Skip to main content
. 2023 Apr 30;23(9):4430. doi: 10.3390/s23094430

Table 3.

Comparison with other methods.

Dataset Work Accuracy
KDD Cup 99 Wu [29] 85.24
Farahnakian et al. [30] 96.53
MGO 0.9204
NSL-KDD Ma et al. [32] SCDNN 72.64
Javaid et al. [33] STL 74.38
Tang et al. [34] DNN 75.75
Imamverdiyev et al. [35] Gaussian–Bernoulli RBM 73.23
MGO 76.725
BIoT [36] (BiLSTM) 98.91
Alkadi et al. [36] (NB) 97.5
Alkadi et al. [36] (SVM) 97.8
Churcher et al. [31] (KNN) 99
Churcher et al. [31] (SVM) 79
Churcher et al. [31] (DT) 96
Churcher et al. [31] (NB) 94
Churcher et al. [31] (RF) 95
Churcher et al. [31] (ANN) 97
Churcher et al. [31] (LR) 74
MGO 99.22
CICIDS2017 Vinayakumar [37] 94.61
Laghrissi et al. [38] 85.64
Alkahtani et al. [39] 80.91
MGO 99.941