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Abstract: Intelligent detection is vital for achieving the intelligent picking operation of daylily, but
complex field environments pose challenges due to branch occlusion, overlapping plants, and uneven
lighting. To address these challenges, this study selected an intelligent detection model based on
YOLOv5s for daylily, the depth and width parameters of the YOLOv5s network were optimized,
with Ghost, Transformer, and MobileNetv3 lightweight networks used to optimize the CSPDarknet
backbone network of YOLOv5s, continuously improving the model’s performance. The experimental
results show that the original YOLOv5s model increased mean average precision (mAP) by 49%,
44%, and 24.9% compared to YOLOv4, SSD, and Faster R-CNN models, optimizing the depth and
width parameters of the network increased the mAP of the original YOLOv5s model by 7.7%, and
the YOLOv5s model with Transformer as the backbone network increased the mAP by 0.2% and the
inference speed by 69% compared to the model after network parameter optimization. The optimized
YOLOv5s model provided precision, recall rate, mAP, and inference speed of 81.4%, 74.4%, 78.1%,
and 93 frames per second (FPS), which can achieve accurate and fast detection of daylily in complex
field environments. The research results can provide data and experimental references for developing
intelligent picking equipment for daylily.

Keywords: daylily; intelligent detection; complex environment in the field; YOLOv5; backbone network

1. Introduction

Daylily is widely planted in both northern and southern China [1,2]. It can be used as
daily food and has extensive medicinal value [3–5]. Therefore, the application of daylily in
daily diet and medical research will attract more and more attention from researchers [6].
Picking is an important link in the development of the daylily industry. Timely picking can
improve product quality and yield, as well as increase farmers’ income [7]. The existing
picking robots are mainly common fruit and vegetable crops, such as apples, tomatoes,
oranges, etc. Almost all of them have regular fruit shapes, which are convenient for picking
with robotic arms. At present, no daylily picking robots were developed, so the picking
of daylilies is conducted by hand finish. However, traditional manual picking is costly
and inefficient, and because the flower buds of daylilies are relatively fragile if the manual
picking method is improper, it will lead to problems such as damage to the flower buds and
loss of nutrients. However, the intelligent picking of daylily cannot only reduce labor costs,
reduce farmers’ labor, and improve farmers’ happiness in life, but also ensure product
quality, promoting the intelligent development of the daylily industry. So intelligent picking
of daylily is urgent. Object detection of daylily during the picking period is the key to
achieving intelligent picking. In the complex field environment, problems such as branch
occlusion, overlapping of multiple plants, and uneven lighting affect the efficiency of the
intelligent detection of daylily and the accuracy and efficiency of picking [8]. Therefore,
it is of great significance to research the detection methods of daylily in complex field
environments to realize the intelligent picking of daylilies and promote the development of
daylily picking robots [9].
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The field of crop object detection achieved fruitful research results. In early studies,
traditional methods such as support vector machines (SVM) [10,11], random forests [12],
and HOG-SVM classifiers [13–15] were mainly used. Xiuxia Zhang et al. [16] designed
a daylily robot recognition system based on ZYNQ. This system used a combination
of traditional image processing and machine learning recognition algorithms to realize
efficient real-time detection of daylilies; Jichao Zhao et al. [17] designed a daylily picking
robot system, which uses a RGB-D binocular camera with depth function as the vision
system. This system can effectively improve people’s labor production efficiency and avoid
the harm caused by daylily picking on farmers’ health. Juanjuan Ma et al. [18] proposed
an object detection method based on a deep-first random forest classifier; the method
only splits one node in each recursive process, and the mAP of object detection on the
SenseAndAvoid dataset can reach 69.3%. Kaibing Zhang et al. [19] proposed a method
for diagnosing missing pixels in rapeseed leaves based on the HSV color histogram of
segmented rapeseed leaf regions. The method extracted the HSV color histogram features of
the segmented rapeseed leaf region and trained multiple support vector machine classifiers,
achieving a mAP of 93% for missing pixel detection. Xin Guo et al. [20] proposed an apple
multi-object detection method based on improved HOG and SVM, achieving a mAP of
90.46% for apple object recognition.

Studies showed that natural light and dark variations [21], climate changes [22], and
the presence of overlapping plants, branch occlusion, and blurred images in complex field
environments [23,24] can have a significant impact on the recognition efficiency of object
detection methods. Traditional object detection methods often suffer from instability and
low accuracy in complex field environments. With the widespread application of deep
learning techniques [25–28] in agriculture, researchers used a series of object detection
models, such as SSD [29], Faster R-CNN [30], and YOLO [31–34] to conduct crop detection
research. Jingjing Tian [35] proposed an apple leaf disease detection method based on
the SSD network, which improved the algorithm by establishing a multi-scale feature
extractor, designing a V-space-assisted localization branch, and constructing a multi-scale
attention mechanism module. The improved algorithm achieved a mAP of 83.42% for
apple leaf disease detection. Gao et al. [36] proposed an apple detection method based on
the Faster R-CNN network model using VGG-16 as the backbone network. The method
achieved a mAP of 87.9% for apple detection. Ying Wang et al. [37] proposed an improved
YOLOv5 algorithm for fruit and vegetable detection in complex environments, which
improved the algorithm by embedding a convolutional block attention module (CBAM) in
the CBL module of the backbone network Backbone, introducing a complete intersection
over union non-maximum suppression (CIOU-NMS), and replacing the original YOLOv5
path aggregation network (PANet) with a weighted bidirectional feature pyramid network
(BiFPN). The improved YOLOv5 algorithm achieved a mAP of 92.5%, which is 3.5% higher
than the original YOLOv5 algorithm, enabling fast and accurate recognition of fruits and
vegetables in complex environments. Zhu et al. [38] proposed an apple leaf disease detec-
tion model based on the improved YOLOv5 algorithm, which improved the algorithm by
adding a feature enhancement module (FEM) and a coordinate attention (CA) method. The
improved algorithm achieved a mAP of 95.9% for apple leaf disease detection. Wenxia
Bao et al. [39] designed a wheat ear detection model based on YOLO with transformer
prediction heads (TPH-YOLO), which improved the algorithm by adding the coordinate
attention mechanism CA module in the backbone network of YOLOv5 and converting the
original prediction head of YOLOv5 into Transformer prediction heads (TPH). The average
precision of this method was 88.8%, which is 4.1% higher than that of the original YOLOv5.
Zhouyi Xie et al. [40] proposed a multi-object flower recognition system based on YOLOv4,
which replaced the original main feature extraction network with MobileNetv3 [41] and
combined it with an optimized K-means clustering algorithm [42]. The improved YOLOv4
model achieved a precision rate of 96.43% for multi-object flower detection. Jie Liu et al. [43]
proposed an orange recognition and positioning method based on the improved YOLOv4
model. The improved YOLOv4 model adopted MobileNetv2 as the backbone network and
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used depth-separable convolution in the neck structure instead of ordinary convolution.
The optimized algorithm achieved a mAP of 97.24% for orange detection, reducing the
average detection time by 11.39 ms and the model parameter amount by 197.5 M com-
pared to the original YOLOv4 model. The results show that compared with traditional
machine learning methods, such as SVM and random forest, deep learning techniques and
convolutional neural networks have advantages in both speed and accuracy for crop object
detection in agriculture.

According to the above analysis, although a series of achievements were made in
crop detection based on deep learning, so far, there are few reports on the detection and
identification of daylilies, and the existing detection models have limited applications
in complex field environments. Therefore, this study proposes a detection method for
daylily in complex field environments based on YOLOv5. In this study, 4200 naturally
grown daylily samples were collected in different environments, such as sunny, cloudy, and
nighttime according to the actual picking environment, the depth and width parameters
of the YOLOv5 network were optimized, and the backbone network of the model was
optimized to improve the model, which achieved high-precision real-time detection of
daylilies at different growth stages in complex field environments. This method meets the
requirements of real-time stability in actual picking scenarios and provides experimental
reference and technical support for the development of intelligent picking of daylily.

2. Materials and Methods
2.1. Data Collection of Daylily
2.1.1. Collection Equipment and Methods

There is no publicly available dataset for the identification of daylily during the
picking period, so this experiment constructed its dataset of daylily. Daylily images were
collected from late July to early August 2022 at three locations: the daylily plantation in
Datong, Shanxi, the Daylily Park in Yunzhou District, Datong, Shanxi, and the Fenhe River
in Sixian Village, Jinzhong, Shanxi. A handheld Canon EOS M100 camera was used to
capture images of the flower buds of daylily (including the stems near the buds) at three
angles: top view, flat view, and top view, and a total of 4200 images were captured. To
consider the influence of natural light brightness and darkness in the field on the efficiency
of the actual picking operation, the collected images included images of daylilies under
sunny days, sunny backlights, cloudy days, and night light. At the same time, because the
field environment is more complex, the collected images also include images under four
conditions: overlapping plants, branch occlusion, blurred images, and uneven lighting.
Finally, the images were saved in JPEG format, and the resolution of the images collected
by this camera is 1920 × 1280 pixels, and the collected images are shown in Figure 1a–h.
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2.1.2. Data Preprocessing

The input image resolution of the YOLOv5 model used in this study is 640 × 640,
while the image resolution of the daylily dataset is 1920 × 1280 pixels, and the length and
width of the daylily target in the image are much smaller than the image size. Therefore,
this study cuts the original image according to the position of the daylily flower bud center,
sets the image size obtained by cutting the image to 640 × 640, and selects 3200 images
from the cut daylily dataset as the original dataset. However, due to the complex field
environment, too few datasets will lead to poor stability and generalization ability of the
trained model. Studies showed that convolutional neural networks remain invariant to
image transformations [44], and data augmentation can increase the number of images
multiple times, enabling the model to achieve better training results, preventing over-fitting,
and improving the generalization ability of the model. Therefore, this study augmented
the original dataset and increased the number of pictures to 8000 through operations such
as scaling and rotation, contrast adjustment, brightness adjustment, and mirror flip. The
effect diagram of daylily before and after data augmentation is shown in Figure 2.
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2.1.3. Dataset Labeling

In this study, 4200 images were screened from the augmented dataset for labeling.
The labeling tool was LabelImg, and the format of the label files was saved as XML files.
According to the different growth stages of the daylily in the field environment, the daylily
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in the image is marked as Immature, Pluckable, Flowering, and Other classes, among which,
the Immature and Pluckable classes are difficult to distinguish, and its characteristics are
as follows: the Immature class is short in stature and a light green color; Pluckable class
is characterized by full buds and golden color. The four types of samples in the daylily
dataset are shown in Figure 3.
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In this study, the 4200 labeled pictures were divided into the training set (2940 pictures),
validation set (840 pictures), and test set (420 pictures) according to the ratio of 7:2:1. Among
them, the number of pictures corresponding to Immature, Pluckable, Flowering, and Other
classes are 3048, 1858, 1836, and 603, respectively. Since the images were taken in a natural
environment, each image contains a variety of daylily classes; therefore, the total number
of images of various classes is more than 4200. The distribution of four classes of labels in
the daylily dataset is shown in Table 1.

Table 1. Distribution table of four classes of labels in the daylily dataset.

Classes Training Set Labels Validation Set Labels Test Set Labels Training Set Validation Set Test Set

Immature 31,551 8048 4504 2134 610 304
Pluckable 8901 2249 1270 1301 372 185
Flowering 8245 2081 1176 1285 368 183

Other 5401 1369 768 422 121 60
Total 54,098 13,747 7718 2940 840 420

2.2. YOLOv5 Network Model and Evaluation Indicators

Object detection algorithms based on deep learning can be divided into two categories:
one-stage and two-stage. The two-stage object detection algorithm represented by Faster
R-CNN needs to extract candidate boxes and classify candidate boxes to achieve object
detection. It has the characteristic of high precision, but it requires a large amount of sample
data and a long training time, and the detection speed is slow, so it is not suitable for scenes
with high real-time requirements. The one-stage object detection algorithm represented
by YOLO and SSD uses the convolutional layer and the input image to form the entire
network structure. After the convolution operation, it directly returns the object category
and position. It has the characteristic of real-time, but it is difficult to detect small targets
and the accuracy is low. However, YOLOv5 is a representative algorithm model in the
YOLO series. It has fast detection speed and good adaptability, and can automatically
adapt to targets of different sizes. At the same time, it has excellent detection accuracy and
strong scalability; it can be transformed on platforms such as GPU, CPU, and TensorFlow
Lite. These characteristics make the YOLOv5 algorithm widely used in the field of object
detection. Therefore, this study uses the YOLOv5 model for experiments. The comparison
of one-stage and two-stage object detection algorithm frameworks is shown in Figure 4.
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2.2.1. YOLOv5 Model Principle and Structure

The network structure of YOLOv5 is divided into four parts, Input, Backbone, Neck,
and Output. In the input part, the algorithm uses Mosaic [34] data augmentation, and
performs rotation, scaling, and adaptive anchor frame processing on the input image [45]
to increase the background information of the detection object and improve the algorithm’s
performance in detecting small object performance. In the Backbone part, the YOLOv5
backbone network uses CSPDarknet53 [46]. The network structure is based on Darknet53
and uses the cross stage partial (CSP) module, which can effectively improve feature
reuse and calculation efficiency. In the Neck part, the algorithm adopts the structure of
the feature pyramid network (FPN) and path aggregation network (PAN) to enhance the
feature aggregation capabilities of different feature layers, thereby improving the ability
of the network to detect objects of different scales. In the Output part, YOLOv5 uses the
GIOU_Loss loss function and weighted non-maximum suppression [47]. The network
framework of YOLOv5 is shown in Figure 5.
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The focus model and the spatial pyramid pooling (SPP) module are components of
the Backbone. Among them, the focus module divides the input image into four smaller
sub-images, then performs a convolution operation on each sub-image, and finally stitches
the outputs of the four sub-images together to obtain the final output feature map. This
approach not only reduces computation and memory consumption, but also improves
model efficiency and accuracy. The SPP module is the last layer in Backbone. It adopts a
spatial pyramid pooling structure and contains multiple pooling layers of different sizes,
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which can capture objects and features of different sizes. Without changing the size of
the input image, the SPP module can improve. The receptive field and feature expression
ability of the model can improve the detection performance of the model. The structure
diagrams of the focus and SPP modules are shown in Figures 6 and 7.
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At the same time, the CSP module is also a component of the Backbone, and its
structure consists of a convolutional layer and a residual block. The residual block consists
of two convolutional layers and a cross-layer connection that adds the output of the
first convolutional layer with the output of the second convolutional layer to form a
residual block. The main idea of this model is to divide the input feature map into two
parts, one of which performs convolution calculation, the other directly performs channel
transformation, and finally merges the two parts. Using this method can reduce the
repetition of information in the optimization process of the convolutional neural network
and improve the learning performance of the network. The convolutional layer in the CSP
module is composed of conv, batch normal, and SiLU activation functions, where the SiLU
activation function formula is shown in Equation (1). The network hierarchy diagram of
the CSP module is shown in Figure 8.

silu(x) = x × sigmoid(x) =
x

1 + e−x (1)
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In YOLOv5, the Neck part adopts the FPN+PAN structure. Among them, the FPN
structure can fuse feature maps of different levels to generate a feature pyramid with
multi-scale information. The feature pyramid consists of three feature maps of different
scales, which are: 1. 76 × 76 feature map—this is the bottom feature map with the highest
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resolution and can detect small-sized objects; 2. 38 × 38 feature map—this is the feature
map of the second layer, the resolution is half lower than the 76 × 76 feature map, and it
can detect objects of medium size; and 3. 19 × 19 feature map—this is the feature map of
the highest layer, the resolution is the lowest, and it can detect objects of the largest size.
The Neck part first upsamples the underlying feature map through the FPN module to
obtain a series of feature maps of different scales. Then, the PAN module uses adaptive
pooling and convolution operations to fuse feature maps of different scales to obtain a more
complete and accurate feature representation. Finally, the object detector utilizes this feature
representation for object detection and classification. By utilizing feature maps of different
scales, the FPN+PAN structure can effectively improve the accuracy and robustness of
object detection. The structure diagram of FPN+PAN is shown in Figure 9.
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2.2.2. Experimental Environment Settings

The operating system used in this experiment is Linux Ubuntu 18.04.5, using the Py-
torch 1.9.0 framework for neural network training, the hardware configuration is 16 vCPU
Intel(R) Xeon(R) Platinum 8350C CPU @ 2.60 GHz, the memory capacity is 56 GB, and the
graphics card is NVIDIA GeForce RTX 3090, and the memory size is 24 GB.

2.2.3. Model Parameter Settings and Evaluation Indicators

In this experiment, SSD, Faster R-CNN, YOLOv4, and YOLOv5 are used as the object
detection model, and the SGD optimizer is used to optimize the network model. The image
resolution of the input model is 640 × 640 pixels, the number of iterations set for model
training is 100 times, the batch size for each iteration is set to 16, and the initial learning
rate is set to 0.01. The specific model training hyperparameters are shown in Table 2.

Table 2. Model training parameters.

Parameters Value

Input image resolution 640 × 640
Iterations 100
Batch size 16

Initial learning rate 0.01
Learning rate momentum 0.937
Weight decay coefficient 5 × 10−4

IoU threshold 0.2

The performance of object detection models is usually evaluated using indicators such
as precision, recall, mean average precision (mAP), and frames per second (FPS). Among
them, the precision rate can be used to evaluate the model’s ability to identify the detection
object, and the recall rate can be used to evaluate the model’s ability to find positive sample
objects. By recording the precision and recall values, a PR curve can be drawn. The average
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precision (AP) of the model detection object equals the area under the PR curve, and it
can be used to evaluate the overall performance of the model for object detection and
classification. The AP represents the average value of the average precision of all categories.
Compared with the AP, the mAP can more accurately reflect the overall performance of
the model in detecting various objects. The FPS refers to how many frames the network
model can process per second, which is used to measure the speed at which the model
processes images. Therefore, the evaluation of the object detection model in this experiment
considers four indicators: precision, recall, mAP, and FPS. Among them, the calculation
methods of precision, recall, AP, and mAP are shown in Equation (2) to Equation (5).

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

AP =
∫ 1

0
P(R)dr (4)

mAP =
1
n

n

∑
i=1

APi (5)

Among them, TP represents the number of positive samples detected by the model,
FP represents the number of negative samples detected by the model as positive samples,
FN represents the number of positive samples detected by the model as negative samples,
P is the precision rate, and R is the recall rate, while P(R) represents the maximum precision
rate when the recall rate is r, n is the total number of classes (n = 4 in this experiment), and
the value range of i is 1–6.

3. Experiment and Analysis

This experiment proposed a method based on the YOLOv5 model for daylily detection
in complex field environments. First of all, the experiment trained and compared the
mainstream object detection models, and selected the YOLOv5 model with the best effect.
Then, the experiment optimized YOLOv5 by adjusting the depth and width of the model
network and adjusted the Backbone of the YOLOv5 model to further improve the detection
performance of the model. Finally, the experiment used the final optimized YOLOv5 model
to detect the daylily in complex environments and performed a visual analysis of the
detection results.

3.1. Basic Model Test of Daylily Detection

To test the performance of the YOLOv5 model in daylily detection, this experiment
uses the daylily training set and test set divided in Section 2.1.3 of the article. First, the
experiment uses the YOLOv5s, YOLOv4, SSD, and Faster R-CNN four original object
detection models to train the training set. During training, the SGD optimizer is used,
the learning rate is initialized to 0.01, the batch size is 16, and the number of training
is 100 times. After the training is complete, the experiment uses the test set to test the
trained model and calculate the precision, recall, mAP, and FPS of the four models. Last,
the experiment compared their performance in daylily detection. The detection precision,
recall, mAP, and FPS values of the four models for different growth stages of daylilies are
shown in Figure 10.

It can be seen from Figure 10a that the precision of YOLOv5 and SSD models for
the detection of immature, pickable, and flowering daylilies are all above 70%, while the
precision of YOLOv4 for the detection of immature daylilies is slightly lower than 70%, and
the detection accuracy of the Faster R-CNN model for daylilies is poor. It can be seen from
Figure 10b–d that the YOLOv5s model shows obvious advantages in recall, mAP, and FPS
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compared with the other three models. The results of the specific evaluation indicators for
the four models are shown in Table 3.
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Table 3. Results of YOLOv5s, YOLOv4, SSD, and Faster R-CNN model tests.

Model Classes Precision (%) Recall (%) mAP (%) FPS

YOLOv5s

Immature 73.2 76.0 78.2

178
Pluckable 78.5 76.6 81.7
Flowering 78.0 76.1 81.0

Other 58.3 39.5 40.0
All 72.0 67.0 70.2

YOLOv4

Immature 68.0 4.6 29.0

48
Pluckable 78.1 18.7 32.0
Flowering 90.7 6.8 22.0

Other 0 0 0
All 59.1 6.8 21.2

SSD

Immature 80.0 2.2 19.0

33
Pluckable 85.1 29.0 46.0
Flowering 83.7 21.0 38.0

Other 0 0 3.0
All 62.1 13.2 26.2

Faster
R-CNN

Immature 33.9 65.8 47.0

14
Pluckable 49.3 64.2 59.0
Flowering 36.9 71.5 61.0

Other 20.6 28.0 14.0
All 35.2 57.1 45.3
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In Table 3, the precision of the YOLOv5s model is 72%, the recall is 67%, the mAP is
70.2%, and the inference speed is 178FPS. Compared with the YOLOv4, SSD, and Faster-
RCNN models, the precision increased by 12.9, 9.9, and 36.8 percentage points, the recall
increased by 60.2, 53.8, and 9.9 percentage points, the mAP increased by 49, 44, and
24.9 percentage points, and the inference speed increased by 2.7 times, 4.4 times, and
11.7 times. Experimental data show that the YOLOv5s model has higher detection precision
and faster inference speed.

3.2. Parameter Optimization Experiment of Daylily Detection Model

According to the test results in the previous section, this study chose to use the
YOLOv5s model to further improve the performance of the model in detecting daylily.
Studies showed that the network depth and width coefficients of object detection models
have an important impact on the performance and efficiency of the model. Mingxing Tan
et al. [48] proposed a convolutional neural network structure EfficientNet with adjustable
depth and width. The model can improve the performance and efficiency of the model
by comprehensively adjusting the depth and width coefficients; Longxin Lin et al. [49]
analyzed the impact of different scales of convolutional networks on the robustness and
accuracy of object detection models through multiple experiments. The YOLOv5 model
uses depth and width coefficients to control the size of the network. By increasing the
depth and width coefficients, its feature extraction ability and object detection ability can
be improved, and the effective receptive field of the model can be increased, which is
beneficial for the model to better understand the visual information in the image and
detect objects more accurately. Therefore, this experiment improves the network depth
and width coefficients of the model. In this experiment, the configuration file of the model
was named yolov5s.yaml, and then the network layer scaling factor (depth_multiple) and
channel number scaling factor (width_multiple) of YOLOv5s were adjusted four times
in the configuration file, and the adjusted models were named YOLOv5s1, YOLOv5s2,
YOLOv5s3, and YOLOv5s4, respectively. The detailed parameters of the YOLOv5 (s, s1, s2,
s3, and s4) model are shown in Table 4.

Table 4. YOLOv5 (s, s1, s2, s3, and s4) model network parameters.

Model Depth_Multiple Width_Multiple Params (M)

YOLOv5s 0.33 0.5 7.2
YOLOv5s1 0.33 0.25 1.9
YOLOv5s2 0.67 0.75 21.2
YOLOv5s3 1.0 1.0 46.5
YOLOv5s4 1.33 1.25 86.7

The network depth of YOLOv5s is 18 layers, and the number of channels is (32, 64, 128,
256, and 512). Therefore, the network depth of YOLOv5 (s1, s2, s3, and s4) models adjusted
by the scaling factor can be calculated as 18 layers, 36 layers, 53 layers, and 72 layers; the
numbers of channels are (16, 32, 64, 128, and 256), (48, 96, 192, 384, and 768), (64, 128, 256,
512, and 1024), (80, 160, 320, 640, and 1280), respectively. Subsequently, this experiment uses
the adjusted models to train on the training set according to the same training parameters
in Section 3.1 and selects the best weight trained by each adjusted model for performance
testing on the test set. Finally, they are compared with the original YOLOv5s model. The
precision, recall, mAP, and FPS results are shown in Table 5.

In Table 5, the precision of the YOLOv5 (s1, s, s2, s3, and s4) models for daylily
detection are 70.3%, 72%, 80.8%, 82.9%, and 83%, for recall are 62.9%, 67%, 71.2%, 72.1%,
and 72.8%, for mAP are 67.5%, 70.2%, 75.8%, 77.7%, and 77.9%, and the inference speeds are
213FPS, 178FPS, 169FPS, 167FPS, 55FPS. Compared with YOLOv5s, the mAP of YOLOv5s1
is reduced by 2.7 percentage points, but the inference speed is 20 percentage points faster;
the mAP of YOLOv5s2 is increased by 5.6 percentage points, but the inference speed is
5 percentage points slower; the mAP of YOLOv5s3 is increased by 7.5 percentage points, but
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the inference speed is 7 percentage points slower; and the mAP of YOLOv5s4 is increased
by 7.7 percentage points, but the inference speed is 2.2 times slower, with the highest
detection precision and the slowest inference speed.

Table 5. YOLOv5 (s, s1, s2, s3, and s4) model detection performance indicators results.

Model Classes Precision (%) Recall (%) mAP (%) FPS

YOLOv5s

Immature 73.2 76.0 78.2

178
Pluckable 78.5 76.6 81.7
Flowering 78.0 76.1 81.0

Other 58.3 39.5 40.0
All 72.0 67.0 70.2

YOLOv5s1

Immature 73.4 73.2 77.0

213
Pluckable 76.2 73.7 80.1
Flowering 76.7 72.3 78.5

Other 54.9 32.2 34.4
All 70.3 62.9 67.5

YOLOv5s2

Immature 81.7 79.4 83.5

169
Pluckable 83.3 78.5 84.5
Flowering 85.3 78.9 83.5

Other 72.9 47.9 51.9
All 80.8 71.2 75.8

YOLOv5s3

Immature 84.7 80.1 84.3

167
Pluckable 84.0 79.7 85.6
Flowering 87.4 79.0 85.1

Other 75.5 49.8 55.7
All 82.9 72.1 77.7

YOLOv5s4

Immature 84.4 80.8 85.4

55
Pluckable 82.7 82.0 85.4
Flowering 85.8 78.6 84.1

Other 78.6 49.7 56.7
All 83.0 72.8 77.9

To better show the changing trend of model performance, this experiment compares
the trained results visually. The precision, recall, mAP, and FPS comparison of the five
models are shown in Figure 11.

In Figure 11, at the initial stage of training, as the number of iterations increases, the
precision, recall, and mAP values of the five models all show a rapid increase trend. When
the number of iterations reaches 73, the performance indicator values of the five models
gradually tend to be stable. Among them, YOLOv5s4, which has the largest network
structure, exhibits the fastest performance improvement and the highest mAP value. The
comparison of the model detection performance of YOLOv4, SSD, Faster R-CNN, and
YOLOv5 (s1, s, s2, s3, and s4) is shown in Table 6.

It can be seen from Table 6 that compared with YOLOv5s, the mAP of YOLOv4,
SSD, Faster R-CNN, and YOLOv5s1 decreased by 49, 44, 24.9, and 2.7 percentage points,
respectively, and the mAP of YOLOv5s2, YOLOv5s3, and YOLOv5s4 increased by 5.6,
7.5, and 7.7, respectively. It is worth noting that for the YOLOv5 (s1, s, s2, s3, and s4)
model, as the model network depth and width coefficients increase, the precision, recall,
and mAP of the model are continuously improved, but the magnitude of the model
performance improvement gradually decreases, and the inference speed gradually slows
down. Therefore, this study chose YOLOv5s4 for subsequent optimization experiments.
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Table 6. Performance comparison of different object detection models.

Model YOLOv4 SSD Faster
R-CNN YOLOv5s YOLOv5s1 YOLOv5s2 YOLOv5s3 YOLOv5s4

Precision (%) 59.1 62.1 35.2 72.0 70.3 80.8 82.9 83.0
Precision Change −12.9 −9.9 −36.8 0 −1.7 +8.8 +10.9 +11.0

Recall (%) 6.8 13.2 57.1 67.0 62.9 71.2 72.1 72.8
Recall Change −60.2 −53.8 −9.9 0 −4.1 +4.2 +5.1 +5.8

mAP (%) 21.2 26.2 45.3 70.2 67.5 75.8 77.7 77.9
mAP Change −49.0 −44.0 −24.9 0 −2.7 +5.6 +7.5 +7.7

FPS 48 33 14 178 213 169 167 55
FPS Change −130 −145 −164 0 +35 −9 −11 −123

3.3. Backbone Network Optimization Experiment of Daylily Detection Model

In the optimization experiment of network parameters, the YOLOv5s4 model has the
highest detection precision, and its mAP can reach 77.9%, but its inference speed is low, only
reaching 55FPS. In the application of actual detection models, the lightweight optimization
of the backbone network can improve the detection performance and inference speed of
the model. Ghost, Transformer, and MobileNetv3 are currently three common lightweight
networks. Among them, Transformer and Ghost networks have higher accuracy, but
their speed is slower than MobileNetv3; the MobileNetv3 network speed is faster, but its
accuracy is not high. Therefore, it is necessary to select the corresponding network for
optimization according to the requirements of specific scenarios, such as accuracy, speed,
and resource constraints. Lei Huang et al. [50] proposed a new FS-MobileNetV3 network
to replace the CSPDarknet backbone network in the original network. Compared with
the original model, the mAP of the improved model is only reduced by 0.37 percentage
points, but the detection speed is improved by 11FPS, which meets the needs of mobile
deployment in different scenarios; Xiaoqiang Shao et al. [51] used the improved lightweight
network ShuffleNetV2 to replace the original YOLOv5s backbone network CSPDarknet53
and integrated the Transformer self-attention module into the improved ShuffleNetV2.
Compared with the original YOLOv5s model, the mAP of the improved detection model
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increased by 5.2 percentage points, and the speed increased by 21 percentage points. Based
on these research results and the optimization experiment results in the previous section,
this study named the configuration file of the optimized model as yolov5s4.yaml, and
replaced the backbone network CSPDarknet of the YOLOv5s4 model with lighter backbone
networks Ghost [52], Transformer [53], and MobileNetv3 in the configuration file. Finally,
they are trained and tested according to the same parameters in Section 3.1. The precision,
recall, mAP, and FPS indicator results of daylily detection by different backbone networks
of YOLOv5s4 are shown in Table 7.

Table 7. YOLOv5s4 different backbone networks for daylily detection performance indicator results.

Model Backbone Classes Precision (%) Recall (%) mAP (%) FPS

YOLOv5s4 CSPDarknet

Immature 84.4 80.8 85.4

55
Pluckable 82.7 82.0 85.4
Flowering 85.8 78.6 84.1

Other 78.6 49.7 56.7
All 82.9 72.8 77.9

YOLOv5s4 Ghost

Immature 76.6 73.1 78.2

86
Pluckable 78.6 74.3 81.1
Flowering 80.7 74.5 81.6

Other 59.7 35.4 37.4
All 73.9 64.3 69.6

YOLOv5s4 Transformer

Immature 82.8 82.9 85.8

93
Pluckable 80.9 82.3 85.5
Flowering 85.0 81.3 84.8

Other 76.9 51.2 56.2
All 81.4 74.4 78.1

YOLOv5s4 MobileNetv3

Immature 64.8 67.7 68.8

161
Pluckable 71.1 68.6 74.1
Flowering 68.0 71.0 74.0

Other 46.4 15.5 17.5
All 62.6 57.7 58.6

In Table 7, compared with the YOLOv5s4 model with CSPDarknet as the backbone
network, the mAP of the YOLOv5s4 model based on MobileNetv3 is reduced by 19.3 per-
centage points, but the inference speed is 1.9 times faster; the mAP of the YOLOv5s4 model
based on Ghost is reduced by 8.3 percentage points, but the inference speed is 56.4 percent-
age points faster. While the mAP of the YOLOv5s4 model based on Transformer is increased
by 0.2 percentage points, and the inference speed is 69 percentage points faster, the recall,
mAP, and inference speed of the model are improved, and the detection performance is
the best. Therefore, this experiment chooses the YOLOv5s4 model with Transformer as
the backbone network as the final optimization model. The optimization results of the
Transformer backbone network for the YOLOv5s4 model are shown in Table 8.

Table 8. Performance comparison of different object detection models.

Model Precision
(%)

Precision
Change

Recall
(%)

Recall
Change mAP (%) mAP

Change FPS FPS
Change

YOLOv5s4 82.9 0 72.8 0 77.9 0 55 0
Transformer + YOLOv5s4 81.4 −1.5 74.4 +1.6 78.1 +0.2 93 +38

It can be seen from Table 8 that the detection performance of the YOLOv5s4 model with
Transformer as the backbone network is reduced by only 1.5% in precision, and the recall,
mAP, and inference speed are increased by 1.6%, 0.2%, and 38FPS, respectively, and the
backbone network optimization experiment achieved expectations. To better demonstrate
the changing trend of model performance based on different backbone networks, the
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trained results were visualized and compared. The precision, recall, mAP, and FPS of
YOLOv5s4 model detection based on different backbone networks are shown in Figure 12.
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3.4. Visual Analysis of the Detection Results of the Final Optimization Model on the Test Set

To investigate the algorithm robustness of the YOLOv5 model for detecting daylily
in complex field environments, this experiment selected images of daylily with uneven
lighting, overlapping plants, night lights, and branch occlusion in the test set. The final
optimized model was used for object detection, and the detection results are shown in
Figure 13.
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In Figure 13, the improved YOLOv5 model has a good detection effect in complex
field environments. In the case of uneven lighting, the detection precision of the model for
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the Immature class can reach up to 96%, and for the Pluckable class can reach up to 97%.
In the case of overlapping plants, the detection precision for the Immature class can reach
up to 93%, and for the Pluckable class can reach up to 97%. In the case of night light, the
detection precision for the Immature class can reach up to 94%, for the Pluckable class can
reach 94%, and for the Flowering class can reach 95%. In the case of branch occlusion, the
detection precision for the Immature class can reach up to 92%, and for the Pluckable class
can reach up to 98%.

4. Discussion
4.1. Analysis of the Difference in Detection Performance of the Final Model for Daylily in Different
Growth Stages

The improved YOLOv5 object detection model proposed in this study achieves real-
time and efficient identification of daylilies at different growth stages in complex field
environments. The detection effect for the Immature class is the best, with the mAP of
85.8%. The mAP for the Pluckable and Flowering classes are 85.5% and 84.8%, respectively,
and the inference speed can reach 93FPS, meeting the precision and speed requirements
for actual picking. However, the individual differences in the growth of daylilies in the
natural environment will cause the daylilies in the same planting period to be in different
growth stages, which may affect the detection accuracy of the model. Therefore, future
research can consider increasing the data of daylilies in different growth stages to train
the model to ensure the accuracy and diversity of the data, and then improve the model’s
ability to detect daylilies in different growth stages. This will improve the efficiency of
intelligent picking and sorting of daylilies, thereby improving the production efficiency of
the daylily industry.

4.2. Analysis of the Impact of Different Optimization Methods on Object Detection Performance

At present, the demand for embedded products and services is increasing day by
day. For embedded systems with limited memory space, object detection models not only
require high-precision recognition effects, but also require the smallest possible network
scale. This study adopted two methods to optimize the YOLOv5 model. First, when
optimizing the network parameters of the YOLOv5 model, the network size of YOLOv5s
is smaller than that of YOLOv5s4. Although its detection accuracy is lower than that of
the YOLOv5s4 model, its reasoning speed is faster, which is conducive to deployment on
mobile devices and other lightweight devices; while the YOLOv5s4 model has excellent
detection accuracy, its network model is too large to be embedded in hardware devices.
Second, when optimizing the backbone network of the YOLOv5 model, replacing the
lightweight backbone network can effectively reduce the size of the model parameters, but
the recognition accuracy of the model is also reduced. Although the YOLOv5s4 model
based on Transformer improved significantly in speed without decreasing the recognition
accuracy, there is still a big gap with the inference speed of the YOLOv5s model. Studies
showed that adding an attention mechanism can effectively improve the detection accuracy
of the model [54,55], and pruning the model redundant network can effectively compress
the model network size [56]. Therefore, in future research, the following measures can be
taken to further improve the YOLOv5 model: on the one hand, the detection accuracy of
the YOLOv5s model can be improved by adding an attention mechanism. On the other
hand, redundant neurons and weights in the neural network of the final optimized model
can be pruned to improve the algorithm reasoning speed.

5. Conclusions

This study aims to achieve efficient detection of daylilies at different growth stages
in complex field environments. Four mainstream object detection algorithms are used for
training and comparison, and the YOLOv5s model with the best detection performance is
selected for experimentation. On this basis, this study made the following improvements
to the YOLOv5s model: firstly, adjust the depth and width coefficients of the YOLOv5s
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network, and then replace the YOLOv5s backbone network CSPDarknet with Ghost,
Transformer, and MobileNetv3 lightweight networks, respectively, which realize high-
precision real-time detection of daylilies in complex field environments. The conclusions
are as below:

(1) The mAP of YOLOv5s can reach 70.2%, and the inference speed can reach 178FPS.
Compared with SSD, Faster R-CNN, and YOLOv4 models, it has higher detection
accuracy and inference speed;

(2) Adjusting the depth and width coefficients of the YOLOv5s network and optimizing
the backbone network can further improve detection precision and inference speed.
Among them, the YOLOv5s model with a Transformer-based network depth of 1.33
and a width of 1.25 has the best detection performance, and its mAP is 78.1%. The
inference speed is 93FPS, and compared with the original YOLOv5s model, the mAP
increased by 7.9 percentage points; compared with the YOLOv5s model based on
CSPDarknet with the same network parameters, the mAP increased by 0.2 percentage
points, and the inference speed increased by 69 percentage points;

(3) Under the influence of occlusion, overlapping, visual blur, natural light bright or dark,
weather, and other factors, the final optimized YOLOv5 model can still efficiently
detect daylilies, and the mAP of the Immature, Pluckable, and Flowering classes,
which, respectively, reached 85.8%, 85.5%, and 84.8%; this method has good stability
and can meet the requirements of daylily picking operations. This study can provide
a certain technical reference for the detection of crops in similar environments and the
development of intelligent picking of daylilies.
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