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Abstract: Background: C-peptide is produced in equimolar amounts with insulin from pancreatic beta
cells, and thus is a fundamental biomarker for beta cell function. A non-invasive urinary C-peptide-to-
creatinine ratio (UCPCR) has attracted attention as a biomarker for metabolic conditions. However, the
UCPCR as an indicative risk predictor for prediabetes is still being investigated. Methods: We aimed
to characterize UCPCRs in healthy people using American Diabetes Association (ADA) criteria and to
evaluate their metabolic outcomes over time. A total of 1022 participants of the Biomarkers in Personalized
Medicine cohort (BioPersMed) were screened for this study. Totals of 317 healthy with normal glucose
metabolism, 87 prediabetic, and 43 diabetic subjects were included. Results: Prediabetic participants
had a significantly higher UCPCR median value than healthy participants (p < 0.05). Dysglycaemia
of healthy baseline participants was measured twice over 4.5 ± 0.9 years; 25% and 30% were detected
with prediabetes during follow-ups, predicted by UCPCR both for the first (p < 0.05) and the second visit
(p < 0.05), respectively. This is in good agreement with the negative predictive UCPCR value of 60.2% based
on logistic regression. UCPCR levels were equal in both sexes. Conclusion: UCPCR measurements provide
an indicative approach for metabolic risk, representing a potential use for prevention and monitoring of
impaired glucose metabolism.

Keywords: UCPCR; urinary C-peptide creatinine ratio; BioPersMed cohort; metabolic risk; prediabetes

1. Introduction

The use of C-peptide as a surrogate marker for insulin to assess beta cell function in
clinical practice is mainly supported by its equimolar secretion and its higher stability and
half-life compared to endogenous insulin, allowing for measurements in blood and urine.
Notably, interferences with administered insulin or insulin autoantibodies can be neglected.
Therefore, the assessment of C-peptide provides a mirror of the secretory pattern of insulin
in healthy individuals as well as in people with diabetes mellitus (DM) of various subtypes
regardless of insulin therapy [1]. However, the practical use of the UCPCR in patients at
metabolic risk, e.g., subjects with prediabetes (preDM), remains an open question.
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In pancreatic beta cells, C-peptide (31 amino acids, molecular weight 3021 Da) is
cleaved from the proinsulin molecule and stored in secretory granules. C-peptide emerges
from the liver and enters systemic circulation. After a systemic half-life of around 35 min
(compared to insulin with 5–10 min), C-peptide is excreted with the urine [2]. C-peptide
is a pluripotent molecule with a number of currently poorly understood functions and
hormonal activities, which makes its determination even more valuable [3]. However, some
practical difficulties of blood C-peptide detection exist, including the need for immediate
centrifugation and analysis due to its instability and short half-life. Additionally, testing
is even more difficult in remote areas lacking sophisticated instruments, which requires
patients to transport the blood C-peptide kept on ice, making it impractical and inconve-
nient. There are existing investigations about the correlations of 24-h urinary C-peptide
(24-h UCP) with fasting blood C-peptide [4]. However, the collection procedure of 24-h
urine samples is cumbersome. For analytical purposes, urinary C-peptide normalized to
the individual concentrations of urinary creatinine as a reference molecule to correct for the
variations of urine concentration allows the use of a spot urine sample.

Several studies have reported the use of the UCPCR in different applications, including
differentiation, clinical monitoring, and therapy adaptation for type 1 diabetes mellitus
(T1DM) [5–7], hyperinsulinism, and/or type 2 diabetes mellitus (T2DM) [8–12], as well as
independently of T2DM [5,13]. Further specific applications might include the detection of
clinically relevant conditions like polycystic ovary syndrome (PCOS) or gestational diabetes
(GDM) in pregnant women at risk [14,15], and a potential application in postoperative
monitoring of pancreas graft function [16], where a close but low threshold, and at best non-
invasive, monitoring is mandatory. However, the use of the UCPCR to predict metabolic
risk factors such as preDM is still being investigated. Therefore, we aim to define guiding
values for the UCPCR in a precisely defined and thoroughly phenotyped population of
healthy participants, allowing for an individual risk prediction for the future risk for
impaired glucose metabolism from non-invasive urinary samples and the documentation
of metabolic changes over time.

2. Materials and Methods
2.1. Study Design and Population

The BioPersMed cohort was designed as a single-centre prospective observational
cohort study consisting of a total number of 1022 volunteers, recruited between 2010 and
2016. Subjects aged 45 years or older were included when having at least one traditional
cardiovascular risk factor or manifesting T2DM, with a proportion of 26% at low cardiovas-
cular risk according to the Framingham “Systematic COronary Risk Evaluation” (SCORE).
The BioPersMed cohort study was approved by the Ethics Committee of the Medical Uni-
versity of Graz, Austria (EC Nr. 24-224 ex 11/12), and it was conducted in compliance with
Good Clinical Practice Guidelines Procedures (GCP) and complies with the Declaration
of Helsinki and the Austrian laws. Further detailed description of the study design was
published previously [17].

Inclusion criteria were based on ADA definitions including a classification of preDM
as a fasting plasma glucose (FPG) of 100–125 mg/dL (5.6–6.9 mmol/L), 2-h postpran-
dial glucose (2-h PG) of 140–199 mg/dL (7.8–11.0 mmol/L) during a 75-g oral glucose
tolerance test (oGTT), and hemoglobin A1c (HbA1c) of 5.7–6.4% (39–47 mmol/mol),
whereas T2DM was defined by FPG ≥ 126 mg/mL (≥7.0 mmol/L), 2-h PG ≥ 200 mg/dL
(≥11.1 mmol/L) during the oGTT, and HbA1c ≥ 6.5% (≥48 mmol/mol). Healthy subjects
were chosen based on ADA criteria that showed neither classification of preDM nor T2DM.
Among 447 total participants included in the current work, 317 were healthy participants
(female n = 198 (62.5%)), (male n = 119 (37.5%)), 87 prediabetic (female n = 32 (36.8%)),
(male n = 55 (63.2%)), and 43 diabetic ((female n = 15 (34.9%)), (male n = 28 (65.1%)).
Subjects with T1DM were not included in the study. Importantly, participants with missing
information/data were excluded from the study, as well as all patients with hormonal imbal-
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ances other than post menopause in women, renal failure, congestive heart disease, chronic
respiratory problems, liver disease, malabsorption syndromes, or other severe diseases.

2.2. Study Procedures, Samples, and Parameters

A physical examination and anthropometric, functional metabolic, and laboratory
testing of blood and urine samples were performed during screening and follow-up visits.
Such analyses included liver and kidney function and electrolytes, blood counts, hormonal
and metabolic data including lipid profiles, fasting blood glucose, insulin and C-peptide,
and urinary analyses. Additionally, standardized oral glucose tolerance, insulin, and
C-peptide tests were also performed.

After an overnight fast of at least 8 h, blood samples were drawn in the morning using
a Vacuette Luer Adapter (Greiner Bio-One, Kremsmünster, Austria) in a sitting position,
and urinary samples using urinary cups by Greiner Bio-One, Austria were collected as
a second morning void. Following a concise protocol, samples were either immediately
analysed or biobanked according to a fixed standard operating procedure and frozen at
−80◦ Celsius in the Biobank of the Medical University Graz (biobank.medunigraz.at/en)
accessed on 24 April 2023.

To determine C-peptide concentrations, blood and urine samples were centrifuged
at 2500 relative centrifugal force (RCF) for 10 min at room temperature (RT) (20–25 ◦C),
and 1000 RCF for 15 min at RT, respectively. Subsequently, analysis was performed using
ADVIA Centaur® system (Siemens Health Care, Vienna, Austria). In addition, insulin
and other parameters were determined according to the conditions of good laboratory
practice (GLP) and good scientific practice (GSP). Measurements of FPG, HbA1c, and other
biochemical variables such as alanine aminotransferase (ALT), aspartate aminotransferase
(AST), gamma-glutamyl-transferase (GGT), blood and urinary creatinine, triglycerides,
cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL), among
others, were performed using a Cobas® Analyzer (Roche Diagnostics, Penzberg, Germany).
Functional data from oGTT were available for all subjects and have been included in the
analysis, as well as the Homeostatic Model Assessment for Insulin Resistance (HOMA-
IR), the Stumvoll and Cederholm Insulin Sensitivity Indices (ISI), and the Matsuda index
(based on Otten et al. 2014) [18,19].

Additional clinical parameters were available to thoroughly characterise healthy, preDM,
and T2DM groups. We included the participants’ medical history for diseases, medications,
and anthropometric measurements such as weight, height, and waist and hip circumference.
Body mass index (BMI) was calculated using this formula: weight (kg)/height (m2) (kg/m2).
Body composition measurements were performed using dual-energy-X-ray densitometry (Lunar
iDXA®, General Electrics, Boston, MA, USA) for parameters of total lean and total fat body mass.

2.3. C-Peptide Assay Characteristics

For C-peptide measurements using the ADVIA Centaur® system, calibration and
quality control for precision and accuracy of the instrument during the measurements
were performed according to the manufacturer’s instructions. The analytical measure-
ment range of the assay was 0.05–30 ng/mL and 0.50–300 ng/mL for blood and urinary
C-peptide, respectively. Interference testing was determined using the CLSI Document
EP7-P according to the Clinical and Laboratory Standards Institute (formerly NCCLS) with
no known cross-reactivity to substances such as proinsulin, insulin, glucagon, calcitonin,
somatostatin, or secretin. The sensitivity of the assay was described up to 30 ng/mL with a
minimum detectable concentration of 0.05 ng/mL. Furthermore, the assay was reported
with a precision of 3.7, 4.0, 4.1 (% CV (within run)); 3.3, 1.1, 1.0 (% CV (run-to-run)); 6.1, 5.1,
6.2 (% CV (total)) for 1.4 ng/mL, 4.9 ng/mL, 10.6 ng/mL, respectively, for serum samples,
and 4.7, 4.1 (% CV (within run)); 5.1, 3.6 (% CV (run-to-run)); 8.5, 9.5 (% CV (total)) for
10.4 ng/mL and 37.1 ng/mL, respectively, for urine samples.

The accuracy standard of the assay for serum and urinary C-peptide measurements was
within the ranges of 0.23 to 22.72 ng/mL and 0.42 to 300 ng/mL, respectively. Dilution recovery
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for serum and urinary C-peptide ranged from 84.1 to 106.3% (mean = 93.5%) and 96.6% to
119.9% (mean = 105.7%), respectively. Spike recovery for serum and urinary C-peptide ranged
from 90.1 to 108.8% (average = 97.8%) and 96.9 to 105.0% (average = 101.7%), respectively.

2.4. Statistical Analysis

Assumption of normal distribution was shown with Kolmogorov–Smirnov or Shapiro–
Wilk tests (p > 0.05 normally distributed data assumed) and Q-Q plots. The non-parametric
Kruskal–Wallis tests with Bonferroni correction for multiple testing were used for testing
group differences (healthy group compared to diseased groups) according to clinical baseline
characteristics. Correlation studies were analysed using Spearman correlation coefficients,
due to the not normally distributed data of the parameter UCPCR. Associations between
categorical variables were analysed with Chi-square tests and Fisher’s exact tests. Data
were presented as total number or relative frequencies, and in case of a skewed distribution,
as median and interquartile range (25-percentile and 75-percentile). A t-test was used for
normally distributed data and the Mann–Whitney U test was used for skewed data to assess
differences between the two groups. A binary logistic regression model was used to evaluate
predictors for preDM. A p-value of < 0.05 was considered as statistically significant. All tests
were 2-sided with 95% confidence intervals (95% CIs). The propensity score matching was
done in R 4.1.3 using package MatchIt. Each individual in the preDM group was matched
to an individual in the healthy control group based on the confounding factors gender, BMI,
waist, hip, and age in years on the nearest matching function. Unmatched participants
were discarded. Statistical tests were performed using Statistical Package for Social Sciences
(IBM SPSS) version 27.0 (SPSS Inc., Chicago, IL, USA). GraphPad Prism 8 (GraphPad Prism
version 8.0.2 for Windows, GraphPad Software, La Jolla, CA, USA) was used for visualisations.
The Sankey plot was designed using the online software at SankeyMATIC: Make Beautiful
Flow Diagrams (sankeymatik.com), last accessed on 20 March 2023.

3. Results

Characteristics of all participants and defined groups (heathy, preDM, and T2DM)
at baseline are shown in Table 1. We found differences between the predefined groups in
almost all parameters listed, except for height and urinary creatinine values.

Table 1. Baseline characteristics of the study group. Values are represented as median ± interquartile
range (IQR, 25–75th percentile). NA means not applicable due to non-statistically significant values
from Kruskal–Wallis test. BMI: body mass index; WHR: waist-to-hip ratio; AUC: area under the
curve; HbA1c: hemoglobin A1c; HOMA-IR: Homeostatic Model Assessment for Insulin Resistance;
ISI: Insulin Sensitivity Index; UCP: urinary C-peptide; UCR: urinary creatinine; UCPCR: urinary
C-peptide-to-creatinine ratio. HbA1c: hemoglobin A1c [20–42 mmol/mol]; fasting blood glucose
(70–100 mg/dL); fasting blood C-peptide [0.78–1.89 ng/mL]; fasting blood insulin (3–25 mU/L);
blood creatinine (female: 0.50–0.90 mg/dL, male: 0.70–1.20 mg/dL). Numbers in bold are considered
statistically significant (p value < 0.05).

Variables All
N = 447

Healthy
N = 317

PreDM
N = 87

T2DM
N = 43 p-Value

Healthy
vs. preDM

(p-adj.)

Healthy
vs. T2DM

(p-adj.)

PreDM
vs. T2DM

(p-adj.)

Age (years) 57
(51–63)

56
(51–62)

59
(53–66)

61
(58–67) <0.001 0.021 0.002 0.728

BMI (kg/m2) 25.90
(23.67–29.05)

24.84
(22.75–27.50)

27.80
(25.60–30.80)

30.80
(26.10–33.90) <0.001 <0.001 <0.001 0.111

Hip
circumference

(cm)

99
(92–106)

96
(90–103)

103
(95–109)

108
(102–118) <0.001 <0.001 <0.001 0.007

Waist
circumference

(cm)

90
(80–100)

87
(77–95)

96
(90–105)

107
(97–116) <0.001 <0.001 <0.001 0.035
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Table 1. Cont.

Variables All
N = 447

Healthy
N = 317

PreDM
N = 87

T2DM
N = 43 p-Value

Healthy
vs. preDM

(p-adj.)

Healthy
vs. T2DM

(p-adj.)

PreDM
vs. T2DM

(p-adj.)

WHR 0.92
(0.86–0.97)

0.90
(0.84–0.95)

0.96
(0.90–1.01)

0.98
(0.92–1.02) <0.001 <0.001 <0.001 0.849

Weight (kg) 77
(66–86)

72
(63–83.50)

82
(74–88)

88
(80–103) <0.001 <0.001 <0.001 0.124

Height (cm) 170
(164–178)

169
(164–176.50)

173
(165–179)

172
(165–178) 0.138 NA NA NA

Total lean
mass (kg)

47.70
(40.75–57.50)

44.85
(39.85–56.27)

52.92
(43.77–57.93)

56.78
(45.29–62.98) <0.001 <0.001 <0.001 0.504

Total fat mass
(kg)

24.67
(19.48–31.60)

23.23
(18.32–28.88)

28.26
(22.15–36.25)

31.33
(27.07–37.66) <0.001 <0.001 <0.001 0.190

Fasting blood
glucose
(mg/dL)

91
(86–100)

88
(84–93)

104
(100–108)

140
(123–164) <0.001 <0.001 <0.001 0.029

AUC glucose 14,265
(12,180–17,805)

13,095
(11,610–15,008)

18,795
(16,815–20,730)

28,110
(24,660–34,470) <0.001 <0.001 <0.001 0.001

HbA1c
(mmol/mol)

37
(35–39)

36
(34–38)

39
(37–42)

52
(44–59) <0.001 <0.001 <0.001 <0.001

Fasting blood
C-peptide
(ng/mL)

1.34
(1.02–1.98)

1.19
(0.93–1.58)

1.98
(1.44–2.58)

2.55
(1.77–3.35) <0.001 <0.001 <0.001 0.142

1-h stimulated
blood

C-peptide
(ng/mL)

6.38
(5.00–8.46)

6.15
(4.59–7.98)

7.82
(6.20–10.34)

6.01
(4.54–8.15) <0.001 <0.001 1.000 <0.001

2-h stimulated
blood

C-peptide
(ng/mL)

5.56
(3.90–8.01)

4.77
(3.59–6.56)

7.94
(5.74–11.07)

8.14
(6.09–9.75) <0.001 <0.001 <0.001 1.000

AUC
C-peptide

621
(477–788)

576
(456–721)

787
(620–962)

686
(529–875) <0.001 <0.001 0.020 0.114

Fasting blood
insulin
(mU/L)

9.20
(6.10–13.50)

7.90
(5.00–11.35)

11.90
(9.20–19.00)

16.10
(10.10–22.70) <0.001 <0.001 <0.001 0.979

AUC insulin 5624
(3503–9272)

4968
(3303–8062)

7872
(4587–14,186)

6275
(3962–9389) <0.001 <0.001 0.215 0.637

HOMA-IR 2.11
(1.35–3.32)

1.72
(1.10–2.50)

3.09
(2.28–4.81)

5.07
(3.60–9.22) <0.001 <0.001 <0.001 0.047

HOMA-beta
(%)

110.77
(76.91–161.05)

117
(82.87–163.39)

109.13
(84.65–178.05)

75.27
(40.91–115.41) <0.001 1.000 0.001 0.002

ISI Stumvoll 0.09
(0.07–0.11)

0.10
(0.08–0.11)

0.08
(0.01–0.09)

0.06
(0.04–0.09) <0.001 <0.001 <0.001 0.809

ISI
Cederholm

50.78
(35.91–66.21)

57.08
(46.17–73.11)

34.87
(25.27–47.31)

20.28
(15.58–26.81) <0.001 <0.001 <0.001 0.000

Matsuda
index

5.06
(3.16–8.27)

6.17
(4.20–9.38)

3.09
(1.72–4.88)

2.18
(1.28–3.35) <0.001 <0.001 <0.001 0.056

Blood
creatinine
(mg/dL)

0.86
(0.76–0.98)

0.84
(0.75–0.96)

0.93
(0.83–1.05)

0.86
(0.76–0.96) <0.001 <0.001 1.000 0.133

UCP (nmol/L) 5.43
(2.98–9.73)

4.64
(2.60–8.00)

8.24
(4.73–11.85)

10.83
(8.31–15.43) <0.001 <0.001 <0.001 0.071

UCR (mmol/L) 11.23
(6.72–15.38)

10.96
(6.10–15.38)

11.85
(7.69–16.00)

11.93
(8.49–16.09) 0.287 NA NA NA

UCPCR
(nmol/mmol)

0.59
(0.33–0.93)

0.49
(0.30–0.81)

0.76
(0.46–1.10)

0.92
(0.59–1.80) <0.001 <0.001 <0.001 0.269
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Out of 1022 BioPersMed participants, a total of 447 (male, n = 202 (45.2%)),
(female, n = 245 (54.8%)) participants were selected for this study, including 317 healthy
people with normal glucose metabolism and 87 prediabetic and 43 diabetic people. A non-
normal distribution was observed between genders (Pearson Chi-square, p-value < 0.001).
Of note, men were more likely to develop preDM (p < 0.001) or T2DM than women
(p < 0.001) based on Fisher’s exact test.

Anthropometric and laboratory data of the study group presented in Table 1 showed
that participants with preDM had significantly higher UCPCR, BMI, hip and waist circum-
ference, WHR, weight, total lean mass, total fat mass, FPG, AUC glucose, fasting C-peptide,
hbA1c, 1-h and 2-h stimulated C-peptide, AUC C-peptide, fasting blood insulin, AUC
insulin, HOMA-IR, blood creatinine, and UCP compared to the healthy group (p < 0.05). In
addition, we found a lower Matsuda index, ISI Stumvoll and ISI Cederholm in the preDM
group compared to healthy people (p < 0.05).

Due to the higher sample size in the healthy group compared to the preDM group,
we performed a propensity score matching on the subgroups. Based on our analysis using
the matched data, we found no substantial differences in the descriptive statistics of the
population at the baseline (see Supplementary Data Table S1).

Urinary C-peptide (p-value < 0.001) and urinary creatinine (p-value < 0.001) showed
significant differences between male and female participants. However, after normalization
of urinary C-peptide to the individual urinary creatinine values, no significant difference
was observed based on Mann–Whitney U tests (p-value = 0.162 Figure 1). Even after propen-
sity score matching was applied to balance the sample size between gender, differences in
UCPCR values in both sexes remained statistically non-significant (p-value = 0.921).
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Figure 1. After normalization for individual urinary creatinine, UCPCR values in women and men
did not show significant differences (p-value = 0.162).

Potential covariates were tested using correlation studies for both healthy and preDM
groups at baseline, listed in Tables 2 and 3, respectively. Factors influencing UCPCR have
been identified such as age, BMI, hip and waist circumference, hbA1c, AUC C-peptide,
fasting blood C-peptide and insulin, HOMA-IR, and blood creatinine in the healthy group
(see Table 2). Notably, factors such as BMI, waist circumference, WHR, total fat mass,
fasting blood glucose, C-peptide and insulin, AUC glucose and C-peptide, 1-h and 2-h
stimulated blood C-peptide, HOMA-IR, ISI Stumvoll, ISI Cederholm, and the Matsuda
index had a significant impact on the UCPCR levels in preDM subjects (see Table 3).
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Table 2. Correlation between UCPCR and the above variables in healthy individuals. BMI: body
mass index; WHR: waist-to-hip ratio; AUC: area under the curve; HbA1c: hemoglobin A1c;
HOMA-IR: Homeostatic Model Assessment for Insulin Resistance; ISI: Insulin Sensitivity Index;
UCP: urinary C-peptide; UCR: urinary creatinine; UCPCR: urinary C-peptide-to-creatinine ratio. Numbers
in bold are considered statistically significant (p value < 0.05).

Variables r p-Value

Age (years) 0.119 0.034

BMI (kg/m2) 0.111 0.048

Hip circumference (cm) 0.114 0.043

Waist circumference (cm) 0.116 0.039

WHR 0.017 0.760

Weight (kg) 0.053 0.345

Height (cm) −0.036 0.527

Total lean mass (kg) −0.008 0.888

Total fat mass (kg) 0.083 0.141

Fasting blood glucose
(mg/dL) 0.095 0.090

AUC glucose 0.019 0.735

HbA1c (mmol/mol) 0.146 0.009

Fasting blood C-peptide
(ng/mL) 0.227 <0.001

1-h stimulated blood
C-peptide (ng/mL) 0.098 0.081

2-h C-peptide (ng/mL) 0.066 0.238

AUC C-peptide 0.126 0.025

Fasting blood insulin (mU/L) 0.111 0.047

AUC insulin 0.073 0.196

HOMA-IR 0.112 0.047

HOMA-beta (%) 0.104 0.066

ISI Stumvoll −0.078 0.164

ISI Cederholm −0.029 0.604

Matsuda index −0.101 0.072

Blood creatinine (mg/dL) −0.115 0.041

As shown in Table 2, we found a significant positive correlation between UCPCR and
age (r = 0.119), BMI (r = 0.111), hip circumference (r = 0.114), waist circumference (r = 0.116),
hbA1c (r = 0.146), fasting blood C-peptide (r = 0.227), AUC C-peptide (r = 0.126), fasting
blood insulin (r = 0.111), HOMA-IR (r = 0.112), and a negative correlation with blood
creatinine (r = −0.115) in the healthy group (p < 0.05). However, we found that UCPCR is
not correlated with 1-h and 2-h stimulated blood C-peptide in healthy participants.

In Table 3, we found a significant positive correlation between UCPCR and BMI (r = 0.225),
waist circumference (r = 0.266), WHR (r = 0.274), total fat mass (r = 0.213), fasting blood glucose
(r = 0.238), AUC glucose (r = 0.241), fasting blood C-peptide (r = 0.324), 1-h stimulated blood
C-peptide (r = 0.286), 2-h stimulated blood C-peptide (r = 0.235), AUC C-peptide (r = 0.311),
and fasting blood insulin (r = 0.250), HOMA-IR (r = 0.261), and a negative correlation with ISI
Stumvoll (r = −0.250), ISI Cederholm (r = −0.232), and the Matsuda index (r = −0.236) in the
preDM group (p < 0.05).
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Table 3. Correlation between UCPCR and the above variables in preDM group. BMI: body mass
index; WHR: waist-to-hip ratio; AUC: area under the curve; HbA1c: hemoglobin A1c; HOMA-IR:
Homeostatic Model Assessment for Insulin Resistance; ISI: Insulin Sensitivity Index; UCP: urinary
C-peptide; UCR: urinary creatinine; UCPCR: urinary C-peptide-to-creatinine ratio. Numbers in bold
are considered statistically significant (p value < 0.05).

Variables r p-Value

Age (years) 0.045 0.680

BMI (kg/m2) 0.225 0.036

Hip circumference (cm) 0.087 0.426

Waist circumference (cm) 0.266 0.013

WHR 0.274 0.010

Weight (kg) 0.143 0.186

Height (cm) −0.060 0.579

Total lean mass (k)] 0.024 0.825

Total fat mass (kg) 0.213 0.047

Fasting blood glucose
(mg/dL) 0.238 0.027

AUC glucose 0.241 0.024

HbA1c (mmol/mol) 0.011 0.923

Fasting blood C-peptide
(ng/mL) 0.324 0.002

1-h stimulated blood
C-peptide (ng/mL) 0.286 0.012

2-h C-peptide (ng/mL) 0.235 0.029

AUC C-peptide 0.311 0.003

Fasting blood insulin (mU/L) 0.250 0.020

AUC insulin 0.141 0.192

HOMA-IR 0.261 0.015

HOMA-beta (%) 0.187 0.083

ISI Stumvoll −0.250 0.020

ISI Cederholm −0.232 0.030

Matsuda index −0.236 0.028

Blood creatinine (mg/dL) −0.203 0.060

Additionally, fasting blood C-peptide is correlated with urinary C-peptide in healthy
people: r = 0.322 (p < 0.001) and in the preDM group: r = 0.304 (p = 0.004).

A binomial logistic regression was performed to identify the effects offasting blood
glucose, C-peptide and UCPCR on the likelihood that participants have preDM. The model
showed a statistically significant result (p < 0.001) in all the models shown in Table 4–The
odds of having preDM is 3.419 times greater for each increase in UCPCR values and a
odds ratio of 1.401 and 3.320 greater for fasting blood glucose and C—peptide. Based on
this model, the best predictors for preDM are fasting blood glucose with a specificity of
87.3% and sensitivity of 83.9% and fasting blood C-peptide with a specificity of 73.6% and
sensitivity of 59.8%, followed by UCPCR, with a specificity of 71.3% and sensitivity of
52.9%, based on univariate binary logistic regression.
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Table 4. Univariate binary logistic regression model to predict likelihood of preDM based on fasting
blood glucose, C-peptide, and UCPCR.

Variable Beta Standard Error Odds Ratio 95% CI Lower 95% CI Upper p-Value

Fasting blood glucose 0.337 0.050 1.401 1.270 1.546 <0.001

Fasting blood C-peptide 1.200 0.260 3.320 1.996 5.521 <0.001

UCPCR 1.229 0.366 3.419 1.668 7.009 <0.001

In Table 5, a classification table is presented, wherein the negative predictive values of
the UCPCR were calculated to represent the percentage of correctly predicted cases without
the observed characteristic, compared to the total number of cases predicted as not having
the characteristic. Based on our data, this is 100 × (62 ÷ (62 + 41)), which is 60.2%. This
shows that, of all cases predicted as not having preDM, 60.2% were correctly predicted by
the UCPCR model.

Table 5. Classification table based on binary logistic regression model.

Classification Table

Observed Predicted Percentage Correct (%)

Healthy PreDM

Healthy 62 25 71.3

PreDM 41 46 52.9

To demonstrate a practical model of the UCPCR application for individual patients,
we designed an indicative gradient based on UCPCR values, and categories of healthy,
preDM, and T2DM (or hyperinsulinaemic) persons (Figure 2).
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each category.

Using a Sankey plot, healthy participants defined by ADA criteria with available
UCPCR values were followed over time for 2.2 ± 0.5 and 4.5 ± 0.9 years for their metabolic
outcome (Figure 3). Baseline healthy participants assigned to their later outcome showed
a significant prediction by UCPCR values both after 2.2 ± 0.5 years at the first follow-
up (p = 0.01) and after about 4.5 ± 0.9 years at the second follow-up (p = 0.01).
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4. Discussion

In this study, we describe UCPCR values as indicative markers of an individual’s
metabolic situation both at baseline and over time. We found that men were more likely to
develop preDM and T2DM than women. Furthermore, we observed that UCPCR values
in adults with preDM are higher than those in healthy adults, which is likely due to their
impaired glucose metabolism. Therefore, the UCPCR might be a useful risk gradient for a
personalized, non-invasive assessment of metabolic risk.

By normalizing urinary C-peptide to the urinary creatinine concentration, the UCPCR
accounts for variations in individual urinary concentrations. Although it is known that the
creatinine excretion rate is constant throughout the day, gender differences based on muscle
mass greatly influenced the creatinine values. In this case, as UCPCR values were obtained
using creatinine concentration, it was expected that UCPCR values would be higher in
females than males because of the lower urinary creatinine excretion rates. Therefore, we
evaluated the impact of gender difference on subgroups defined by ADA criteria. In our
study, UCPCR values did not differ between women and men, in contrast to the findings of
Thomas et al., 2012, in which they found a 1.48-fold higher UCPCR values in women than
in men [20], and to urinary C-peptide and creatinine alone. Further, specific individual
DXA-derived body composition data were used to underpin this fact and to enable the use
of uniform thresholds and transition zones of UCPCR values for women and men.

In our study, we found a significant positive correlation between UCPCR and age, BMI,
hip and waist circumference, fasting blood C-peptide, AUC C-peptide, fasting blood insulin,
HOMA-IR, and a negative correlation with blood creatinine in the healthy group. This result
agrees with Oram et. al., (2013) [13] and Katte J. et. al., (2020) [9]. Hence, UCPCR correlated to
fasting serum insulin and C-peptide in healthy groups suggests the utilization of the UCPCR
in population-based epidemiological studies to assess insulin secretion and its metabolic
outcome (e.g., dysglycaemia or preDM) without complex blood extraction and healthcare
assistance for collecting samples.

To answer the question of whether the UCPCR can be an indicative marker for
metabolic risk (e.g., preDM) for individuals healthy at baseline, we performed a binary
logistic regression analysis, and further calculated the sensitivity, specificity, and negative
predictive value of the UCPCR as a predictor. Interestingly, we found that of all cases
predicted to not develop preDM, 60.2% were correctly predicted by UCPCR. Therefore, the
unpredicted percentage of the population (39.8%) might be at risk of developing preDM.
To prove this, we investigated their metabolic outcomes during two biannual follow-ups.
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Importantly, this is one of the strengths of our cohort study, which is designed as longitudi-
nal. Based on our study, 25% and 30% of the healthy-at-baseline participants progressed
to preDM during the first follow-up and second follow-up, respectively. Additionally, 1%
of the healthy-at-baseline participants progressed to T2DM during the second follow-up.
This finding indicates that UCPCR values are significant predictors of progression to a
dysglycaemic state. Notably, the investigated group was representative of healthy elderly
people without any other disease with a mean weight within the normal range. Interest-
ingly, individual patients showed a considerable change between the metabolic categories,
demonstrating individual changes in insulin resistance and subsequent glycaemic category.

Despite some suggestions for a use of UCPCR measurements after a meal [9], we
have shown a relatively small variation in fasting UCPCR in our study, which might add
to the standardization of the parameter [21]. Because of the variation of the C-peptide
secretion in response to the evening meal which accumulates in an overnight urine sample,
second-void fasting urine was collected due to its lower variance than first-void urine. The
second void urine has been found to correlate best with 24-h UCP values in a study by
McDonald et al. [22], and might therefore be the urine of choice for future measurements.
In addition, UCPCR determination is a very practical, non-invasive test, which provides
stability for three days at room temperature in boric acid as a preservative, in contrast to
blood C-peptide collected in an EDTA tube, which is only stable for 24 h at RT [22].

Importantly, kidney deterioration in DM might not be a problem for the calculation
and clinical use of UCPCR values, as demonstrated in a recently published study that refers
to 85 T2DM patients with reduced renal function [10]. Nevertheless, all participants in the
current study had normal creatinine values. Whereas UCPCR values in T2DM patients [11]
have been recently reported in a systematic review (including three large studies on T2DM)
to have a sensitivity, specificity, and diagnostic odds ratio (DOR) of 92.8% (84.2–96.9%),
81.6% (61.3–92.5%), and 56.9 (31.3–103.5%), respectively, our intention was not to identify
T2DM per se, but rather to test a monitoring tool for individual patients at risk, which can
potentially be used at home in addition to common diagnostic procedures.

For clinical use, a number of potential indications and approaches for diagnostic
applications have already been suggested. These applications cover topics from pediatric
measurements [5,12] to pregnant women at risk for GDM to elderly people with hyper-
insulinemic obesity [12], and have been validated as a reproducible alternative to serum
C-peptide, e.g., in patients with T2DM [23]. Additionally, Oram et. al., 2014, reported
that UCPCR sent from home can provide an alternative valuable measurement of the
status of the patient’s undergone islet transplant [16]. Moreover, the convenience of using
non-invasive urine sampling has already benefited animal studies in its use as a marker of
nutritional status in macaques [24].

Limitations of the study were the lack of first morning urinary voids and 24-h urinary
sampling to compare with other material. Furthermore, there are additional guidelines
for diabetes and non-diabetes definitions of other origin in use. However, we believe
that these guiding measurements are of practical value for clinicians. In addition, the
BioPersMed study was designed for apparently healthy participants with one out of
various cardiovascular risk factors to follow them for their metabolic and cardiovascular
outcomes. Therefore, the cohort was clearly not designed for or meant to be used for a
specific T2DM study. Additionally, UCPCR measurement with renal impairment was not
evaluated in this study. The diabetic patients were under treatment.

On the other hand, the study has important strengths; by using additional clinical data
of the BioPersMed participants such as body composition and functional tests, we were
able to describe a very careful and detailed phenotyping, and the study was designed as
longitudinal to follow and monitor patient outcomes.
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5. Conclusions

UCPCR measurement showing a good negative predictive value and specificity can
be a promising potential predictive biomarker for people at risk of metabolic conditions,
providing an early insight regarding their beta cell function. UCPCR guiding values are
normalized, allowing their detection in a urine spot specimen, and are independent to
muscle mass, hence equal between genders, indicating its practical use in the laboratory
for developing a single reference range. Furthermore, the UCPCR provides a simple, easy,
time-efficient, and convenient test to perform, in comparison to blood C-peptide and 24-h
urine C-peptide. Applications of the UCPCR are not limited, but may be proposed in the
future for the use of this personalized low-threshold method, e.g., for hyperinsulinemia in
obese people, PCOS subjects, and those experiencing GDM. Clinical applications and new
insights are important to establish the potential of UCPCR as a low-threshold screening
and monitoring parameter for metabolic conditions. This study suggests that the UCPCR
can be a tool for preventive management, particularly for metabolic conditions such as
elevated endogenous insulin.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15092073/s1, Table S1. Baseline characteristics of the study
group using propensity-matched data.
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