Table 4.
Fine-tuning and training optimization parameters utilized in the proposed vision-based RD approach.
Parameter | Value |
---|---|
Learning ratio (LR) | 0.00001 |
Optimization approach | ADAM |
Regularization approach | L2-regularizer |
Regularization decay rate | 0.001 |
Number of epochs | 20 |
Minimum batch size | 16 |
Validation frequency | 16 |
Dropout rate | 0.5 |
LR schedule parameter | Piecewise |
LR drop period parameter | 3 |
LR drop factor parameter | 0.9 |
Loss function | Categorical cross-entropy |
Shuffling scenario | Performed every epoch |