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Abstract: This paper studies the thermal, morphological, and mechanical properties of 3D-printed
polylactic acid (PLA) blends of virgin and recycled material in the following proportions: 100/0,
25/75, 50/50, and 75/25, respectively. Real waste, used as recycled content, was shredded and
sorted by size without a washing step. Regular dog-bone specimens were 3D printed from filaments,
manufactured in a single screw extruder. Thermogravimetric analysis indicated that adding PLA
debris to raw material did not significantly impact the thermal stability of the 3D-printed samples and
showed that virgin and recycled PLA degraded at almost the same temperature. Differential scanning
calorimetry revealed a significant reduction in crystallinity with increasing recycled content. Scanning
electron microscopy showed a more homogenous structure for specimens from 100% pure PLA, as
well as a more heterogeneous one for PLA blends. The tensile strength of the PLA blends increased
by adding more recycled material, from 44.20 ± 2.18 MPa for primary PLA to 52.61 ± 2.28 MPa for
the blend with the highest secondary PLA content. However, this study suggests that the mechanical
properties of the reprocessed parts and their basic association are unique compared with those made
up of virgin material.

Keywords: polylactic acid; recycling; waste; additive manufacturing; fused filament fabrication;
thermogravimetry; calorimetry; scanning electron microscopy; tensile strength

1. Introduction

Additive manufacturing (AM) technologies, also called 3D printing or rapid man-
ufacturing, are among the enabling technologies in Industry 4.0. These technologies
are associated with potentially strong stimuli for sustainable development to time- and
cost-saving [1–4]. The most widely used AM process is fused filament fabrication (FFF)
due to its simplicity, low running, and material costs [5]. In addition, FFF prices can go as
low as 0.20 €/part, thus making it an attractive technology [6]. Wittbrodt et al. [7] showed
that even making the extremely conservative assumption that a household would only use
the 3D printer to make a selected 20 products a year, the avoided purchase cost savings
would range from about 300 to 2000 USD/year.

Despite these benefits, 3D printing still creates a significant amount of waste [8].
Filament material is widely thrown out during the fabrication process due to printing
failures, broken parts, filament replacement, discarded support structures, and nozzle
tests [5]. Moreover, some printed products are used as prototypes that could be discarded
at the end of the product development process [9,10]. Hence, a certain increase in the
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amount of plastic waste associated with the development of the polymer AM market could
be predicted. However, previous studies have shown that over 40% of material-related
waste could be avoided using AM, as well as 95% of unused material could be reused [11].
Costs could also be reduced by recycling locally, where individuals, groups, or small
businesses could procure recycling equipment in the range of 3000 USD [8].

Polylactic acid (PLA) is among the most popular polymers in FFF. It is a biodegradable
and renewable thermoplastic polyester derived from renewable sources (mainly starch
and sugar). It replaces conventional petrochemical-based polymers, such as acrylonitrile
butadiene styrene, and reduces oil consumption by 30–50% [12–15]. The global production
of PLA was around 0.2 million tons in 2017 [16] and around 0.19 million tons in 2019 [17].
In addition, the annual output of PLA is expected to reach 0.56 million tons by 2025, an
increase of 53.8% over 2020 [18]. The ratio between the price of virgin PLA and the price of
PLA recyclate from post-industrial waste is 46% and 51% for post-consumer [19].

PLA is supposed to finish its life in compost [12]. It degrades slowly in nature, taking
between 2 and 10 months in dry conditions [20]. Because of this degradation stability
of PLA products in soils at ambient temperatures, there is still the risk of environmental
contamination [19]. However, recycling PLA filaments for 3D printing is a feasible option,
as it offers environmental benefits, such as reducing landfill and CO2 emissions from
waste transportation [21]. In this sense, a comparative life cycle assessment conducted on
meat trays showed that PLA production (in the form of granulates) contributes 63% to its
overall greenhouse gas emissions, with this rate being greater than that for amorphous
polyethylene terephthalate (PET, 53%) and polypropylene (PP, 44%) [22]. Additionally,
over 80% of the embodied energy used in transportation and collection could be saved [23],
distributed recycling and manufacturing methods could reduce energy consumption by a
factor of two compared with traditional manufacturing ones [24], and making 3D printing
filament at home from recycled filament saves about 40 times more energy than commercial
production [25].

Previous works have shown that 3D printing is a cost-effective recycling process that
economizes natural resources and time. However, the physical and chemical properties of
recycled plastics should be studied to make them effective. Zander et al. showed that FFF
filament from 100% recycled bottles and packaging PET without any chemical modifica-
tions or additives is a viable new feedstock for FFF, with the mechanical properties of the
printed parts comparable to the parts made from commercial filament [26]. In work [27],
Zander et al. processed blends of PET, PP, and polystyrene waste into filaments for 3D print-
ing with tensile strengths comparable to some lower-end common commercial filaments,
such as high-impact polystyrene. Fabio et al. recycled PLA in an open-source additive
manufacturing context [28]. As shown in [29], low-density polyethylene (LDPE)/linear
LDPE is a soft, low-modulus, high-toughness polymer, which leads to a variety of additive
manufacturing complications. In [25,30], filament made of recycled high-density polyethy-
lene (HDPE) pellets had favourable water rejection, with an extrusion rate and thermal
stability comparable to those of the filament made of acrylonitrile butadiene styrene pel-
lets. According to data from studies, polymers could only be recycled to a lower material
level (downcycling), so they could be used in less critical applications because of worse
mechanical properties [8–10,28]. To improve the quality of recycled polymers, composites
were created from polymer waste by adding natural/synthesis particles and/or fibres of a
micro- or nanoscale size. For instance, in [31,32], the authors manufactured 3D printable
composites based on the waste of PP by adding glass fibre in the first work and basalt fibre
in the second one. The produced filament with 5% wt. of basalt had the highest tensile
strength among all the produced samples [32]. It must be mentioned that the quality and
processability of fabricated filaments mainly depend on extrusion parameters, such as the
rpm/speed of the screw, extrusion temperature, and load. These extruder settings are
optimized experimentally and can vary. According to the above-mentioned studies, PET
filament was extruded at a temperature that is equal to the melting point. To fabricate
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filament from PP, LDPE, and HDPE, the extrusion temperature was set up much higher
than the melting temperature. The opposite is true for PLA.

Manufacturing materials mainly affect the quality and performance of parts made of
FFF. The mechanical effects of recycled PLA content on PLA filaments should, therefore,
be studied to attain the desired quality characteristics in the parts developed by the FFF
process. Studying the effect of the parameters on the response characteristics of the FFF
parts helps to adjust the level of the process variable that improves the parts’ quality [33].

In this paper, filaments from 100% virgin PLA commercial pellets were blended with
real FFF-printed PLA waste in three different proportions (25, 50, and 75 weight percent-
ages) to produce 1.75 mm diameter filaments for 3D printing. A tensile test, differential
scanning calorimetry (DSC), and thermogravimetric analysis (TGA) were used to study
the properties and thermal stability of the 3D-printed parts from the produced filaments.
Scanning electron microscopy (SEM) was also carried out to observe the structure of the
PLA blends. To the best of our knowledge, there is no previous report about filament
fabrication and properties studies on 3D-printed samples prepared from neat and real PLA
waste from AM. In previous studies, reprocessed polymers, not used in real-life conditions,
were used as the recycled content in the blend. Therefore, this experiment offers a realistic
approach to the evaluation of PLA recyclability.

2. Materials and Methods
2.1. Materials

Commercially available PLA pellets, Smartfil®PLA3D850, from SmartMaterials 3D
(Jaen, Spain) and with a 1240 kg/m3 density and printing temperature of 210 ± 10 ◦C [34]
were used as primary PLA. Figure 1 shows the first steps to making PLA pellets from
3D-printed post-consumer plastic and manufacturing the filament from them. Real debris
was collected for about one year, so PLA waste had a different composition of PLA plastics
with dissimilar life cycles. This age of the plastic waste was chosen because a previous
study [35] revealed that 3D-printed laboratory accelerated-aged PLA samples have the
same thermo-mechanical properties before reaching 1.5 years of age. Therefore, they could
be recycled together.

Polymers 2023, 15, x FOR PEER REVIEW 3 of 14 
 

 

to the melting point. To fabricate filament from PP, LDPE, and HDPE, the extrusion tem-
perature was set up much higher than the melting temperature. The opposite is true for 
PLA. 

Manufacturing materials mainly affect the quality and performance of parts made of 
FFF. The mechanical effects of recycled PLA content on PLA filaments should, therefore, 
be studied to attain the desired quality characteristics in the parts developed by the FFF 
process. Studying the effect of the parameters on the response characteristics of the FFF 
parts helps to adjust the level of the process variable that improves the parts’ quality [33]. 

In this paper, filaments from 100% virgin PLA commercial pellets were blended with 
real FFF-printed PLA waste in three different proportions (25, 50, and 75 weight percent-
ages) to produce 1.75 mm diameter filaments for 3D printing. A tensile test, differential 
scanning calorimetry (DSC), and thermogravimetric analysis (TGA) were used to study 
the properties and thermal stability of the 3D-printed parts from the produced filaments. 
Scanning electron microscopy (SEM) was also carried out to observe the structure of the 
PLA blends. To the best of our knowledge, there is no previous report about filament fab-
rication and properties studies on 3D-printed samples prepared from neat and real PLA 
waste from AM. In previous studies, reprocessed polymers, not used in real-life condi-
tions, were used as the recycled content in the blend. Therefore, this experiment offers a 
realistic approach to the evaluation of PLA recyclability. 

2. Materials and Methods 
2.1. Materials 

Commercially available PLA pellets, Smartfil®PLA3D850, from SmartMaterials 3D 
(Jaen, Spain) and with a 1240 kg/m3 density and printing temperature of 210 ± 10 °C [34] 
were used as primary PLA. Figure 1 shows the first steps to making PLA pellets from 3D-
printed post-consumer plastic and manufacturing the filament from them. Real debris 
was collected for about one year, so PLA waste had a different composition of PLA plas-
tics with dissimilar life cycles. This age of the plastic waste was chosen because a previous 
study [35] revealed that 3D-printed laboratory accelerated-aged PLA samples have the 
same thermo-mechanical properties before reaching 1.5 years of age. Therefore, they 
could be recycled together. 

  
Figure 1. Preparing the filament from PLA debris. From left to right: PLA debris collection, shred-
ding, shredded PLA, sieving, and filament production. 

The recycled fraction of PLA was prepared by shredding PLA waste using a Retsch 
SM300 (Dusseldorf, Germany). Afterward, it was sorted according to particle size using 
an electric sieve (Fritsch, Idar-Oberstein, Germany) with square section holes of 5, 2.5, 
1.25, 0.63, 0.32, 0.16, and 0.080 mm. The particle size distribution showed 65% of the sieved 
PLA in the 1.25 mm fraction, so this fraction was used for filament production.  

  

Figure 1. Preparing the filament from PLA debris. From left to right: PLA debris collection, shredding,
shredded PLA, sieving, and filament production.

The recycled fraction of PLA was prepared by shredding PLA waste using a Retsch
SM300 (Dusseldorf, Germany). Afterward, it was sorted according to particle size using an
electric sieve (Fritsch, Idar-Oberstein, Germany) with square section holes of 5, 2.5, 1.25,
0.63, 0.32, 0.16, and 0.080 mm. The particle size distribution showed 65% of the sieved PLA
in the 1.25 mm fraction, so this fraction was used for filament production.

2.2. Filament Fabrication

Likewise, both virgin and recycled PLA were dried in a vacuum oven, VACUtherm
VT 6025 from Thermo Scientific (Waltham, MA, USA), at 50 ◦C overnight before extrusion
to avoid the hydrolysing effect of absorbed water. Different proportions of virgin and
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recycled PLA pellets (Table 1) were introduced in a laboratory-sized, co-rotating, single-
screw extruder, Noztek Pro Filament Extruder (Shoreham, West Sussex, UK), with one
controllable heating zone for melt mixing and filament extrusion.

Table 1. Blend of compositions and sample codes.

Sample Code
Weight Ratio (%)

Virgin PLA Recycled PLA

V100R0 100 0
V75R25 75 25
V50R50 50 50
V25R75 25 75

The temperature of the mixing zone in the extruder was 225 ◦C to produce V100R0
and V75R25 filaments, and it was reduced to 205 ◦C to produce V50R50 and V25R75
filaments. The temperature was changed to process V50R50 and V25R75 blends better.
During filament manufacturing, the produced filament had high fluidity to form a filament
with a constant diameter. The temperature was reduced as regards the greater recycled
PLA content due to the chain scission in post-consumer polymer structures. The Noztek
extrudes to a speed of 40 rpm. Likewise, a fan was placed near the extrusion nozzle to
rapidly cool the material when it came out of the nozzle. This was turned on to ensure that
the filament diameter remained as close as possible to the desired diameter of 1.75 mm.
The produced filament showed a constant diameter, and its surface finish was comparable
to the virgin PLA filament. About 30 m of filament was produced from 0.1 kg of the PLA
blends, with an average diameter of 1.7 mm. There was no filament from 100% PLA waste
because the produced filament became curly (the last picture in Figure 1), so there was no
printable quality.

2.3. Samples 3D Printing

Regular dog-bone (type 1BA) specimens from each PLA blend were printed consid-
ering the ISO 20753 standard [36] and using an Anycubic Kossel Delta Rostock Die kit
3D printer (Shenzhen, China), with a platform temperature of 60 ◦C. All specimens were
printed with a 100% infill, horizontal pattern orientation of 0/90 (i.e., alternating layers
with orientations at 0◦ and 90◦), and a layer height of 0.2 mm. These deposition pattern
orientations, together with the layer height, provided the overall maximum values for PLA
compared with a 45/45 orientation [37–41].

2.4. Samples Testing

After 3D printing, test specimens were conditioned before testing them for more than
88 h at 23 ± 1 ◦C air temperature and 50 ± 5% relative humidity, according to ISO 291 [42].
All experiments were conducted in a standard atmosphere.

TGA was performed to identify the temperature at which the material started to
chemically degrade. Approximately 15 mg of the polymer was heated at 25 ◦C and
equilibrated for 15.00 min. Afterward, samples were heated at a 10.00 ◦C/min rate up to
430.00 ◦C under 10 mL/min of N2 flow. The temperature of 5% wt. mass loss (Tloss5%) and
initial and final degradation temperatures (Ti and Tf) were determined from the received
TGA curves and according to ISO11358-1 [43].

DSC measurements give information about the structural changes of the polymer
during the thermo-mechanical recycling process. DSC was carried out with a thermo-
mechanical analyser, Q20, from TA Instruments Inc. (New Castle, DE, USA). Specimens
weighing 5–10 mg were heated up at 10 ◦C/min and cooled at 2 ◦C/min under a nitrogen
flow of 10 mL/min. The thermal properties of the specimens, i.e., the glass transition tem-
perature (Tg), crystalline melting point (Tm), and crystallization point (Tc), were determined.
The enthalpy of crystallization and fusion (∆Hc and ∆Hm, respectively) were counted using
TA Universal Analysis software from TA Instruments Inc. (New Castle, DE, USA).
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SEM was used to observe the microstructure of the PLA blends with a Fei Nova
Nanosem (Waltham, MA, USA). Before measurements, the broken parts of the specimens
were coated with gold to avoid electron charging.

Finally, the tensile test was performed using a universal testing machine, the Shimadzu
AG-X series (Kyoto, Japan). Five dog-bone 3D-printed specimens from every PLA blend
were tested. The width and thickness were measured using a digital micrometre, with an
accuracy of 0.01 mm at multiple points [44]. The averaged mean of three cross-section mea-
surements was taken as the measurement result. Speed was at a constant rate of 1 mm/min.
During this procedure, both the load sustained by the specimens and elongation were
measured. Likewise, an extensometer with a nominal length of 20 mm was used. The
results of the tensile test for the 3D-printed materials were transmitted using Trapezium
software version 1.5.1. Tensile strength and ductility were also calculated [44].

3. Results and Discussion
3.1. Thermogravimetric Analysis

The averaged thermograms, depicting the evolution of the weight versus the tempera-
ture of the 3D-printed specimens, are shown in Figure 2a. All the samples had a curve shape
with single-stage mass reduction. In addition, V100R0 sharply dropped in mass at the end
of the graph (320–350 ◦C section), unlike the recycled PLA blends. As the percentage of
PLA waste increased, the slope of this part of the graph became more gradual. The reason
could be the presence of dust and/or contaminants that could occasionally be mixed in the
blends during the filament preparation process [45]. Another reason could be that the PLA
filament for FFF has special additives and/or fillers used by manufacturers to improve the
3D-printed parts’ quality, so their degradation could influence the decomposition of the
PLA blend. This degradation behaviour could, therefore, be the result of various chain end
structures, which initiate different degradation reactions [46].
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Figure 2. TGA curves of the PLA blends with different waste content. (a) The evolution of the weight
versus the temperature; (b) The derivative curve.

Table 2 summarizes the TGA data analysis of the PLA blends: T5%loss, Ti, Tf, the
difference between Tf and Ti (Tf-Ti), and the maximum temperature of polymer degradation
(Tmax) computed according to ISO 11358-1:2014 [43]. As a result, the 5% mass of the recycled
blends was reduced at a slightly lower temperature compared with V100R0; therefore,
adding debris did not significantly influence the thermal stability of the PLA blends. The
accurate temperature at which degradation occurs cannot be defined from the averaged
thermograms’ weight and temperature (Figure 2a). The derivative curve is, therefore,
presented in Figure 2b.



Polymers 2023, 15, 2165 6 of 13

Table 2. Thermogravimetric analysis results of the samples: the temperature of the 5% wt. mass
loss (Tloss5%), initial and final degradation temperatures and the difference between them, and the
maximum temperature of polymer degradation (Ti, Tf, (Tf-Ti), Tmax, respectively) computed according
to ISO 11358-1:2014 [43] are shown. All values are given in ◦C.

Sample Code T5%loss Ti Tf Tf-Ti Tmax

V100R0 292 306 334 28 322
V75R25 290 304 332 28 323
V50R50 283 305 335 30 325
V25R75 286 308 340 32 327

Table 2 and Figure 2b show that the Tmax of the PLA blends slightly increased, and the
lost weight rate was reduced when the waste content increased. The reason could be the
presence of polymers with different thermal histories in the structure of the PLA blends.
Additionally, PLA and its blends degraded in a narrow temperature range of about 30 ◦C.
The results of the TGA, therefore, indicated that adding PLA debris to the virgin material
did not significantly impact the thermal stability of the 3D-printed sample.

3.2. Differential Scanning Calorimetry

All of the figures in Table 3 and Figure 3 present the results of the DSC test. Analysing
the evolution of the thermal properties with increasing recycled content, it is observed that
the Tg of the PLA blends slightly varied between 58 and 61 ◦C for the first heating and
between 60 and 64 ◦C for the second heating. Likewise, the Tm fluctuated between 173 and
177 ◦C, which can be attributed to the melting peak of α crystals, normally observed around
180 ◦C [47]. In addition, as the Tm depends on the flexibility of the polymer chain, no
greater mobility of the macromolecular chain could be supposed [12].

Table 3. Results of DSC tests: glass transition, crystallization, and melting temperatures (Tg, Tc, and
Tm, respectively) are shown, as well as the enthalpy of crystallization and fusion (∆Hc and ∆Hm) and
the calculated degree of crystallinity (Xc).

Sample Code
First Heating Second Heating XcTg Tc ∆Hc Tm ∆Hm Tg Tm ∆Hm

◦C ◦C J/g ◦C J/g ◦C ◦C J/g %

V100R0 59.19 97.68 45.41 176.98 57.24 64.20 177.60 50.86 48
V75R25 59.84 94.45 37.34 175.80 50.25 63.20 173.50 49.91 47
V50R50 60.71 94.63 27.38 175.01 36.21 60.98 176.82 38.24 36
V25R75 58.43 97.87 24.85 173.25 28.51 60.12 174.31 31.62 30

Regarding the measured enthalpies, reductions were observed in both the ∆Hc and
∆Hm with increasing recycled content. However, the ∆Hc was not revealed during the
second heating because the cooling rate for PLA 3D-printed specimens at 2 ◦C/min was
too slow. The magnitude of the crystallization exotherm decreased when the sample was
more slowly cooled, and it vanished at scan rates equal to or lower than 10 ◦C/min [48].
The cooling of the 3D-printed specimens at an ambient temperature had, therefore, slow
crystallization kinetics.

The V25R75 and V50R50 DSC thermograms in Figure 3b, after the second heating, had
two melting peaks. A double melting peak is a common phenomenon for polymers such
as poly (ethylene terephthalate), isotactic polystyrene, poly (ether ether ketone), and poly
(ether imide). The reason could be the presence of two different crystal or morphological
structures in the initial sample, but it is generally the result of annealing during the DSC
scans whereby crystals of a low perfection melt have time to recrystallize a few degrees
above and to remelt [48]. When the scan rate is low, i.e., 10 ◦C/min, there is enough time
for the thinner crystals to melt and recrystallize before giving a second endotherm at a
higher temperature [48].
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According to [12], the degree of crystallinity, Xc, is defined as follows:

Xc =
∆Hm

∆H∗ × 100 (1)

where ∆Hm is the heat of melting, and ∆H* denotes the heat of melting for an infinitely
large crystal. Some authors have used the value of 93 J/g [12] or 106 J/g [49]. In this work,
106 J/g was used. Table 3 shows that the degree of crystallinity was reduced from 48% for
neat PLA 3D-printed specimens to 30% for specimens with 75% of waste. These values
had a linear tendency, with a regression of R2 = 0.92, thus reducing the crystallinity by
0.26% per percentage of the recycled PLA added. As the crystallization process depends
on the molecular weight of PLA [49–53], the PLA waste used in this experiment had low
crystallization kinetics.

It is worth stressing that Tm, Tc, and Tg of V25R75 were almost the same for the pure
PLA specimens. However, the V25R75 PLA blend had a more amorphous nature because
the crystallization exotherm and melting endotherm had identical energy content (the
same area). The fracture mechanism and the behaviour of the 3D-printed specimens were,
therefore, influenced during the tensile test. Nevertheless, the DSC curves of the PLA
blends had several degradation peaks, thus confirming the presence of additives in the
PLA filament that the manufacturers use to improve the PLA’s quality.

Despite the fact that the filament from 100% of PLA waste was not suitable for 3D
printing, the DSC results show that the Tg and Tm are 59.36 ◦C and 174.99 ◦C after the
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second heating, respectively. These characteristics are in the same numerical range as the
Tg and Tm of V100R0, V75R25, V50R50, and V25R75. Decreasing tendency for both the ∆Hc
and ∆Hm is preserved. Taking into account that PLA degrades during thermal processing,
rapidly reducing the molecular weight [54], it can be predicted that the Tg, Tm, ∆Hc, and
∆Hm of the 3D-printed samples from 100% waste could be lower.

3.3. Scanning Electron Microscopy

The fracture surfaces of the V100R0, V75R25, V50R50, and V25R75 PLA blend spec-
imens were studied in the post-tensile test condition through SEM to characterize the
fracture surface. The SEM images of the samples are shown in Figures 4 and 5. Figure 4
shows that the fracture surface (the cross-section view) significantly changed from one
sample to another. First, the 3D-printed beads were visible in the pure PLA and were
gradually softened as the recycled content increased, thus showing the V75R25 as a more
continuous matter. Second, the roughness also changed: V100R0 depicted a brittle frac-
ture crack with clean and sudden surfaces, while in the remaining samples, there was a
rougher surface with features of a more ductile rupture where the material underwent
slight plastic deformation.

Figure 5 presents the micrographs acquired at a higher magnification to analyse and
determine structural changes in the blends. All of the micrographs showed materials
with similar characteristics: a porous matrix with homogeneous SEM secondary electron
contrasts, which means that the PLA blends were not exposed to any other material content
when preparing the FFF filaments, and some strands of fibres protruded from inside of
some of the holes. The strands seemed to be greater when the recycled content increased.
The holes between these fibres and their surrounding matrix are shown. The micro-pores’
density, which was measured from high magnification SEM images such as those in Figure 5,
was gradually reduced from 6.4·109 cm−2 in V75R25 to 2.5·109 cm−2 in V25R75.

3.4. Mechanical Properties

Figure 6 shows the results of the tensile tests. The maximum strength values of all
of the samples were within 95% confidence intervals of the values counted, according to
ISO 2602 [55]. The tensile strength increased with the increasing percentage of recycled
material, from 44.2 ± 2.18 MPa for pure PLA to 52.61 ± 2.28 MPa for 75% of recycled
PLA loading.
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Figure 6a shows the tensile stress–strain graphs of the 3D-printed specimens from the
PLA blends with different levels of PLA waste. Only one of the five specimens per blend,
which represented the overall behaviour, is shown here for comparison. According to
ISO 527 [44], the curves of V100R0, V75R25, and V50R50 corresponded to brittle materials
with no yield point. Samples from the V25R75 PLA blend showed a much more ductile
behaviour, with a ductility higher than 13% (measured as the percentage of elongation),
with 3% being the average value for the other three PLA blends. Moreover, the inset in
Figure 6a shows that the specimens from the PLA blends without waste and with 25 and
50% of post-consumer polymer experienced a brittle fracture. In these cases, the neck was
not formed, so there was neither fluidity nor hardening of the material.

The mechanical properties of polylactides beyond the elastic region are dependent
on the amount and type of crystalline regions developed during processing [47,53]. In
addition, a greater degree of crystallization in semicrystalline thermoplastics means a lower
content of the free volume, and the stiffness generally increases [47]. The DSC test revealed
that the V25R75 PLA blend was more amorphous than the other mixtures. Hence, this
could be the reason for the strong increase in ductility. Additionally, the slight reduction in
the Tg when the PLA recycled content increased could also influence this fact.

The rising trend of tensile strength with increasing recycled content can be explained
by the micrographs of the SEM depicted in Figure 4. In Figure 4a, bigger voids between
the 3D-printed layers of the V100R0 sample are clearly seen than they are for V25R75,
V50R50, and V75R25. Therefore, the higher value of tensile strength could be due to better
inter-layer bonding for the samples with the recycled PLA. It is a well-known fact that the
melt flow index increases for recycled PLA [28,56], which means that recycled PLA filament
tends to flow better. Therefore, it can be supposed that the tensile strength continues to
increase with a larger content of waste because the number and size of the voids decrease.

4. Conclusions

In this study, we evaluated the recyclability of PLA FFF-printed parts. Hence, FFF
filaments from recycled PLA feedstock from real waste mixed with virgin PLA pellets
in three different proportions (25%, 50%, and 75%) were produced with a constant cross-
section and good flowability.

Based on the results of the thermal, morphological, and mechanical tests of 3D-printed
specimens, the following conclusions have been drawn:

• The crystallinity degree dropped when the percentage of post-consumer PLA increased
from 48% in V100R0 to 30% in V25R75. The reason could be the fact that the molecular
chains of the secondary PLA were too short to organize the crystals;

• SEM micrographs of the fracture surface showed that virgin PLA specimens were
more brittle and less dense than recycled PLA blends, thus significantly reducing both
the millimetre- and micrometre-sized holes;

• The mechanical test showed that 3D printing with recycled PLA was a viable option;
the tensile strength increased with the recycled content by 19% compared with the
PLA samples.

It must be mentioned that all three blends showed good FFF processability, and there
was not any clogging during printing. It is worth stressing that there was a detriment in the
processability during the production of the filaments obtained from 100% recycled sources.
Another problem during the conduction of this experiment was that the filament from the
blend with the 75% content of PLA waste was brittle, although its printed samples had the
highest tensile strength. However, this study indicates that the mechanical properties of
the reprocessed parts and their basic association are better than those made up of virgin
material. Further studies should, therefore, focus on solving the filament embrittlement
problem by finding suitable additives or proposing a different AM method, such as fused
granulated fabrication, where the material is applied directly in the form of granules.
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