Skip to main content
. 2023 May 4;23(9):4467. doi: 10.3390/s23094467

Table 9.

Specifications of the utilized FT CNN models.

CNN Model Disk Size (MB) Layers Parameters (Total) Parameters (Trained) Parameters (Non-Trained) Reduced (%) in Training Parameters
ResNet50 96 50 25,600,000 4096 25,595,904 99.98
AlexNet 227 8 61,000,000 8192 60,991,808 99.99
InceptionV3 89 48 23,900,000 4096 23,895,904 99.98
ResNet101 167 101 44,600,000 4096 44,595,904 99.99
GoogleNet 27 22 7,000,000 2048 6,997,952 99.97
VGG16 515 16 138,000,000 8192 137,991,808 99.99
DarkNet53 155 53 41,600,000 2048 41,597,952 99.99
Xception 85 71 22,900,000 4096 22,895,904 99.98
InceptionResNetV2 209 164 55,900.00 3072 55,896,928 99.99
MobileNetV2 13 53 3,500,000 2560 3,497,440 99.93
NasNetMobile 20 * 5,300,000 2112 5,297,888 99.96
DarkNet19 78 19 20,800,000 2048 20,797,952 99.99
ResNet18 44 18 11,700,000 1024 11,698,976 99.99
DenseNet201 77 201 20,000,000 3840 19,996,160 99.98
NasNetLarge 332 * 88,900,000 8064 88,891,936 99.99
Places365-GoogleNet 27 22 61,000,000 2048 60,997,952 99.99
ShuffleNet 5.4 50 7,000,000 1024 6,998,976 99.99
SqueezeNet 5.2 18 1,240,000 1024 1,238,976 99.92
VGG19 535 19 144,000,000 8192 143,991,808 99.99

* The NasNetLarge and NasNetMobile models do not comprise a linear structure of CNN modules.