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Abstract: A series of polyimide supramolecular systems containing different amounts of azochro-
mophore were tested as flexible supports that can be used in the fabrication of certain devices, such
as sensors for monitoring the temperature changes, by coating them with conductive metals. That
is why it is required to have good interfacial compatibility between the flexible substrate and the
inorganic layer. The interface of the sensor elements must be designed in such a way as to improve
the sensitivity, accuracy, and response time of the device. Laser irradiation is one of the commonly
employed techniques used for surface adaptation by patterning polyimides to increase contact and
enhance device reliability and signal transmission. In this context, this work highlights unreported
aspects arising from the azo-polyimide morphology, local nanomechanical properties and wettability,
which are impacting the compatibility with silver. The texture parameters indicate an improvement
of the modulations’ quality arising after laser irradiation through the phase mask, increasing the
bearing capacity, fluid retention, and surface anisotropy when the amount of the azochromophore
increases. The force curve spectroscopy and wettability studies indicated that the modification of
the polymer morphology and surface chemistry lead to a better interfacial interaction with the metal
lines when the azo component and the polyamidic acid are in equimolar quantities.

Keywords: polyimide supramolecular system; azochromophore; flexible support; laser irradiation;
surface relief gratings; texture characterization; tip modification; adhesion; wettability; interface

1. Introduction

In the latest years, a remarkable evolution of electronic products has been observed
under the trend of miniaturization and improvement of the properties of some components
implemented in the devices [1]. Special attention was ascribed to sensor fabrication with the
purpose of making them suitable for more practical uses [2]. Flexible supports were found
to introduce many benefits for the production of sensors, namely, they reduce expenses and
enable wider area of manufacturing, concomitantly with thinner and denser packages [3].
These features are expanding the path into the market of such devices [4]. In contrast
to classic counterparts (like silicon or glass), many polymer materials have the ability
to optimize the device’s contact with a non-planar surface because they are displaying
stretchability, rollability, and bendability properties [5–7]. The perspectives introduced
by flexible/printed electronic sensors attracted tremendous focus on the development of
novel materials and fabrication approaches [8,9]. It is worth noting that electronics industry
ordinarily tests as flexible substrates several kinds of polymers, including polyethylene
terephthalate [10], cellulose [11], polyethylene naphthalate [12], polyvinyl alcohol [13],
polyurethane [14], polyaniline [15], polydimethylsiloxane [16], and polyimide (PI) [17]. The
latter type of material is broadly recognized because of its stability to elevated temperature,
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electrochemical resistance, mechanical strength, and electrical insulation [18,19]. The ability
of PIs to keep their performance during the action of high temperatures, they are preferred
for making sensors of temperature [20].

Polyimides are known to have good adhesion to metal coatings which renders elevated
level of strain delocalization in a wide temperature interval. As a result, deposition
procedures, such as sputtering and e-beam evaporation, are recommendable for this sort of
flexible polymer support [21]. There are few developments in flexible temperature sensors
made on polyimide supports. Xiao and co-workers [22] made a temperature-sensing
device by depositing it on a commercial polyimide which was patterned by image reversal
photolithography to include the platinum sensor. Their report indicated that better device
sensitivity and response frequency are accomplished when the parasitic heating losses are
lowered. Chia et al. [23] described the path to obtain such a sensor by a “double sided”
manufacturing approach, where a platinum serpentine was deposited on a polyimide.
Dankoco and collaborators [24] have designed a thermistor made of silver casted on a
commercial polyimide tape and the conductive lines were patterned via inkjet printing
technology. Gandla et al. [25] showed another way to build a sensor via laser-generated
carbonization on a polyimide foil on top of which is introduced a printed circuit. Al
Hashimi et al. [26] employed photolithography to attain a sensor that solves the issues of
adhesion found in the Pt-based products. Thus, they propose to use a layer of nickel with
copper leads which is placed on a polyimide.

The most investigated sensors that are monitoring temperature changes are the re-
sistive detectors. They are operating by recording the electrical signal modification of the
thermosensitive layer under exposure to variable heating [24]. Generally, the fabrication
of these devices involve the use of flexible polymer (i.e., polyimide) which is coated with
conductive metals, such as gold [27], platinum [23], or silver [28]. For this reason, it is
imperative that flexible support must exhibit good interfacial compatibility with the in-
organic layer. The quality of the contact between the polymer component and metallic
lines is influencing the sensitivity, accuracy, and response time of the device. Therefore,
a great level of sensitivity is accomplished as a function of the design of the interface of
the sensor elements [29]. In this context, the use of patterned polymer substrates to attain
flexible temperature sensors has gained increasing importance [30]. Modification of the
support surface to increase the contact area is desirable to enhance the device’s reliability
and signal transmission. Among the commonly employed techniques used for surface
adaptation of the polymers to facilitate their compatibility with metals, the most relevant
ones are plasma etching [31], chemical treatments [32], and laser irradiation [33]. Such
approaches produce modifications of the polymer morphology and surface chemistry that
lead to better interfacial interaction with the metal lines. Laser exposure of polymers seems
to be advantageous because it allows spatial resolution of the surface features [34].

The surface characteristics of the polymer support are essential for the performance
of sensors. It is known that the surface features (morphology, roughness, and polarity) of
the polymers are crucial for establishing how to acquire good adhesion to metals [35–38].
However, these aspects are not deeply exploited in the reports on temperature sensors.
Nuzhdin et al. [39] have analyzed the operability of a sensing device on diffraction mi-
crostructures represented by polymers with metal nanoparticles. Yu et al. [40] demonstrated
that the surface roughness of the support is leading to the occurrence of micrometric cracks
in the sensing film which yields raised sensitivity. However, none of these studies refer
to polyimides.

In our previous works [41–44], we reported that we can adapt the morphology of
polyimides via laser irradiation and distinct surface characteristics are attained as a function
of polymer structure and exposure conditions. Moreover, when associating a polyimide
with an azochomophore, laser treatment leads to surface texture in the form of surface relief
gratings (SRG) having the distance between them induced by the phase mask pitch [41–44].
This work highlights unreported aspects arising from the polyimide morphology, local
mechanical properties, and wettability which are impacting the compatibility with silver.
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The flexible supports proposed here are non-commercial polyimides which can be easily
shaped via laser irradiation due to the incorporation of variable amounts of azo dye.

2. Materials and Methods
2.1. Materials

The polyimide supramolecular systems were realized by introducing the 4-[(4-cyano-
phenyl)diazenyl]phenol in different molar ratios into the solution of polyamidic acid
obtained by polycondensation reaction of 2,6-bis(3-aminophenoxy) benzonitrile and 4,4′-
isopropylidene-diphenoxy-bis(phthalic anhydride) in equimolar quantities. The molar
ratio between the azochromophore and the polyamidic acid was 0.25:1, 0.5:1, 0.75:1, and.
1:1, resulting after casting onto glass plates and thermal treatment (50 ◦C for 4 h, 100 ◦C
for 1 h, 125 ◦C for 1 h, 150 ◦C for 1 h, 175 ◦C for 1 h, and 200 ◦C for 1 h) the following
azo polyimide supramolecular systems Az0.25PSS, Az0.50PSS, Az0.75PSS, and Az1.00PSS,
respectively, in the form of flexible films. The steeping thermal treatment (called thermal
imidization process) was mandatory to realize the stable final structure of polyimide [45].
Otherwise, the supramolecular polyimide system is no longer formed, remaining at the
azodye/polyamidic acid stage. The synthesis and complete characterization of these
compounds was previously reported in [46]. The final chemical structure of the polyimide
supramolecular system is presented in Scheme 1:
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2.2. Methods

Permanent surface relief gratings were created on azo-polyimide films with different
compositions by using the near-field interference pattern generated when a pulsed UV
laser beam was incident on a diffraction grating. The third harmonic of a Nd:YAG laser
(Brilliant, Quantel; 1064 nm, 10 ns pulse length, 6 mm in diameter) incident on a 3×Galilean
expander was projected through a phase mask of 1000 grooves/mm (Edmund optics). A
schematic representation of the used experimental arrangement was previously presented
in Figure 1 from [46]. A 1 mm-thick quartz plate was positioned between the phase mask
and polymer film, and two additional quartz plates were positioned at the lateral sides
of the system to prevent contamination of the phase mask and ensure correct handling
of the system. Permanent relief gratings with the same periodicity as that of the phase
mask were generated on PI-based supramolecular systems through irradiation sequences
performed at a constant laser fluence of 45 mJ/cm2, a total delivered laser pulses of 300,
and a pulse repetition frequency of 10 Hz. The subsequent labels: Az0.25PSS-L, Az0.50PSS-L,
Az0.75PSS-L, and Az1.00PSS-L were attributed to the laser-irradiated films.

Atomic force microscopy (AFM) measurements were made using Nova 1.1.1.19891
software, through which the NTEGRA multifunctional Scanning Probe Microscope (NT-
MDT Spectrum Instruments, Zelenograd, Moscow, Russia) was manipulated in atmo-
spheric conditions at 23 ◦C. The cantilever type used for the experiments was NSG03
(length = 150 ± 10 µm, width = 24 ± 7 µm, thickness = 1.5 ± 0.75µm, tetrahedral shape tip
curvature radius= 6–10 nm) from TipsNano OÜ, Tallinn, Estonia. The resonant frequency
of the cantilever was 88 kHz. The topographical images were obtained on different scan
sizes, in tapping mode, simultaneously with the phase contrast and amplitude images.
The local mechanical properties, namely the mean adhesion force (Fadh), were estimated
from 9 force curves. A force curve is the representation of the cantilever’s deflection (DFL
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signal) vs. the tip–sample distance during the approach-retraction maneuver. That is why
it is also named DFL-height curve. The DFL-height curves were acquired through the
AFM Force Curve Spectroscopy (FCS), in contact mode, on the collected morphological
images. The adhesion force was deduced from the force curve according to Hooke’s law:
Fadh = −k·∆x where k is the force constant of the cantilever and ∆x is the deviation of the
cantilever reported to the sample, taking the maximum pulling force at the final contact
state before the jump of the tip from contact during retraction. MountainsSPIP® Academic
(2023) surface analysis software by DigitalSurf (Besançon, France) was used to evaluate the
texture characteristics.
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Figure 1. Simultaneous AFM topography, phase contrast, and amplitude images performed on
phase mask laser irradiated Az0.25PSS-L (a,a1,a2), Az0.50PSS-L (b,b1,b2), Az0.75PSS-L (c,c1,c2), and
Az1.00PSS-L (d,d1,d2). The positions of the cross-section profiles taken perpendicularly to the SRGs
are marked with green lines, while the ones along the SRGs are marked with blue lines. In the
amplitude images, nA is a procedure-defined unit.

To evaluate the interaction of silver with the irradiated samples, thin layers of silver
were deposited on NSG03 cantilevers by the sputtering method, using the K550X Sputter
Coater system that uses a Magnetron Target Assembly. The separation distance between
the silver sputtering target (cathode) and the anode, where the cantilevers were installed
during deposition (with the exposed side where the tip was located) was 9 cm. The voltage
was 900 V and the current was 10 mA. The sputtering process was made using air as the
working gas, under a pressure of 60 Pa, for 5, 10, and 15 min. This device does not allow
connection to cylinders containing other types of gases, such as argon or any other inert
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gas. It is estimated that only 5% of the deposed silver is silver oxide, the rest being metallic
silver (these data belong to an unpublished work).

The images of the pristine and modified tips have been acquired through scanning elec-
tron microscopy (SEM) using a Crossbeam System Neon 40ESB FIB/SEM microscope from
Karl Zeiss AG (Oberkochen, Germany) with thermal Schottky field emission, equipped
with EDS, In-lens, SE, and EsB detectors. Electron beam resolution: 1.1 ÷ 2.5 nm for
U = 20 ÷ 1 kV. For acquiring the SEM images, we used the In-lens and SE detectors under
the following conditions: electrons accelerating voltages (EHT) of 1.8 and 20 kV and a
working distance (WD) of around 5 mm. For the EDX analysis, an X-Max 50 detector
along with its dedicated software (INCA) from Oxford Instruments Analytical Ltd. (High
Wycombe, Buckingamshire, UK) were used with electrons accelerating voltage of 20 kV
and a working distance of 5.1 mm.

The test grating, TGT1 (NT-MDT Co, Zelenograd, Moscow, Russia), formed from an
assembling of sharp tips placed on Si wafer surface (height = 0.3–0.5 µm, tip angle = 50 ± 10◦,
and tip curvature radius = 10 nm) was used to visualize and to recreate the modified tips.

The contact angle tests were made to evaluate the changes in the surface polarity of
the polyimide supramolecular systems. Water and formamide were utilized as test liquids
and the measurements were performed five times on a lab made device. The instrument
was designed to contain a video recording part to visualize the size/shape of the drops
placed on the sample surface with a Hamilton syringe. The experiments were performed in
temperature-controlled conditions. More details can be found in another report [47]. The
measuring error of the contact angle was ±1◦.

3. Results and Discussion
3.1. Evaluation of the Texture Modifications through UV-Laser Irradiation

Surface texturing is particularly important in polyimide applications as flexible sup-
port for depositing electrodes. A good anisotropy of the surface will, thus, improve the
final performance of the applied flexible sensors. That is why a complete and complex
characterization of the surface morphology is crucial in order to identify the surface charac-
teristics and how they subsequently influence the deposition of the metal, namely silver, in
order to print the sensor. Polyimide supramolecular systems, having an azo component
in their structure, lend themselves to texturing by laser irradiation, at a wavelength of
355 nm, demonstrated by other previous studies [41–44] to be suitable for stimulating
the creation of SRGs on the top of the samples. An atomic force microscopy is a versatile
tool that can be used to evaluate the evolution of the surface morphology following laser
irradiation in tapping mode without damaging the resulting texture. Both the amplitude
and phase images were achieved concomitant with the topography in tapping mode (also
called intermittent contact, or semi-contact mode). The topography and amplitude images
were acquired in the forward scanning direction, while phase images were obtained in
the backward scanning direction. The phase imaging mode images provide information
about the nanomechanical properties of the sample surface (stiffness, adhesion, friction,
viscoelasticity, etc.). In the phase imaging mode, the comportment of the cantilever’s tip
that periodically comes into contact with the sample surface, is influenced by a different
type of forces, such as adhesive, repulsive, capillary, and so on, resulting in some shift of
the phase. Assuming that the investigated surface shows inhomogeneities and a certain
distribution of its characteristics, they can be highlighted through the phase shift distribu-
tion over the specimen surface. On the other hand, the semi-contact error mode images
(amplitude images) are frequently used to identify small aspects that can be found on the
relief background, highlighting the shape of the surface (the borders of the features) and
complementing the information derived from the height image. In the semi-contact error
mode, throughout the time of scanning, the feedback loop cannot immediately balance the
modifications of the Mag signal (which is related to the cantilever oscillation amplitude),
having a time retardation. Thus, the current value of the Mag signal (expressed in nA) is
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the error signal of the feedback loop and, if it is registered, offers supplementary and more
detailed information on surface topography.

In Figure 1 are presented the processed height, phase contrast, and amplitude AFM im-
ages collected from phase mask laser irradiated Az0.25PSS-L (a,a1,a2), Az0.50PSS-L (b,b1,b2),
Az0.75PSS-L (c,c1,c2), and Az1.00PSS-L (d,d1,d2) samples. Analyzing these images, it is
found that the morphology after the irradiation process is influenced by the amount of
azochromophore introduced into the system. When the molar ratio between azodye and
polyamidic acid was 0.25:1, the formation of a repetitive texture, composed of SRGs, was
observed. According to the cross-section profiles taken perpendicularly and along the SRGs
from Figure 2a,a1) and the data in Table 1, they have an average height of around 50 nm
and seem to be formed by the close self-assembled spherical nanostructures. This aspect
indicates that predominantly in the formation of these supplementary nano-modulations
along the vertical direction is the photo-fluidization process [43,48]. As the amount of
azochromophore in the system increases, the self-assembled spherical nanostructures tend
to join more and more, until at the equimolar ratio where they disappear, and the resulting
SRGs having a uniform appearance. The height of the SRGs, thus, increases to 90 nm for
the molar ratio 0.5:1 (Figure 2b), 125 nm for the molar ratio 0.75:1 (Figure 2c), and finally
reaching around 160 nm for Az1.00PSS-L (Figure 2d). The uniformity along the modulations
was confirmed by the aspect of the amplitude images (Figure 1a2,b2,c2,d2 where nA repre-
sents a procedure-defined unit) and by the average roughness, Ra, displayed in Table 1.
This parameter was calculated from the cross-section profiles (Figure 2a1,b1,c1,d1) taken
on top of SRGs, along the ridge, as indicated by the blue lines from Figure 1a,b,c,d. As the
evenness increases, Ra decreases significantly, reaching 3 nm for the sample Az1.00PSS-L.
The modulation heights influenced the total Sq of the scanning area, increasing with their
increase, up to around 45 nm (Table 1). The phase contrast images show that the phase
shift is greater at the border (middle slope) of the formed structures (the brighter regions in
Figure 1a1,b1,c1,d1), once again supporting the discoveries made in previous studies [42],
according to which in these regions, Young’s modulus is lower and the deformation is
higher than in the other regions, where these characteristics are constant. Since the shift
of the phase is influenced by the characteristics of the investigated material (differences
in hardness and softness) and by the repulsive, adhesive, capillary, and other forces, this
correlation can be achieved, even if the measurements are based on different principles.

Table 1. Amplitude and spatial parameters of the AFM investigated surfaces and the SRGs characteristics.

Sample
SRGs Characteristics Amplitude and Spatial

Parameters

HSRG
(nm)

Ra
(nm)

Periodicity
(%)

Period
(µm)

Sq
(nm) Stdi

Az0.25PSS-L 52 ± 5 11.4 45.97 1.636 18.5 0.472

Az0.50PSS-L 90 ± 8 6.6 49.26 1.012 29.6 0.345

Az0.75PSS-L 125 ± 7 6.5 59.79 1.332 40.4 0.318

Az1.00PSS-L 158 ± 8 3.3 69.36 1.019 44.6 0.236
HSRG: average SRGs height; Ra: average roughness on top of SRGs; Sq: root mean square height of the surface;
Stdi: texture direction index of the surface.
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Figure 2. Cross-section profiles taken perpendicularly and along the SRGs and Abbott curves used to
calculate the functional volume parameters, based on the AFM topography images, obtained for the
phase mask laser irradiated Az0.25PSS-L (a,a1,a2), Az0.50PSS-L (b,b1,b2), Az0.75PSS-L (c,c1,c2), and
Az1.00PSS-L (d,d1,d2).

Figure 3 displayed the texture direction representations (based on the Fourier Trans-
form) for the phase mask laser irradiated Az0.25PSS-L (a), Az0.50PSS-L (b), Az0.75PSS-L (c),
and Az1.00PSS-L (d). By means of these polar representations, it was highlighted that
the appearance of additional hierarchical structures (sample Az0.25PSS-L) implies a weak
anisotropy of the morphology indicated by a lower value but close to 0.500 on the texture
direction index, Stdi (Table 1). As the SRGs are better defined and become unidirectional,
the texture direction representation also evolves towards a single direction, a fact confirmed
by the increasingly smaller value of Stdi which finally reaches close to 0.200 (Table 1).
Based on the texture isotropy representation (built on the autocorrelation function) sup-
ported by the AFM topography images, obtained for Az0.25PSS-L (Figure 3a1), Az0.50PSS-L
(Figure 3b1), Az0.75PSS-L (Figure 3c1), and Az1.00PSS-L (Figure 3d1), it was found that the
periodicity of the SRGs also increased up to almost 70% with the increase in the amount
of the azo component (Table 1), and their period was dictated by the characteristics of the
phase mask (reaching approximately one micrometer for the best structured sample).
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sentation, in the texture isotropy representation, the black lines indicates the positions of the main 
angle lines (0°, 30°, 60°, 90°, 120°, 150°, 180°), the dotted orange lines indicates the positions of the 
intermediary angle lines and the red lines delimits the periodic motif. 

Table 1. Amplitude and spatial parameters of the AFM investigated surfaces and the SRGs charac-
teristics. 

Sample 
SRGs Characteristics Amplitude and Spatial 

Parameters 
HSRG 
(nm) 

Ra 
(nm) 

Periodicity 
(%) 

Period 
(µm) 

Sq 
(nm) 

Stdi 

Az0.25PSS-L 52 ± 5 11.4 45.97 1.636 18.5 0.472 
Az0.50PSS-L 90 ± 8 6.6 49.26 1.012 29.6 0.345 
Az0.75PSS-L 125 ± 7 6.5 59.79 1.332 40.4 0.318 
Az1.00PSS-L 158 ± 8 3.3 69.36 1.019 44.6 0.236 

HSRG: average SRGs height; Ra: average roughness on top of SRGs; Sq: root mean square height of 
the surface; Stdi: texture direction index of the surface. 

Regarding the functionality of the irradiated surfaces for the applications taken un-
der consideration, the functional index (Sbi: surface bearing index) and functional volume 
parameters (Vmp: peak material volume; Vmc: core material volume; Vvc: core void vol-
ume; Vvv: valley void volume) (Table 2) were evaluated from the Abbott curves (Figure 
2a2,b2,c2,d2). A brief introduction to the methodology of Abbott curves, including the def-
inition of the mentioned functional index and functional volume parameters, is presented 
in Appendix A (Figure A1). The general appearance of the Abbott curves was also influ-
enced by the amount of azoderivative used in the synthesis of polyimide supramolecular 

Figure 3. Texture direction representation (based on the Fourier Transform) and texture isotropy
representation (based on the autocorrelation function) supported by the AFM topography images,
obtained for the phase mask laser, irradiated Az0.25PSS-L (a,a1), Az0.50PSS-L (b,b1), Az0.75PSS-L
(c,c1), and Az1.00PSS-L (d,d1). The angles are measured anticlockwise. Same as in texture direction
representation, in the texture isotropy representation, the black lines indicates the positions of the
main angle lines (0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦), the dotted orange lines indicates the positions of
the intermediary angle lines and the red lines delimits the periodic motif.

Regarding the functionality of the irradiated surfaces for the applications taken un-
der consideration, the functional index (Sbi: surface bearing index) and functional vol-
ume parameters (Vmp: peak material volume; Vmc: core material volume; Vvc: core
void volume; Vvv: valley void volume) (Table 2) were evaluated from the Abbott curves
(Figure 2a2,b2,c2,d2). A brief introduction to the methodology of Abbott curves, includ-
ing the definition of the mentioned functional index and functional volume parameters,
is presented in Appendix A (Figure A1). The general appearance of the Abbott curves
was also influenced by the amount of azoderivative used in the synthesis of polyimide
supramolecular systems. The bearing capacity (Sbi) increases due to the evolution of peak
and core material volume with the increase of the molar ratio between the azo part and the
polyamidic acid, a favorable fact for the tracked applications. Moreover, the increase of the
core and valley void volume can improve, for example, the ink retention based on silver
nanoparticles in the core and valley regions of the relief.

Table 2. Functional indexes and functional volume parameters evaluated from the Abbott curves.

Sample
Functional Indexes Functional Volume Parameters

Sbi Vmp
(nm3/nm2)

Vmc
(nm3/nm2)

Vvc
(nm3/nm2)

Vvv
(nm3/nm2)

Az0.25PSS-L 0.221 1.52 11.80 27.00 1.23

Az0.50PSS-L 0.320 1.67 23.30 43.80 2.14

Az0.75PSS-L 0.584 1.69 36.60 52.30 3.86

Az1.00PSS-L 1.053 0.68 42.60 52.30 4.41
Sbi: surface bearing index; Vmp: peak material volume; Vmc: core material volume; Vvc: core void volume; Vvv:
valley void volume.
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3.2. Local Adhesion Studies via Silver Modified Tips

In order to evaluate how silver would adhere to polyimide supramolecular systems,
having different amounts of the azo component, irradiated with a UV laser, we tried
to obtain tips/cantilevers uniformly covered with silver. Such tips compatible with the
supplied atomic force microscope are not commercially available, therefore, they had to be
manufactured in the laboratory through a sputtering process. NSG03-type cantilevers were
used, and the deposition time was varied from 5 min to 10 min and 15 min, respectively.
The monitoring of the result of the silver deposition process both on the cantilever in its
ensemble, and on the tip, was carried out by means of SEM images and EDX analysis. Thus,
Figure 4 presented the SEM images of the unmodified NSG03 cantilever (a) and silver
sputtered NSG03 AFM cantilevers for 5 min (b), 10 min (c), and 15 min (d). By means of this
method it can be observed that for short deposition times, the silver nanoparticles are at a
certain distance from each other, leaving the silicon-free space to be exposed. As the silver
deposition time increases, the nanoparticles better cover both the base of the cantilever
and its tip, until after 15 min, they are so dense that they form a uniformly deposited layer
without exposed areas of the initial tip. This fact is also confirmed by the percentages of
silver in the EDX analysis.
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Figure 4. SEM images of the unmodified (a) and silver sputtered NSG03 AFM cantilevers for
5 min (b), 10 min (c), and 15 min (d), respectively.

Since the NSG03 AFM cantilever subject to the sputtering process for 15 min gave
the best results in terms of silver coating, this cantilever was further used to test the local
nanomechanical properties, namely the adhesion force between the textured polyimide
substrates and silver. For this purpose, first the MountainsSPIP® Academic software was
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used to visualize and characterize the sharpness, deterioration, and impurification of the
15 min silver sputtered NSG03 tip and, for comparison, of the uncovered NSG03 tip based
on a 10 × 10 µm2 AFM scan of the reference TGT1 test grating (Figure 5a—uncovered
NSG03 tip and Figure 5a1—15 min silver sputtered NSG03 tip). Thus, the blind recon-
struction method was applied, similar to the cases described in the literature [49–52], and
the 2D and 3D perspectives of the reconstructed tips (Figure 5b,c,b1,c1) were obtained
by deconvolution of the test grating AFM images. From the tips X-cross-section profiles
(Figure 5d,d1) and tip Y-cross-section profiles (Figure 5e,e1) taken as indicated in the blind
reconstruction images, the average uncovered NSG03 tip radius established by a sphere
fit to the evaluated tip, was 11 ± 2 nm, while the radius of the silver covered tip was
65 ± 5 nm. These values were confirmed by the SEM measurements. These data prove
once again that the tip subject to the sputtering process for 15 min is indeed modified.
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constructed tips (b,b1), 3D perspectives of the reconstructed tips (c,c1), tips X-profiles (d,d1), and 
tips Y-profiles (e,e1). 
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tivity of the optical system ( ∆∆ி), describing the slope of the left side of an approach curve, 
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Once this calibration was conducted, force curves were collected using a scan size 
with the side of 2 µm for Az0.25PSS-L (Figure 6a), Az0.50PSS-L (Figure 6b), Az0.75PSS-L (Fig-
ure 6c), and Az1.00PSS-L (Figure 6d), in the places indicated by the asterisk symbol (*). As 
seen in this Figure 6, the force curves were taken both in the exposed and unexposed re-
gions through the phase mask. According to our previous study [42], where the nanome-

Figure 5. The blind reconstruction of the uncovered NSG03 tip (a,b,c,d,e) and 15 min silver sputtered
NSG03 tip (a1,b1,c1,d1,e1): AFM images of the TGT1 test grating (a,a1), 2D perspectives of the
reconstructed tips (b,b1), 3D perspectives of the reconstructed tips (c,c1), tips X-profiles (d,d1), and
tips Y-profiles (e,e1).

After the tip reconstruction process, some quantitative results were extracted, namely
the resonance frequency of 101 kHz and the cantilever’s normal spring constant of 3.5 N/m,
determined by John Sader’s method [53,54], using data on the resonance peak and planar
dimensions of cantilever (length = 135 µm, width = 30 µm). Prior the adhesion force
measurements, it was necessary to rescale the values of DFL (deflection of the cantilever)
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from relative units (nA) to the units of physical force (nN), taking into account the sensitivity
of the optical system ( ∆Z

∆DFL ), describing the slope of the left side of an approach curve,
the cantilever’s normal spring constant (k), the DFL value expressed in relative units,
nA (DFLnA), and the value of the DFL signal far from the surface given in nA (DFL0),
according to the following relation:

DFLnN =
∆Z

∆DFL
× k× (DFLnA − DFL0) (1)

Once this calibration was conducted, force curves were collected using a scan size with
the side of 2 µm for Az0.25PSS-L (Figure 6a), Az0.50PSS-L (Figure 6b), Az0.75PSS-L (Figure 6c),
and Az1.00PSS-L (Figure 6d), in the places indicated by the asterisk symbol (*). As seen
in this Figure 6, the force curves were taken both in the exposed and unexposed regions
through the phase mask. According to our previous study [42], where the nanomechanical
measurements were made on a Park NX10 Atomic Force Microscope, using PinPoint
Nanomechanical mode, with a very good resolution, the value of the adhesion force
measured on the top hill (regions covered by the phase mask, unexposed to the laser
beam), and bottom valley and base line of the SRGs (regions uncovered by the phase mask,
exposed to the laser beam) does not show significant variations. That is why the locations
indicated by asterisks were chosen. Only representative force curves were presented in
Figure 6. From the retract curves, the average adhesion force (Fadh) was calculated for
each sample as the highest extraction force at the final contact position preliminary to the
leap of the tip from contact with the surface of the specimen.
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Figure 6. Representative DFL-height curves collected from 2 × 2 µm2 AFM topography images
recorded for the phase mask laser irradiated Az0.25PSS-L (a), Az0.50PSS-L (b), Az0.75PSS-L (c) and
Az1.00PSS-L (d). The red curves are the approach curves. The blue curves are the retract curves, from
where the average adhesion force (Fadh) was calculated.

Analyzing the values in Figure 6, it can be seen that the adhesion strength of silver
with the polyimide samples, irradiated under the same conditions, increases with the
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increase in the amount of azochromophore in the system. Thus, the lowest value of the
silver/polyimide adhesion force was obtained for the molar ratio between the azochro-
mophore and the polyamidic acid of 0.25:1, and the highest value for 1:1, the sample for
which the best repetitive texturing of all was obtained. This indicates that the sample
Az1.00PSS-L is the most suitable for depositing the silver electrodes in order to obtain
the sensor.

3.3. Interfacial Adhesion Estimation

The study of the surface tension of the polyimide support is very important for
evaluating the interaction of the samples with other materials. The Fowkes method [55]
permits the determination of the surface tension parameters of the examined films by
considering the geometric mean contributions of interactions and that the overall surface
energy represents the sum of all forces at the interface. These aspects are expressed by
Equations (2) and (3):

1 + cosθ =
2
σl

√
σ

p
l σ

p
s +

2
σl

√
σd

l σd
s (2)

σs = σ
p
s + σd

s (3)

where θ is the contact angle, σ is the surface tension, the subscripts “l” and “s” refer to the
liquid and the solid phase, and the indices “p” and “d” reveal the polar and dispersive
part of σ. The contact angle data attained with the chosen test liquids casted on the film
samples are summarized in Table 3. The magnitude of water contact angle seems to reduce
as the content of azo dye is increasing. This is possibly due to the formation of more polar
hydrogen bonding among the system components. After the laser irradiation, the surface
properties are changed differently as a result of variable sensitivity of samples to molecular
ordering under polarized radiation action. Thus, as the amount of azo dye increased in the
system, laser irradiation of the samples determined the decrease of the contact angle. This
result is supported by the literature [56] which shows (for other type of polymers) that laser
structured films display lower values of the contact angle in comparison to the pristine ones.
Based on the recorded contact angle, the surface tension components were computed and
listed in Table 3. The measuring error of the contact angle was ±1◦ and this was reflected
to the second decimal of the surface tension data. It can be noted that the surface polar
character is enhanced by addition of the azo component. This can be caused by formation
of more hydrogen bonds which are producing powerful dipole–dipole interactions among
the constituent molecules in the samples. At the same time, the dispersive forces are not
ranging very much with the sample composition. Laser irradiation of the polyimide films
determines a slight reduction of the σd

s , while σ
p
s is increasing by inserting azo-component

quantity. The balance between the dispersive and polar components of the surface tension
is influencing the ability of interaction of samples with metal. The work of adhesion with
silver (WAd) was estimated using the relation (4):

WAd = 2
√

σ
p
Agσ

p
s + 2

√
σd

Agσd
s (4)

According to Table 3, the increase in the polymer surface polarity is reflected in an
increase of the adhesion interactions of the samples with silver. Moreover, as the laser
exposure changes even more σ

p
s , it seems that this was conducted to further increase

the adhesion forces of surface textured samples in regard to the unexposed ones. Such
aspects are favorable for sensor fabrication because they contribute to better reliability of
the device.
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Table 3. The results of the contact angle, dispersive surface tension, polar surface tension, and work
of adhesion between the samples and silver.

Sample Code Contact Angle, ◦ σd
s , mN/m σ

p
s , mN/m WAd, mN/m

Water Formamide

Az0.25PSS 77 57 26.94 8.18 78.17

Az0.50PSS 74 55 26.06 10.09 78.39

Az0.75PSS 69 50 26.61 12.67 80.64

Az1.00PSS 63 44 26.83 16.29 82.88

Az0.25PSS-L 73 54 26.21 10.55 78.87

Az0.50PSS-L 69 51 25.39 13.33 79.44

Az0.75PSS-L 62 44 25.83 17.44 82.20

Az1.00PSS-L 58 40 25.85 20.12 83.49

Thus, in this work, the adhesion properties were evaluated by two different methods
at the macroscale and at the nanoscale. The apparent discrepancies between the values
of the adhesion derive from the following aspects. First, the adhesion force (expressed in
nN) is defined as the force necessary to retract the cantilever’s tip from the sample surface.
Consequently, the adhesion force relies on the local nanoscale interaction between the silver-
modified cantilever’s tip and the sample surface. Then, the work of adhesion (expressed in
mN/m) is defined as the work required for separating two phases from each other and is
dependent on the surface tension properties of each contacting material. So, this method
involves the evaluation of adhesion at the macroscale, based on surface tension properties
of both polymer and metal phases. Both methods reveal that the adhesion is increasing as
more azochromophore was introduced in the system. The major difference between these
two methods is that the AFM force spectroscopy allowed for the determination of local
adhesion properties, for example, at the bottom of SRG (the lowest height zones) and on
the top of SRG (the highest height zones), while the contact angle assesses the changes in
surface dispersive/polar character over a wide surface area (containing a few SRGs).

4. Conclusions

Polyimide supramolecular systems containing different amounts of azochromophore
in the polyamidic acid were obtained in the form of flexible films by the thermal imidization
process and were tested as supports for deposition of conductive metals in the fabrication
of sensors for monitoring the temperature changes. The interface of the flexible polyimide
part of the sensor was designed by means of UV-laser irradiation through a phase mask
with 1000 grooves/mm, using a constant laser fluence of 45 mJ/cm2, a total delivered laser
pulses of 300, and a pulse repetition frequency of 10 Hz. AFM studies revealed that the
increase of the molar ratio of the azochromophore in the polyimide supramolecular systems
improved the SRG’s quality, increased their heights to about 160 nm, and their periodicity to
70%, the bearing capacity of the surface, the fluid retention on the core and valley regions of
the relief, and the surface anisotropy until the texture direction index reaches almost 0.200.
These characteristics ensure the improvement of the sensitivity, accuracy, and response
time of the device. To evaluate the compatibility between the flexible substrate and the
inorganic layer, the AFM tips were modified by a silver sputtering process, the best result
being obtained when the treatment time was 15 min. After the blind tip reconstruction
was applied, and the quantitative characteristics of the cantilever were calculated, the
force curve spectroscopy was used to evaluate the local nanomechanical properties. In this
way, it was found that the average adhesion force between the silver-coated cantilever’s
tip and the azo-polyimide substrate increased as the azo-dye quantity was higher, being
47 nN for Az0.25PSS-L, 73 nN for Az0.50PSS-L, 94 nN for Az0.75PSS-L, and 150 nN for
Az1.00PSS-L. The supplementary wettability study sustained the AFM results, and the work
of the adhesion of the textured polyimide surface with silver being the highest also for
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Az1.00PSS-L. These results indicated better interfacial compatibility of the flexible substrate
of polyimide with the inorganic layer (silver) when the azo component and the polyamidic
acid are in equimolar quantities. Such aspects are favorable for sensor fabrication, owing to
the fact that they contribute to the better reliability of the device.
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Appendix A

The Abbott curve, presented in Figure A1, which is also called the surface bearing area
ratio curve, is in general calculated by accumulation of the height distribution histogram
and subsequent inversion. Dashed horizontal lines drawn through the Abbott curve
(Figure A1) are marked with H1 at the intersection with mr1 line at 10% material ratio value
and H2 at the intersection with mr2 line at 80% material ratio value. In this manner, three
areas were created: the peak zone, the core zone and the valley zone. In the representative
Abbott curve shown in Figure A1, the region of the curve colored in dark orange represent
the material located in the peak zone, the one painted in light orange represent the material
located in the core zone, the one colored in light blue represent the air located in the core
zone and the one painted in dark blue represent the material located in the valley zone. The
functional index (surface bearing index—Sbi) and the volume functional parameters (peak
material volume—Vmp, core material volume—Vmc, core void volume—Vvc and valley
void volume—Vvv) are defined from the Abbott curve, with respect to two previously
mentioned bearing ratio thresholds, set by default to 10% (mr1) and 80% (mr2). Sbi
characterizes the upper zone of the surface involved in wear phenomena and indicates
the bearing property. Vmp is the volume of the material calculated from the Abbott curve,
in the region above the dashed horizontal line H1, between 0% and mr1 (10%) bearing
ratio. Vmc is the volume of material calculated from the Abbott curve, in the area between
dashed horizontal line H1 and H2, between mr1 (10%) and mr2 (80%) bearing ratio. Vvc
is the volume of air calculated from the Abbott curve, in the zone between the dashed
horizontal line H1 and H2, between mr1 (10%) and mr2 (80%) bearing ratio. Vvv is the
volume of air calculated from the Abbott curve, in the area below the dashed horizontal
line H2, between mr2 (80%) and 100% bearing ratio. These parameters are expressed in
units of volume per unit of surface (µm3/µm2 or nm3/nm2, depending on the heights of
the surface features).
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