3, R5 and R11 Rice black-streaked dwarf
virus (RBSDV) P10 protein DNA

Potential for use in detection of
RBSDV P10 protein in vitro and

in vivo
[89]

HBA1 and HBA2
Avian influenza (AI)

surface protein
hemagglutinin

ssDNA
Effective molecular probes for
diagnosing H5N1. Therapeutic

inhibition of viral surface proteins
[90]

SYL3C and NC3S
EpCAM and N-cadherin as

CTCs acquire
mesenchymal marker

ssDNA A promising tool for capturing
CTCs from clinical samples [91]

M17 MMP14 DNA Tumor imaging, cancer therapy [92]

ApC1 Colorectal carcinoma
Caco-2 cells DNA Targeted therapy for colorectal

cancer [93]
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Table 1. Cont.

Aptamer Name Target Protein Backbone Aptamer Applications Reference

XQ-2d Membrane-bound CD71
protein of pancreatic cells ssDNA Promising tools for cancer

biomarkers diagnosis and therapy [94]

Apt5 PD-L1 DNA Cancer cell imaging, CTC
enrichment [95]

ECD_Apt1

His-tagged human
epidermal growth factor

receptor 2
(HER2)–extracellular

domain (E. coli system)

DNA

An effective, low-cost alternative to
conventional anti-HER2 antibodies
in solid-phase immunoassays for

cancer diagnosis and related
applications

[96]

Heraptamer1 and
Heraptamer2

HER2 overexpressed in
SKOV3 ovarian cancer cells DNA PET imaging of radiolabeled HER2

in vivo [97]

GL56 Insulin Receptor (IR) 2′F-RNA
Inhibition of IR signaling, reduction

of cell viability, and targeted
therapies

[98]

MRP1-CD28 bivalent
aptamer

Multidrug
resistant-associated
protein-1 (MRP1)

2′F-RNA Reduction of cell growth in vitro
and improved survival in vivo [99]

Apt02, Apt09, Apt10 Integrin αv RNA A new SELEX method was
developed: “Isogenic cell-SELEX” [100]

Integrin α6β4-specific
DNA aptamer (IDA) Integrin α6β4 DNA Imaging (confocal) applications and

drug delivery [101]

MS03 CD44/CD24 DNA
A promising molecular probe for

breast cancer diagnostic and
therapeutic applications

[102]

HY6
Extracellular domain of

20-amino acid HER2
peptide

Thio-DNA Targeted therapy [103]

CLN64 c-MET 2′F-RNA Inhibition of tumor cell migration [104]
Sgc-3b and Sgc-4e Selectin L and integrin α4 DNA Therapeutic intervention [105]

ACE4 aptamer MCF-7 cells 2′F-Py RNA
Internalization into cells upon
binding to Annexin A2. Tumor
targeting and imaging in vivo

[106]

SDA E-and P-Selectin DNA Therapeutics for inhibition of cancer
cell adhesion and metastasis [107]

Tutu-22 EGFR DNA Novel targeted cancer detection,
imaging, and therapy [108]

U2 EGFRvIII DNA Radiolabeled imaging and diagnosis
of glioblastoma [109]

Gint4.T PDGFR β 2′F-RNA

Inhibition of receptor signaling, cell
migration and proliferation, and

tumor growth in vivo. Induction of
differentiation

[110]

EP166 Epithelial cell adhesion
molecule-EpCAM (CD326) DNA Stem cell biomarkers [111]

SYL3C EpCAM DNA
Novel targeted cancer therapy,
cancer cell imaging, and CTC

enrichment
[112]

9C7, 11F11 T-cell receptor
OX40 T-cell 2′F-RNA

Increasing proliferation of T
lymphocytes and production of

IFN-γ. Potential for antigen-specific
T cell stimulation together with

dendritic cell-based vaccines
(adoptive cellular therapy)

[113]
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Table 1. Cont.

Aptamer Name Target Protein Backbone Aptamer Applications Reference

CD28Apt2 and
CD28Apt7

Murine recombinant
CD28-Fc fusion protein 2′F-RNA

Reduction of tumor progression and
increased overall survival (in vivo).
Enhancing vaccine-induced immune

responses

[114]

R-1, R-2, and R-4 Human recombinant
BAFF-R protein 2′F-RNA Delivery of siRNA and

combinatorial therapeutics [115]

Aptamer 32 EGFRvIII DNA Delivery of chemical drugs and
diagnosis [116]

Apt1
GST-tagged human

recombinant full-length
CD44 protein

2′F-RNA Therapeutic and diagnostic targeted
delivery against stem cells [117]

Aptamer 2-2(t) ErbB-2/ HER2 in N87 cells DNA

Acceleration of ErbB-2 degradation
in lysosomes.

Endocytosis-mediated inhibition of
tumor growth in vitro and in vivo

[118]

CD133-A, CD-133-A58,
CD133-A35,
CD133A21,

CD-133-A15,
CD133-B19

CD133 2′F-RNA Targeting cancer stem cells,
molecular imaging [119]

C2NP CD30 DNA

Lymphoma Immunotherapy by
activation of target oligomerization,

downstream signaling, and
apoptosis

[120]

SQ-2 Alkaline phosphatase
placental-like 2-ALPPL-2 2′F-RNA

Targets both membrane-bound and
secreted forms of ALPPL-2.

Applications in diagnosis, imaging,
and therapy

[121]

CSC13 CD44 DNA Cancer detection, imaging, and drug
delivery [122]

YJ-1 Carcinoembryonic antigen 2′F-RNA Inhibition of cell migration/invasion
in vivo. Promotion of cell anoikis [123]

αV-1 and β3-1 Integrin αvβ3 2′F-RNA Multivalent aptamer isolation
SELEX (MAI-SELEX) was applied [124]

HB5
HER-2 peptide from the

juxtamembrane region of
HER2 extracellular domain

DNA Drug delivery (Doxorubicin) [125]

cL42
CD124 (IL-4Rα)

recombinant ILR4α protein
enzymatically cleaved

2′F-RNA Reduction of tumor progression
in vivo [126]

E1, B1, and C1

N202.1A mammary
carcinoma clonal cell lines
expressing high levels of

surface HER-2/neu

2′F-RNA
Drug delivery (Bcl-2 siRNA).
Chemo-sensibilization and

reduction of drug resistance
[127]

C4-3 Neurotrophin receptor,
TrkB 2′F-RNA Neuroprotective effects. Therapy of

neurodegenerative disease [128]

GL21.T Axl 2′F-RNA

Interferes with cell migration and
invasion, inhibition of spheroid

formation and cell transformation,
inhibition of tumor growth

[129]

C2 aptamer CD71 2′F-RNA Delivery of aptamer-functionalized
siRNA-laden liposomes [130]
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Table 1. Cont.

Aptamer Name Target Protein Backbone Aptamer Applications Reference

EpDT3-DY647 Epithelial cell adhesion
molecule-EpCAM (CD326) 2′F-RNA

Target stem cell marker for cancer
nanomedicine and molecular

imaging
[131]

SE15-8 ErbB2 2′F-RNA

High specificity to ErbB2 and not
other members of the ErbB family.
Applications in drug delivery and

imaging for in vivo diagnosis

[132]

-
HER-2 overexpressing
breast cancer cell line,

SK-BR3
DNA

More effective probes against
HER2-positive cells for diagnostic

and therapy
[133]

bsA17, bsA22 Fcγ receptor III (CD16α) DNA
A tumor-effective function of two
aptamers linked into a bi-specific
aptamer for cellular cytotoxicity

[134]

CL4 EGFR 2′F-RNA

Induces EGFR-mediated signal
pathways causing selective cell

death. Combined
cetuximab-aptamer treatment

induces tumor apoptosis in vitro
and in vivo.

[135]

5. Aptamer-Based Biosensors for Diagnostic Applications to MPs

Many aptamers have been selected against MPs characterized as biomarkers (e.g.,
for cancer and stem cells) and bacterial or viral virulence factors [31,59,69]. Table 1 lists
the MP-targeting aptamers suitable for use in diagnostics. Over three decades, methods
for aptamer selection against MPs have ranged from the classical protein-SELEX, where
the MP (or its soluble hydrophilic domain) is purified and used as a SELEX target, to the
revolutionary cell-SELEX (whole living cells used as a target) [136] and its other more
recent variants like TECS-SELEX (target is recombinantly overexpressed on the cell’s sur-
face) [137], FACS-SELEX (selection using a fluorescence-activated cell sorter) [138], 3D
cell-SELEX (3D cell cultures achieved by methods like magnetic levitation) [139], and
in vivo-SELEX (selection in living organisms) [140]. A plethora of other advanced variants
of SELEX can be successfully used to target MPs for more specific purposes. Although
antibodies dominate the global diagnostic market, a growing number of aptamer-based
biosensors (also known as aptasensors) are appearing at a rapid pace [31,51,141]. This
is largely due to the aforementioned advantages of aptamers, which facilitate gaining
more recognition and occasional preference over antibodies as an attractive class of small
synthetic molecules for use in biosensors. Exceptionally, unlike antibody-based assays
such as ELISA (enzyme-linked immunosorbent assay), aptasensors can also be readily
multiplexed to achieve simultaneous measurement of several biomarkers for a more confi-
dent diagnostic evaluation. Nevertheless, in principle, each aptasensor is envisioned and
designed specifically for the detection of a single and specific target of interest. Figure 3
illustrates the main successive steps of a functional aptasensor.

In 1998, Potyrailo et al. generated the first biosensor utilizing immobilized aptamers
for the detection of free non-labeled thrombin in the solution [142]. The aptasensor detected
thrombin at a concentration as low as 0.7 amol in a 140-pL interrogated volume. Today,
based on defined physicochemical properties, aptasensors are commonly classified into
electrochemical, optical, and mass-sensitive aptasensors (Figure 4). Particularly, aptasen-
sor platforms that employ solid supports during sensing provide an opportunity for the
measurement of analytes in real time [75,143–145]. In addition, current aptasensor develop-
ments pursue simultaneous measurement of multiple aptamer targets (multiplexing) as
well as miniaturization.
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generated biorecognition signal is detected, and a transducer commonly converts it into a measurable
electrical or optical signal that is proportional to the number of interactions between the aptamer and
its target. Electronics of a biosensor have complex circuitries that process signals arriving from the
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quantifies processed signals and allows users to interpret the data by displaying the output signal in
numeric, graphic, tabular, or image forms. Adapted with permission from Ref. [45].
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5.1. Electrochemical Aptasensors

Electrochemical aptasensors are systems containing redox-labeled or label-free ap-
tamers [146,147]. Redox labels can be either covalently linked to terminal groups of ap-
tamers (e.g., enzymes such as horseradish peroxidase, metal nanoparticles such as gold
or platinum, and other redox compounds such as ferrocene (Fc), methylene blue (MB),
or anthraquinone) or non-covalently linked (e.g., intercalating MB and electrostatically
interacting charged ions such as [Ru(NH3)6]3+). Although label-free aptasensor systems
reduce the burden of additional aptamer labeling procedures, they may include other
labeled molecules or redox ions as reagents in the solution (Figure 5).
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Figure 5. Working principle of redox-labeled electrochemical aptasensors. Target-specific aptamers
are immobilized on a gold surface via thiol groups. Target binding induces a structural change
(conformational flexibility and/or strand displacement) in the labeled aptamers, thereby facilitating
(signal-on) or hindering (signal-off) electron transfer with the gold surface.

Aptasensors exploit one of two phenomena (or their combination) to detect signals
from aptamer-target binding: (i) the flexibility of aptamer structures where target binding
induces precise conformational changes to its structure, and (ii) a binding-induced com-
plementary strand displacement from a duplex structure. In electrochemical aptasensors,
these properties allow reporting aptamer-target complexes as redox-tagged or untagged
aptamers immobilized on conductive support to govern electrical communications with
that support (an electrode) by means of the aptamer itself (tagged) or by other companion
molecules (label-free). Figure 5 summarizes these concepts using redox-tagged surface-
immobilized aptamers as an example. Electrochemical aptasensors typically work based
on a “signal-on” or a “signal-off” setting. Signal-on refers to a positive readout signal
where an electron transfer occurs between a redox label and the electrode. In contrast,
signal-off refers to a negative readout signal where the electron transfer becomes hindered.
The “on/off” shifts occur after target binding, and the outcome signal (on or off) is dic-
tated by the induced aptamer conformational changes or strand displacement (or both).
However, signal-off formats are difficult to work with (especially for diagnostics) [31] due
to a decrease in amperometric response after the target interaction with its aptamer. To
overcome this problem, signal-on formats were designed wherein electrical communication
takes place only after aptamer-target interaction [148]. Using these electrochemical sensing
systems, target concentrations can be correlated with measurements of electrochemical
features after target binding.

Electrochemical transducers for the detection of analytes are based on techniques
such as amperometry, potentiometry, impedimetry, and field-effect transistors (FETs).
Sassolas et al. reported that amperometric and impedimetric modes of transduction had
been the most used in aptasensor development [147]. Electrochemical aptasensors have
successfully detected proteins, such as thrombin, platelet-derived growth factor (PDGF),
and immunoglobulin E, as well as small molecules, such as cocaine, adenosine triphosphate
(ATP), theophylline, aminoglycosides, and potassium ions (K+). The first electrochemical
aptasensor was constructed in 2004 with a sandwich-based design for the detection of
thrombin, where a thiolated aptamer immobilized onto the gold electrode and an added
glucose dehydrogenase-labeled aptamer were used [149].

For the detection of MPs, various notable examples using electrochemical aptasensors
are reported. One example involves the measurement of Mucin 1 (MUC1) protein, a
transmembrane protein expressed in epithelial cells. Its expression level is known to
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increase dramatically in most human epithelial cancers, and so it serves as an important
biomarker for cancer detection [150]. Therefore, various techniques, including ELISA, as
well as colorimetric, fluorescence, electrochemiluminescence, and electrochemical methods,
have been developed for MUC1 detection. For example, an ultrasensitive electrochemical
aptasensor was fabricated by a gold electrode layer and three different hairpin DNA
aptamers (HP1, HP2, and HP3) [151]. Briefly, non-immobilized HP1 complexes with
MUC1 lead to the opening of its hairpin structure. The exposed segment then attacks
immobilized HP2 to form a double-stranded structure with a newly exposed segment. This
segment could then also hybridize with HP3 modified with PtPd bimetallic nanoparticles
(PtPdNPs). The complex comprising MUC1 and the HP1 aptamer is finally released by
strand displacement. The bimetallic nanoparticles were employed as mimic peroxide
probes catalyzing the oxidation of tetramethylbenzidine (TMB) by H2O2 and leading to
the amplification of the electrochemical signal. The aptasensor had a linear response from
100 fg/mL to 1 ng/mL and a limit of detection (LOD) as low as 16 fg/mL MUC1 and
demonstrated satisfactory results with serum samples.

Another example of MP detection by an electrochemical aptasensor involves the sens-
ing of exosomes carrying the transmembrane protein CD63 [152]. CD63 is a tetraspanin
protein considered to be a biomarker of exosomes—extracellular vesicular bodies that
have the potential for use in cancer diagnosis as they are correlated with tumor antigens
and antitumor immune responses. The aptamers were immobilized onto gold electrodes
and incorporated into a microfluidic system to minimize sample volume. MB-probed
strands were hybridized with the anchored aptamers, and after binding the aptamers
to CD63 carried in exosomes, the DNA duplexes released the antisense strand carrying
redox reporters, ultimately leading to a decrease in the electrochemical signal. The sensor
showed a detection limit of 1 × 106 particles/mL and a linear range extending towards
1 × 108 particles/mL, demonstrating its higher sensitivity compared to conventional exo-
some quantification methods.

For acute lymphoblastic leukemia, an oncological disease prevalent in children, a
redox-labeled electrochemical aptasensor that specifically detects the cancer biomarker
protein tyrosine kinase 7 (PTK7) was developed [153]. Detection was performed using
Jurkat leukemia cells that overexpress PTK7, and for this purpose, two aptasensors with
different redox markers (MB or Fc carboxylic acid) were described. Their sensitivities were
compared using the target Jurkat cells at a concentration range of 50–5000 cells/mL and by
differential pulse voltammetry. Similar LOD values were obtained for both aptasensors
with 37 ± 6 cells/mL for Fc-labeled aptamers and 38 ± 8 cells/mL for MB-labelled ones.

5.2. Optical Aptasensors

Optical bioassays have widely benefitted from the use of aptamers as biorecognition
elements. Optical analyses can readily achieve multiplexing for the simultaneous detection
of several analytes [154]. Many powerful and advantageous optical techniques were
utilized for aptasensing (e.g., luminescence, surface plasmon resonance, surface-enhanced
Raman scattering, optical fibers, etc.). For example, both luminescence resonance energy
transfer [155–158] and electrochemiluminescence [159,160] were used as the basis for the
development of aptasensors to detect exosomes, cancer biomarkers, and bacterial pathogens.
Towards surface plasmon resonance, despite the common categorization of the method as
an optical sensing technique, in this review, we present the method from the direction of
mass-sensitive detection (see Section 5.3). Surface-enhanced Raman spectroscopy (SERS) for
analytics has seen great interest in different areas of science, as witnessed by the thousands
of publications over the decades [161,162]. The rapid and ultrasensitive technique has
recently gained considerable momentum with regard to the detection of respiratory viruses
for the purpose of point-of-care testing, especially after the COVID-19 pandemic. When
combined with the specificity and versatility (here, Raman-active labeling) of nucleic acid
aptamers, the technique was able to reach low limits of detection (that could challenge
the limits of PCR techniques) as shown for SARS-CoV-2 [163,164] as well as the influenza
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A virus [165,166]. SERS was also applied recently for the sensitive detection of cancer
biomarkers, such as carcinoembryonic antigen (CEA) [167]. In particular, Zhang et al. have
shown valuable improvement in the utilization of SERS through the detection of cancer
cell-derived exosomes in clinical serum samples [168]. Their ratiometric SERS aptasensor
(for HER2 and EpCAM), as opposed to conventional SERS, demonstrated high accuracy
for target identification (considering the heterogeneity of cancer exosomes) and ultrahigh
sensitivity for the early detection of cancer in patients and without any need for nucleic
acid amplification.

Biosensors integrating optical fiber technologies have also been well-described in re-
search articles and numerous reviews and have acquired special interest recently [169,170].
These fiber optic biosensors are shown to have numerous advantages that include but are
not limited to rapid, ultrasensitive, label-free, real-time, low-volume, and on-site detection,
as well as miniaturization. Janik et al. have recently described optical fiber aptasensors
based on a microcavity in-line Mach-Zehnder interferometer (µIMZI) for the detection
of pathogenic bacteria (E. coli O157:H7) [171] and, for the first time, virus-like particles
(modeled by SARS-CoV-2), achieving detection limits of 10 cfu/mL and 1 ng/mL, re-
spectively [172]. Other optical techniques based on resonance scattering, dynamic light
scattering, and ellipsometry were also integrated into the development of aptasensors [173].
However, despite impressive and promising advancements in optical sensing technologies
with aptamers as biorecognition elements, the indispensable fluorescence and colorimetric
techniques are the most popular and employed methods [148,174]. Notably, water-soluble
conjugated polymers have specifically accumulated special interest due to valued proper-
ties (optical, electronic, solubility, brightness, (photo)stability, low cytotoxicity, etc.) that
effectively mediate interdisciplinary biological applications [175]. Optical reporting with
aptamer-conjugated polymers is simple, cost-effective, can be fluorescence- or colorimetry-
based, and is achievable in both a labeled and an unlabeled manner [176,177].

5.2.1. Fluorescence-Based

Fluorescent detection is widely used as aptamers are easily labeled with fluorescent
dyes and have many available fluorophores and quenchers (Figure 6). Fluorescence also has
the capability of real-time detection. The commonly used molecular beacon systems also
employ aptamers (aptabeacon) and therefore consist of the aptamer in a hairpin structure
and end-labeled with a fluorophore and a quencher. During target absence, the stem-loop
is in a closed position, and the quencher is in close proximity to the fluorescent dye. The
binding of the target disrupts the stem and moves the fluorophore away from the quencher,
yielding a fluorescence signal (Figure 6). In another format of fluorescence-quenching-
based probing, a fluorophore-labeled aptamer is present in a duplex structure with a
quencher-labeled complementary DNA sequence.

More complex structures involving quaternary structural rearrangements where ap-
tamers assemble and disassemble have also been developed to achieve fluorescence sig-
naling [178,179]. Additionally, nanomaterials, such as quantum dots, gold nanoparticles
(AuNPs), graphene oxide, polymer nanobelts, and coordination polymers, are more recent
candidates used over traditional materials to attain improved fluorescence-quenching
effects. As an alternative to fluorescence quenching approaches, Förster resonance en-
ergy transfer (FRET) is an approach that is based on an exchange of energy between
two fluorophores—a donor and an acceptor. Although dual-labeled oligonucleotides are
continuously in development, FRET optimization for quantification purposes is difficult
to achieve due to the numerous factors affecting FRET. Moreover, fluorescent detection,
whether using fluorophore-quencher pairs or FRET pairs, is difficult to apply against targets
in their native environments within complex biological samples due to background signal
interferences. A possible solution to circumvent this problem is to use fluorophores that
shift their fluorescence wavelength emission to bypass signal interferences.
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In the intensity-change format, fluorescence depends on target binding to promote conformational
changes and subsequent structural reorganization. In “signal-on” and “signal-off” formats (i.e.,
aptabeacon-based designs), target-induced structural changes dictate liberation/quenching of the
fluorescence signal (F: Fluorophore, Q: Quencher).

An example of the detection of MPs by fluorescence-based optical aptasensors is
provided by Bahmani et al. achieving the detection of CD44 exon v10 [180]. CD44 is an
integral transmembrane protein expressed in breast cancer cells in various isoforms. The
important exon v10—one of the isoforms of the 20-exon CD44 single gene—plays a critical
role in promoting the progression and metastasis of breast cancer. It was discovered that the
isoform mediates the formation of a molecular complex on breast cancer cell surface with
the RTK, EphA2 (receptor for Ephrin1), a key player in the development and metastasis
of many malignant tissues, thereby demonstrating the need for effective targeting of v10
isoform for detection and prognosis. In their study [180], v10-specific DNA aptamers
were used to synthesize aptamer-templated fluorescent metal nanoclusters (Apt-NCs).
NCs of silver, gold, and copper were prepared using different aptamer templates, and the
synthesized Apt-NCs were confirmed for accuracy and quality by UV-Vis, transmission
electron microscopy, and fluorescence spectrometry. It was shown that compared to native
aptamers, modified ones had formed more stable and brighter NCs that are sufficient
for cell detection assays using different cultured cell lines. In comparison to other NCs,
aptamer-modified copper NCs (M-Apt4-CuNCs) have shown, by their fluorescent response,
a higher efficiency in tracing CD44 v10 on the cell surface and a proper correlation with
concentrations of the target on the cells. The specific and sensitive aptasensor has a detection
limit of 40 ± 5 cells/mL.

Recently, a FRET-based detection system was constructed by utilizing novel fluores-
cent probes and graphene oxide to detect H5N1 influenza A virus HA, found as trimeric
spikes on the viral membrane [181]. The highly conserved regions of HA are crucial
for viral function and replication and represent an important biomarker for diagnosing
H5N1 infections. Synthesis of sub-20 nm sandwich-structured upconversion nanoparticles
(SWUCNPs or UCNPs) improved energy transfer efficiency and allowed control of the
emitter in a thin shell [181]. The lanthanide-doped UCNPs are advantageous over conven-
tional downconversion fluorescent probes. They can be excited with near-infrared light,
avoiding interference from background biological fluorescence, enhancing stokes shift,
lifetime, and light stability, and narrowing the emission spectrum. This translates into an
improved signal-to-noise ratio in biological detections that use fluorescent labels. FRET was
achieved through the π–π stacking interaction between the aptamer and graphene oxide,
bringing the fluorescent probes closer and realizing FRET-induced fluorescent quenching.
This interaction is eliminated by the formation of the H5N1 HA-aptamer complex, resulting
in the detection of a fluorescence signal. The novel aptasensor shows a linear response
from 0.1 to 15 ng/mL of HA concentrations, and its LOD was 60.9 pg/mL. Furthermore,
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the method was applied with human serum and had a linear range of 0.2–12 ng/mL with a
LOD of 114.7 pg/mL.

5.2.2. Colorimetry-Based

Optical sensors that yield an observed colorimetric signal (color change) in the pres-
ence of a target analyte utilize different approaches for signal detection, such as ligand-
receptor interactions (fluorophores and chromophores), fluorescence quenching (organic
dyes, polymers, etc.), enzyme and mimetic nanoenzymes, and more recently, gold nanopar-
ticles (AuNPs) [182]. In addition to sensitivity and selectivity, colorimetric detection offers
the observation of color changes by the naked eye, a minimal or complete lack of instru-
mentation, and better management of on-site and real-time detection [183]. Detection with
colorimetric assays can also be performed easily in solution because they do not require any
platform immobilizations or sophisticated equipment [184]. Labeled or unlabeled AuNPs
have been used extensively in colorimetric assay applications [185–187]. Specifically, for
colorimetric aptasensors, AuNPs are one of the most used color reporting factors. They are
attractive due to various unique properties such as high biocompatibility, chemical stability,
strong localized surface plasmon resonance absorption, and high extinction coefficient in
the visible region. Colorimetric assessments using AuNPs can be carried out in one of
two ways: an analyte-induced assembly (aggregation) or an analyte-induced disassembly
(disaggregation) of AuNPs [188,189]. When dispersed, AuNPs are red in color but turn
purple or blue when aggregated (Figure 7). Additionally, aggregation dynamics of AuNPs
in non-crosslinking assays are affected by factors such as electrolyte concentration, making
the assay often simpler, faster, and more desirable than the cross-linking approaches. Col-
orimetry combining the use of DNA aptamers and metal nanoparticles (especially gold)
has been of substantial interest since 2012 [182,190,191]. These DNA-functionalized AuNPs
are used for the development of many aptasensing systems as the nucleic acid aptamer
molecules are properly and functionally immobilized on the AuNP surface by the various
immobilization methods available. Proper immobilization includes the optimal surface
density of the immobilized aptamers that allows conformational flexibility of the aptamer
for target binding events.
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Figure 7. Working principle of a colorimetry-based optical aptasensor employing analyte-induced
assembly of gold nanoparticles. Target binding to thiol-modified aptamers causes AuNPs aggregation
and converts their color from red to blue (A). Absorbance levels (A670/A520) can be measured as a
function of the concentration of the target in the medium (B).

A simple and rapid colorimetric detection assay was developed for Salmonella ty-
phimurium, a food-borne pathogen that causes intestinal infections [192]. In this study,
chemically inert, easily separable, and catalytically stable Fe3O4 magnetic nanoparticles
(MNPs) were used for their peroxidase-like activity to promote, in the presence of H2O2,
the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB), the colorimetric substrate. This
colorimetric reaction mediated by the peroxidase-like activity of MNPs generates the color
change visible by the naked eye in the solution. DNA aptamers were used to reduce the per-
oxidase activity of MNPs by adsorbing to their surface, thereby blocking it and leading to
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MNPs aggregation and a decrease in their colorimetric properties as well. In the presence of
S. typhimurium in the solution, the DNA aptamers—having a high affinity to an outer mem-
brane protein on the bacterial surface—re-expose the MNPs surfaces for the enzyme-like
reaction to take place, leading to a color change that is detected spectrophotometrically.

In a related sensor design, a simple, sensitive, and selective colorimetric aptasensor
platform was fabricated [193]. A peroxidase-mimicking hybrid material, ZnFe2O4/reduced
graphene oxide (rGO), was synthesized and used for its peroxidase-like activity (TMB
oxidation by H2O2) that is enhanced compared to the individual metal oxide nanomaterial
and carbon-based nanomaterial. Biotin-modified aptamers were immobilized by avidin on
a microplate to act as the capture probe for S. typhimurium. In the presence of the bacterium,
a sandwich-type complex is formed where the ZnFe2O4/rGO hybrid nanocomposites
conjugated to another aptamer act as the signal probe by binding to the bacterium captured
by the immobilized aptamer. An optical signal is generated in the presence of TMB-H2O2
due to a typical blue color formation. The aptasensor exhibited a LOD of 11 cfu/mL and a
linear range from 11 to 1.10 × 105 cfu/mL.

A more recent example of colorimetric aptasensors is demonstrated for the quanti-
tative profiling of surface proteins located on extracellular vesicles (EVs) [194]. EVs are
membranous structures that can originate not only from the plasma membrane but also
from the endomembrane systems of almost every type of cell. Wang et al. employed
EVs derived from two breast cancer cell lines (MCF-7 and MDA-MB-231) as well as from
the plasma of a breast cancer patient and a healthy volunteer. They presented a simple,
efficient, and wash-free colorimetric aptasensor based on the controlled growth of aptamer-
functionalized AuNPs for the detection of EVs. The two cell lines were used as suitable
models due to the variable expression of CD63, EpCAM, and MUC1 in their EVs. The
aptamers (AptaCD63, AptaEpCAM, and AptaMUC1) used to modify the AuNPs surface
individually will bind with Au3+ after adding the Au growth reagent, and the color of the
solution changes from light to deep red in the absence of the target. In the presence of the
target (EV surface proteins), Au aptasensors bind to it, changing the color from red to blue
by induction of electronic coupling between the grown nanoparticles. The color changes
are detected by the naked eye or by UV-Vis spectrometry, and they depend on the surface
protein expression levels on EVs. The developed colorimetric assay can reach a LOD as
low as 0.7 ng/µL based on EpCAM expression on MCF-7 EVs. Compared to conventional
ELISA (LOD = 77 ng/µL), the LOD of the colorimetric assay therein is significantly lower
and is comparable to recently developed methods.

5.3. Mass-Sensitive Aptasensors

Mass-sensitive biosensors can be defined as devices that can measure a property that
is related proportionally to mass associated with or bound to the sensor’s sensitive surface
comprising capture probes [148]. Aptamer-based mass-sensitive biosensors are typically
label-free bioassays [195]. This has numerous pros, including saving biosensor development
resources (e.g., time and costs), conducting analyses in a shorter time, retaining the high
affinity of aptamer sensing, and decreasing non-specific interactions. In fact, mass-sensitive
sensors are seen as the most advanced among all categories of biosensors [196]. They can
achieve the highest sensitivities and are rapidly gaining interest with the research progress
in physical phenomena and the mechanics of biomolecules.

5.3.1. Evanescent Wave-Based

The physical phenomenon, surface plasmon, is excitable by the evanescent wave,
giving rise to the effect known as surface plasmon resonance (SPR) [197]. SPR is commonly
used to analyze biomolecular interactions and measure the affinity of interactions and
analyte concentrations. Although the SPR method is known for use as an optical sensing
technology and evanescent wave-based aptasensors can be classified as optical aptasensors,
SPR devices are capable of sensing mass changes through the accompanied changes in
refractive index on their surface [198,199]. Evanescent wave-based aptasensors, therefore,
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can utilize SPR to sense aptamer-target interaction and binding. For multiplexing purposes,
aptamer arrays are analyzable via SPR imaging, which also allows real-time detection and
raises the efficiency of detection to high-throughput levels [200]. In SPR-based aptasensing,
the sample is injected through the flow cell, and target binding to the aptamers immobilized
on the plasmon surface creates mass accumulation on the surface. This results in changes
on the surface for the refractive index and SPR angle upon excitation by the electromagnetic
waves, giving information about the density and mass changes on the typically gold or
silver layer [148,201].

In 2019, a sensitive and selective aptasensor based on SPR was developed for the
direct and quantitative detection of cancerous exosomes with signal amplification via dual
gold nanoparticles [202]. The concentration of the exosomes was determined based on
the changes in the SPR resonance angle. Using the SPR-based sensor, a LOD value of
5 × 103 exosomes/mL was achieved, which was a 10-fold improvement over commer-
cial ELISA. Moreover, the SPR aptasensor differentiated between exosomes from MCF-7
breast cancer cells and MCF-10A normal breast cells and was able to detect exosomes
in 30% fetal bovine serum. Other efforts in SPR aptasensor designs aimed toward the
detection of circulating cancerous biomarkers, an all-fiber plasmonic aptasensor was de-
veloped for the challenging detection of CTCs known to exist in very low concentrations
in the blood [203]. Particularly, breast cancer CTCs were targeted using aptamers se-
lected against mammaglobin-A present on the surface of the CTCs. Label-free, real-time
detection achieved a LOD of 49 cells/mL and 10 cells/mL using gold nanoparticles for
signal amplification.

For pathogenic agents, a localized SPR (LSPR) biosensing platform was presented for
highly sensitive detection (single bacterial cell detection) of whole cells of the microorgan-
ism Pseudomonas aeruginosa strain PAO1 [204]. The concentrations of the bacteria captured
by the surface-confined aptamers were shown to be linearly correlated to the redshift in
wavelength of the extinction maximum of LSPR that results from aptamer target recogni-
tion (range = 10–103 cfu/mL). The LSPR sensor was also described to be rapid (∼3 h) and
selective for the target over other strains of Pseudomonas and E. coli and to have an excellent
shelf life (up to 2 months) and a clinically relevant dynamic range.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of
2019 and caused a global pandemic. For rapid diagnosis, an SPR sensor was developed
using an aptamer selected against the receptor-binding domain of the spike glycoprotein.
The spike protein antigen was optically detected (without amplification systems) via a pre-
viously selected aptamer and with a LOD of ∼37 nM [205]. The aptamer was immobilized
on a short polyethylene glycol interface on a D-shaped plastic optical fiber probe with a
gold nanofilm deposit [206]. The specificity of the sensor was established by testing with
non-sense aptamer sequence and non-specific proteins (bovine serum albumin, AH1N1,
hemagglutinin, and spike protein from middle eastern respiratory syndrome (MERS) coro-
navirus). A preliminary test was also carried out using diluted human serum (1:50 v/v),
and the result was observed by the resonance shift (LOD = 75 nM). Such data encourage
the use of these rapid, sensitive, and low-cost sensing devices in diagnosing many diseases,
including the ongoing pandemic caused by COVID-19.

The detection of whole cells (and supramolecular structures, in general) has certain
challenges when using SPRs [207]. Nonselective binding leading to refractive index changes
is one challenge that was surmounted by employing reference flow cells to offset the effect
caused by the nonselective binding [208]. The sensing range is a second limitation of SPR
use in cell detection. Whilst this range is typically 200 nm in SPR, the dimensions of a
cell are in the micron range. In this case, using long-range SPR increases the depth over
1000 nm by changing the incident light wavelength, thus enhancing the sensitivity towards
cell detection [207].
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5.3.2. Acoustic Wave-Based

Acoustics-based sensors are devices that commonly operate based on the piezoelectric
effect of a given functionalized material (called a substrate) and have been researched
extensively over the past years for their low cost, high sensitivity, and portability, and
their applicability in biorelevant detection [209]. These platforms can effectively determine
protein affinity and monitor protein-protein interactions and complex formation on the
piezoelectric surface [201].

Biosensing research has largely focused on two types of acoustic wave-based sensors.
First, bulk acoustic wave-based sensors known as Quartz Crystal Microbalances (QCM)
use thickness-shear mode (TSM) vibration with the vibration of the whole substrate (a
quartz crystal). The generated acoustic wave propagates through the complete bulk of
the piezoelectric crystal that is patterned by electrodes on two sides of the crystal. Mass
loading on the sensor’s surface alters the natural frequency of the propagating resonance
wave, and the frequency shift is measured by the QCM [201]. The resonance frequency
of the QCMs ranges from 10 to 50 MHz; however, higher frequencies are always desired
because of the accompanied increase in mass sensitivity [210]. Unfortunately, QCM devices
become too thin and fragile for practical use at higher frequencies. Nevertheless, early
research has shifted focus to QCMs since (unlike the second type of acoustic sensors) they
were initially seen as a better option for biosensing applications due to their ability to not
suffer from large attenuation caused by the introduction of the aqueous biological sample.

The second type of acoustic wave-based sensors is surface acoustic wave (SAW) devices
that also perform based on the piezoelectric effect. These highly sensitive devices produce
and detect acoustic waves using interdigital transducers on the surface of a piezoelectric
crystal [71,211]. It is for this reason that propagation of the acoustic wave on these devices
takes place on the surface of the crystal rather than the bulk of the substrate. Due to
the different modes of wave propagation and the operation at a higher frequency range
(100 MHz to GHz), SAW devices tend to be more sensitive to any surface changes (e.g., mass
loading, viscosity, and conductivity changes, etc.) compared to QCMs [209–211]. SAW-
based sensors had to go through many series of development (including sensing-surface
modifications) involving relief of the extreme attenuation experienced in the presence
of aqueous samples (e.g., buffered samples) before adaptation to the highly sensitive
detection of biological analytes. One common approach in SAW biosensing involves
using Love wave-type SAW sensors in which the Love waves propagate in the form of
horizontal surface acoustic waves, reducing energy dissipation and increasing surface
sensitivity [212]. The aptamer-based Love wave sensor chip designed by Schlensog et al.
employing immobilization on a gold layer on the quartz crystal allows label-free sensitive
detection of human α-thrombin and HIV-1 Rev peptide with a LOD of approximately
75 pg/cm2.

For the detection of MPs by the QCM method, a group reported the use of a DNA
aptasensor targeting HER2 receptors for the detection of HER2-positive breast cancer cells,
one of the most aggressive and fatal cancer cells [213]. HER2 is an important receptor
and onco-marker that belongs to the epidermal growth factor receptor (EGFR) family
and is overexpressed by 15–30% in breast cancer. To mitigate the time consumption and
high degree of false positives in diagnostic HER2 detection, a label-free acoustic QCM
aptasensor (referred to as TSM in the paper) was fabricated for the detection of SK-BR-3
breast cancer cells. Biotinylated DNA aptamers were immobilized at the neutravidin layer
chemisorbed at the gold surface of the TSM transducer. Sensitive and specific detection
was achieved by the decrease and increase in resonant frequency and motional resistance,
respectively. Achieved LOD values were 1574 cells/mL and 1418 cells/mL with two
different aptamers. A higher sensitivity was attained using aptamer-modified 20 nm
AuNPs conjugated to streptavidin. A LOD of 550 cells/mL was subsequently observed. A
recent review elaborately depicts QCM biosensors and the various recent developments
and opportunities [214].
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For SAW-based biosensors, much of the recent work done to detect MPs is seen
taking the immuno-sensing rather than the aptasensing approach. This work focused
on the detection of the cancer biomarker carcinoembryonic antigen [215], influenza A
virus [216], and exosomes [217]. For SAW-based aptasensing, Chang et al. delivered an
article describing a novel sensing technique based on a 2 × 3 model of a leaky surface
acoustic wave (LSAW) aptasensor, a SAW-sensor variation developed with the progress in
microelectronics and acoustics [218]. Their novel LSAW aptasensor array was targeted for
the label-free, specific, and high-sensitive detection of CTCs. The 2 × 3 model design was
developed to improve the efficiency of detection. MCF-7 tumor cells overexpressing MUC1
on their surface were used as a model target; aptamer-cell complexing and subsequent mass
loading led to a phase shift, and a LOD as low as 32 cells/mL was achieved for MCF-7 cells.

5.3.3. Mechanical Cantilever-Based

Mechanical cantilevers are alternative signal transducers utilized in areas such as
cantilever-based sensors [219,220]. Such sensors offer a highly sensitive, quantitative,
real-time, and label-free target detection by a platform displacement-based mechanism.
Cantilever sensors are applicable in a wide range of areas, including biological (e.g., cells,
proteins, and other biomolecules) as well as chemical detection [221–224]. These sensors
are relatively small-sized and, accordingly, have low noise, resulting in higher resolutions,
and can attain high scalability, which supports their use in a multiplexed manner for point-
of-care testing. In simple terms, a cantilever can be considered a miniature adaptation
of a diving board [71], which is typically gold-coated when nucleic acid immobilization
is undertaken [201]. Cantilever-based aptasensors create surface stress by adsorption
of the analyte onto the aptamer-functionalized surface [32,225]. A difference in surface
stress between the top and bottom layers is created as a result of mass loading on the
sensor cantilever. A difference in surface stress between those two layers creates the
upward or downward force that is referred to as “deflection” or “bending” acting on the
cantilever board (Figure 8). Fritz elaborately illustrates the different cantilever sensor
modes of operation and the different cantilever surface molecular interactions that dictate
the directionality of deflection in the surface stress mode [226].

In general, cantilever biosensors operate under one of two modes, referred to as the
static- and dynamic modes. In the static mode, the length of the surface stress-induced
deflection changes as a result of the degree of aptamer-target biomolecular interactions
taking place in the cantilever system, where this deflection is measured by the target-
sensing platform. Moreover, a blocked (non-binding) companion cantilever that functions
as the reference accounts for the deflection caused by nonspecific interactions and can be
utilized to minimize the effect of nonspecific binding and other disturbances (e.g., thermal
drift) and to accurately determine the differential deflection (Figure 8) [225]. On the other
hand, in the dynamic mode, also known as the resonant mode, binding-induced changes in
the cantilever resonant frequency take place by virtue of the mass change or, occasionally,
the stiffness change in the sensor cantilever [227]. In other words, the measured resonant
frequency in the dynamic mode is a function of the mass of the cantilever. Although
higher resolutions are generally achieved by cantilever sensors employing the dynamic
mode, cantilever dynamics are strongly sensitive to fluid effects (e.g., viscous damping),
which can severely affect the sensor sensitivity [220,227]. In contrast, in the static mode,
the sensing medium and the environment are not severely limiting to the reliability of the
detected signals. The extremely small but detectable cantilever mass changes (whether
by bending in the static or resonance change in the dynamic mode) are measurable by
different means [220]. The optical beam deflection technique is the most common in
the static mode. Variations in the optical technique include the detection of changes in
optical diffraction and interferometry. Beyond optical techniques, others measure changes
in piezoelectric, piezoresistive, capacitive, or contact area of resistance [219]. It is also
noteworthy that cantilever mass changes are not only detectable by direct measurement of
the changes in deflection length (static mode) or resonance frequency (dynamic mode) but,
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as illustrated by Ziegler, can also be measured through the changes in the force constant,
or in calorimetric effects (e.g., temperature and specific heat capacity (∆Q)) on a bending
bimetallic cantilever [219].
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Figure 8. Working principle and main components of a microcantilever aptasensor in surface
compressive stress mode. Reference and sensor platforms (usually in the same sample loading
compartment) are shown prior to surface functionalizing (A) (i.e., naked and cannot bind and bend
yet) by immobilization of suitable oligonucleotides. An operation aptasensor (B) after immobilization
of a target-binding nucleic acid aptamer (sensory cantilever) and a randomized oligo (reference
cantilever). The detected bending is transduced into measurable electrical signals (voltage/current
changes) that allow the calculation of target protein concentration. The deflection caused by target
binding is often reported as differential deflection (∆h = h1 − h2).

Li et al. developed an aptamer-based microcantilever array biosensor for the simulta-
neous optical readout and real-time detection of two biomarker analytes in solution [228].
One of the analytes was the carcinoembryonic antigen (CEA), a cell surface glycoprotein
overexpressed in virtually all colon cancer cells, and the other was α-Fetoprotein (AFP), a
non-membrane-bound oncofetal plasma glycoprotein. The signal of the interaction of the
aptamers’ self-assembly immobilized on the gold-surface cantilever and their targets was
scaled up by employing an aptamer-antigen-antibody sandwich assay. The multiplexed
assay achieved a detection limit of 1.3 ng/mL and 0.6 ng/mL for CEA and AFP, respectively,
demonstrating great potential for the simultaneous detection of multiple targets in clinical
diagnosis settings.

Another microcantilever-based aptasensor was developed for the detection of the
transmembrane epithelial tumor biomarker MUC1 [229]. In this study, thiolated aptamers
were used to functionalize the cantilever surface, which was exposed to a MUC1 solution for
binding, and the deflection of the sensing cantilever was measured by a position-sensitive
detector. For MUC1 concentrations in the range of 5–500 nM, linearity and a low detection
limit of 0.9 nM were achieved. In this study, the overexpression of MUC1 on the surface of
breast cancer cell line MCF-7 was also diagnosed using the same microcantilever aptasensor,
and the MCF-7 cells displayed an interaction with the surface aptamers. However, MCF-7
cells concentration in the range of 2.0 × 103 to 5.4 × 104 cells/mL demonstrated a linear
relationship with cantilever deflection; a detection limit of 213 cells/mL was obtained.
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Therefore, as a novel approach, the microcantilever aptasensor can be used for early-stage
detection of cancer biomarkers and whole cells.

6. Summary and Future Scope

According to the Biomarkers Definitions Working Group convened by the National
Institute of Health (NIH), a biomarker (e.g., DNA, RNA, proteins, small metabolites, etc.)
is a measurable indicator for normal biological or pathogenic processes and responses to
pharmacological intervention [230]. Therefore, biomarkers have important applications
in modern healthcare systems where they are used in the diagnosis of diseases and their
extent, as well as their prognosis [231,232]. Other related biomarker applications can be
seen in routine health checkups and monitoring of patient health status. As summarized
in this review, membrane-associated proteins represent essential biomarkers for disease
detection and treatment as they primarily participate in the pathogenesis of inflammatory,
cardiovascular, and neurodegenerative diseases. In many cancers, accumulation (high
expression) and accessibility of MPs on the cell surface make the cell highly recognizable.
For these reasons, a considerable number of MPs are targets of therapeutic drugs and
diagnostic molecules in the biomedical field nowadays. Targeting these biomarker surface
proteins facilitates devising appropriate diagnostics and therapeutic intervention plans to
prevent disease progression and other serious complications that may potentially emerge
in patients.

Aptamers are unique ‘recognition molecules’ due to their high affinity and specificity
towards their targets. Many studies have been carried out on the generation of aptamers
against MPs, and a far larger number of studies have investigated aptamer applications
in diagnostic biosensing for MPs. Clearly, properties of aptamers, such as their structural
flexibility, small size, reusability, and cost-effective and easy preparation, allow their use
as detection tools in biosensors. The preclinical literature dealing with aptasensors is vast;
the recent global COVID-19 pandemic has further boosted the number of papers in the
field. Indeed, as early as the first aptamer selection attempts, the ‘aptasensing’ strategy
was extensively researched and developed to demonstrate the potential versatility (i.e.,
fast, reliable, and sensitive) in the detection of clinical targets like small molecules, cells,
and viruses.

Throughout this review, we cited work that shows how aptasensors (electrochem-
ical, optical, or mass-sensitive) (Figure 4) can be more desirable (e.g., delivering lower
detection limits and stability) than commonly used antibody-based detection methods
like ELISA; however, aptasensors are yet to be ready for standardized global-scale use
in clinical applications. Most studies are only upstream of the technology development
pipeline (proof-of-concept at preliminary stages). Nevertheless, several aptamers have
entered clinical trials and, in some instances, have passed and achieved commercialization.
The global aptamer market is projected to grow annually at a compound rate of 28.2%
(2018–2025) and from $723.6 million to $5.0 billion (2016–2025) [233,234]. For example,
among all therapeutic aptamers that successfully entered some phase of the clinical trials,
the RNA aptamer Macugen® (Pegaptanib sodium) for the treatment of wet age-related
macular degeneration is the sole aptamer-based drug approved by the Food and Drug Ad-
ministration in 2004. On the diagnostic front, the number of clinical trials on aptamers (and
aptasensors) is limited. Currently, about 50 aptamer-related national clinical trials are ongo-
ing, while only 11 are aimed at diagnostic purposes [234]. However, of 40 global companies
actively engaged in preclinical and clinical aptamer research, several have successfully com-
mercialized their aptamer-based biomarker diagnosis products after undergoing rigorous
clinical testing [235].

Aptamers represent potent and unique alternative device options to be established
as mainstream synthetic MP probes, thereby revolutionizing aptamer-based point-of-care
diagnostics and occupying niches in the market and the clinic that are hardly taken up by
other molecular devices [233]. A major reason behind the commercial lag of these exciting
molecules stems from the huge industrial and financial investments in and commitments
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to antibodies, breeding a global reluctance to shift to new paradigms. Furthermore, this
reluctance is accompanied by a wide-scale lack of knowledge and awareness in the scientific
community and among healthcare providers and administrators about aptamers and the
possibilities they offer, as opposed to familiarity with antibodies.

From a technical perspective, more scientific investigations and improvements are
needed along the developmental pipeline of aptamer-focused technologies to accelerate
the translation of aptasensors into clinical settings. For example, robust ways for the
identification of high-quality aptamers (e.g., SELEX-integrated microfluidics, artificial
intelligence with high throughput sequencing, and appropriate affinity testing methods)
are needed while reducing the duration of raising aptamers from the order months to only a
few days or hours. In parallel, selection efforts must focus on clinically valuable targets; and
downstream aptasensors must exhibit high stability and reproducibility and be adapted to
test complex clinical samples so that a connection with “real life” applications in the clinic
is created. In other words, proposed aptasensors become more than just proofs-of-concept.
It is also important to take advantage of aptasensor multiplexing for high-throughput,
low-cost sensing of multiple targets. The sensitivity and specificity of aptasensors can
be enhanced by the incorporation of nanomaterials such as nanoparticles, quantum dots,
and carbon nanotubes which are gaining great attention for their unique physicochemical
properties and performance, as well as their use as alternatives to traditional fluorophores
facing photobleaching issues [236].

The majority of aptasensors are made using DNA aptamers. This is in part because
producing longer RNA and the need for reverse transcription are a few extra steps with the
selection of RNA aptamers against a given target. RNA aptamers, however, are known to
be conformationally much more flexible and suitable for binding to an expanded repertoire
of targets. After immobilization, these RNA and DNA aptamers must retain their high
qualities (affinity and specificity) and stay resistant to nucleases. For this, pre-, mid-, or post-
SELEX aptamer modifications can be employed. One of the technical challenges during and
after surface immobilization is due to the nature of nucleic acids being negatively charged.
This may lead to undesirable non-specific interactions resulting from electrostatics between
the aptamer probes and their immobilization surface during fabrication [51,237]. Therefore,
preliminary studies must be performed to understand the details of interactions between
surface, aptamer, and target in a complex sample matrix. Although ideal aptasensors are
designed for simplicity and cost-effectiveness, they may easily require technical expertise
and become expensive when mass-produced using precious metals.

Despite these and other stringent limitations on aptasensors, these devices will soon
provide valuable and unique alternative approaches to antibody-based detection methods
as described throughout. Quick pinpointing and resolution of major bottlenecks in the
R&D pipeline of aptansensing technologies will propel these devices into the market to fa-
cilitate the realization of their clinical diagnosis capabilities. Interestingly, beyond aptamer-
antibody comparisons, new methods are progressing to show how aptamers accompanied
by monoclonal antibodies provide highly sensitive joint sensing methods [238,239].
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