Skip to main content
. 2023 May 4;23(9):4467. doi: 10.3390/s23094467

Table 4.

Fine-tuning and training optimization parameters utilized in the proposed vision-based RD approach.

Parameter Value
Learning ratio (LR) 0.00001
Optimization approach ADAM
Regularization approach L2-regularizer
Regularization decay rate 0.001
Number of epochs 20
Minimum batch size 16
Validation frequency 16
Dropout rate 0.5
LR schedule parameter Piecewise
LR drop period parameter 3
LR drop factor parameter 0.9
Loss function Categorical cross-entropy
Shuffling scenario Performed every epoch