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Abstract: Object detection is a fundamental task in computer vision. Over the past several years,
convolutional neural network (CNN)-based object detection models have significantly improved
detection accuracyin terms of average precision (AP). Furthermore, feature pyramid networks (FPNs)
are essential modules for object detection models to consider various object scales. However, the AP
for small objects is lower than the AP for medium and large objects. It is difficult to recognize small
objects because they do not have sufficient information, and information is lost in deeper CNN layers.
This paper proposes a new FPN model named ssFPN (scale sequence (S2) feature-based feature
pyramid network) to detect multi-scale objects, especially small objects. We propose a new scale
sequence (S2) feature that is extracted by 3D convolution on the level of the FPN. It is defined and
extracted from the FPN to strengthen the information on small objects based on scale-space theory.
Motivated by this theory, the FPN is regarded as a scale space and extracts a scale sequence (S2)
feature by three-dimensional convolution on the level axis of the FPN. The defined feature is basically
scale-invariant and is built on a high-resolution pyramid feature map for small objects. Additionally,
the deigned S2 feature can be extended to most object detection models based on FPNs. We also
designed a feature-level super-resolution approach to show the efficiency of the scale sequence (S2)
feature. We verified that the scale sequence (S2) feature could improve the classification accuracy
for low-resolution images by training a feature-level super-resolution model. To demonstrate the
effect of the scale sequence (S2) feature, experiments on the scale sequence (S2) feature built-in object
detection approach including both one-stage and two-stage models were conducted on the MS COCO
dataset. For the two-stage object detection models Faster R-CNN and Mask R-CNN with the S2

feature, AP improvements of up to 1.6% and 1.4%, respectively, were achieved. Additionally, the
APS of each model was improved by 1.2% and 1.1%, respectively. Furthermore, the one-stage object
detection models in the YOLO series were improved. For YOLOv4-P5, YOLOv4-P6, YOLOR-P6,
YOLOR-W6, and YOLOR-D6 with the S2 feature, 0.9%, 0.5%, 0.5%, 0.1%, and 0.1% AP improvements
were observed. For small object detection, the APS increased by 1.1%, 1.1%, 0.9%, 0.4%, and 0.1%,
respectively. Experiments using the feature-level super-resolution approach with the proposed scale
sequence (S2) feature were conducted on the CIFAR-100 dataset. By training the feature-level super-
resolution model, we verified that ResNet-101 with the S2 feature trained on LR images achieved a
55.2% classification accuracy, which was 1.6% higher than for ResNet-101 trained on HR images.

Keywords: object detection; feature pyramid network; scale sequence (S2) feature; convolutional
neural network (CNN); deep learning

1. Introduction

Deep learning models have shown substantial progress in various computer vision
tasks and their applications [1–9]. Object detection is a fundamental computer vision
task that can be applied in object tracking [10,11], segmentation [12], pose estimation [13],
3D object detection [14], autonomous driving [15], and unmanned aerial vehicle (UAV)
systems [16]. Recently, convolutional neural network (CNN)-based object detection models
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have achieved remarkably improved performance in terms of average precision (AP) [17].
The initial object detection models comprised two detection steps: a classification step and
a bounding box regression step. Before final prediction, the bounding box proposals were
generated in the region proposal network (RPN) [18]. To improve the inference speed, one-
stage object detection models such as YOLO were proposed [19]. The one-stage detectors
integrated two steps, and therefore these object detection models could be operated in
real time.

However, small object detection is still a very challenging task [20]. According to the
MS COCO definition, an object is classified as “small” if the area of the segmentation mask
is less than 32 × 32 pixels [21]. Additionally, if the area is greater than 32 × 32 pixels and
less than 96 × 96 pixels, it is classified as “medium”. If the area exceeds 96 × 96 pixels, it is
classified as “large”. Small object detection is challenging for several reasons. First, small
objects have little information to be represented. It is difficult to separate objects from the
background and discriminate similar categories. In addition, small objects can be located
at various points in the image. It is hard to localize bounding boxes. Finally, most object
detection models have been studied for large objects [22].

Recently, state-of-the-art models have been reported for detecting small objects. Usu-
ally, the average precision for small objects (APS) is lower than the AP for medium (APM)
and large objects (APL). Figure 1 shows the proportion of different object scales and the
performance gap in the AP between small-, medium-, and large-scale objects in the MS
COCO validation dataset. Small objects made up the largest proportion of the dataset.
However, the average precision for small objects (APS) was the lowest among the scales.
The red line shows the performance gap compared to the other scales. For Cascade R-CNN,
which is a two-stage detector, APL had the highest value at 54.4%, but APS had the low-
est value at 24% [23]. The performance gap between APL and APS was 30%. Likewise,
YOLOR-D6, which is a state-of-the-art architecture, had the lowest AP for small objects
among the scales [24]. For YOLOR-D6, there was a 28% gap between APS (40.4%) and APL
(68.8%). Small objects made up the largest proportion (41%) of the MS COCO dataset. Thus,
if the performance of small object detection can be improved, the overall performance will
naturally improve.
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Figure 1. The proportions of different object scales in the MS COCO dataset and the gap in AP
between small-, medium-, and large-scale objects in the MS COCO validation dataset.

As objects have various scales in natural images, object detection models have to learn
multi-scale features. To deal with multi-scale features, scale-invariant features have been
studied in traditional computer vision [25]. A scale-invariant feature is detectable even if
the object scale changes. If a model learns scale-invariant features, the small object detection
problem can be solved efficiently. Scale space, which is a multi-scale representation, is
parameterized by the variance of the Gaussian kernel to extract scale-invariant features [26].
Multi-scale representation can be composed of images with different resolutions.

On the other hand, recent deep-learning-based object detection models have used
feature pyramid networks (FPNs) [27] as a neck module to handle multi-scale objects
effectively. Before detecting objects in the head, they are assigned to a single pyramid level
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according to their scale. For example, large objects are detected in a low-resolution pyramid
feature map, whereas small objects can be detected in a high-resolution pyramid feature
map. To improve the performance, FPN-based models have been proposed to alleviate the
semantic gap between each level of the pyramid feature map [28]. However, most of the
existing models use simple fusion operations such as concatenation. Therefore, they cannot
sufficiently consider the correlation of all pyramid feature maps.

When an input image is fed into the CNN, output feature maps of each convolution
layer are composed by the FPN. The resolution of the pyramid feature maps decreases as
they pass through the convolution process. This FPN architecture is similar to scale space,
and the level axis of the FPN can be considered as the scale axis. Therefore, scale-invariant
features can be extracted from the FPN as in [29]. This approach motivated us to propose
a scale sequence (S2) feature for the FPN. The higher the pyramid level, the smaller the
image size. However, the semantic information is enhanced. We considered the level axis
of the FPN as the time axis of the sequence and extracted spatio-temporal features by 3D
convolution [30]. As a result, the scale sequence (S2) feature could be a unique feature
of scale space, and it is scale-invariant. Furthermore, all of the FPN feature maps could
participate in the operation using 3D convolution. This model includes a scale correlation
between all pyramid feature maps.

In comparison to other scales, the reason for the small object problem is that the deeper
CNN layer leads to a loss of information such as small object features and localization
information for bounding boxes [22]. For small objects, we designed a scale sequence
(S2) feature built on a high-resolution pyramid feature map. Generally, small objects are
detected in high-resolution pyramid feature maps. Therefore, we resized each pyramid
feature equally to form a high-resolution feature map. Pyramid feature maps with extended
resolution are similar to Gaussian pyramids. They are concatenated to a 4D tensor for
3D convolution. This cube feature can be considered as a general view of the dynamic
head presented in [31]. The designed scale sequence (S2) feature is concatenated to a
high-resolution pyramid feature map for detecting small objects in the head.

The contributions of this paper are four-fold:

• We proposed a new scale sequence (S2) feature that is extracted by 3D convolution on
the level of the FPN. It is a scale-invariant feature of the FPN regarded as scale space.

• The scale sequence (S2) feature could improve the AP for small objects as well as the
AP for other scales, since it was built on a high-resolution feature map to strengthen
the features of small objects.

• The scale sequence (S2) feature could be extended to most object detection models
based on the FPN structure. We verified the performance of the scale sequence (S2)
feature in one-stage and two-stage detectors.

• The scale sequence (S2) feature could improve classification accuracy on low-resolution
images by training feature-level super-resolution models.

2. Related Works
2.1. Object Detection

Small object detection has been continuously studied in the field of computer vision.
The most commonly used approach is a featurized image pyramid strategy. This architec-
ture uses multi-scale image resolution as the input and predicted objects in output feature
maps of each model. It allows the model to learn images of various scales.

For example, Azimi et al. jointly employed image cascade networks (ICNs) and feature
pyramid networks (FPNs) to detect small objects in remote sensing images [32]. This design
leveraged the feature pyramid hierarchy to extract strong semantic features of different
scales. Likewise, the high-resolution detection network (HRDNet) used images with
various input resolutions [33]. In addition, this model utilized different backbone models
for input resolution. For example, a small input image (I2) was fed into the deeper CNN
network; in contrast, a large image (I0) was fed into a shallow backbone network. Finally,
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the output FPNs of each backbone were fused. This architecture achieved improvements
for small object datasets such as VisDrone2019.

In addition, Chen et al. proposed an architecture for a scale attention model that
utilized two different scales of images [34]. This study applied the attention mechanism to
learn the scale. The scale attention model was trained for large objects using images with a
scale of 1. On the other hand, the model learned small and tiny objects from images with a
scale of 0.5. Two CNN networks were jointly trained to learn the scales, and the score maps
were fused for prediction. Tao et al. proposed hierarchical multi-scale attention for multi-
scale inference [35]. They utilized an attention mechanism from previous research [34] but
reconstructed it hierarchically. This model predicted the attention value of adjacent scale
pairs when training different scales. Then, the model hierarchically combined multiple
scale prediction values at the inference time.

The abovementioned methods improved the performance of small and tiny object
detection. However, they are not tractable in terms of memory and computation in real
time, because multi-scale input images are very challenging in computer vision. In this
paper, the proposed ssFPN used only a single image as input to reduce complexity and
improved the performance of small object detection.

2.2. Feature Fusion Strategy

Feature pyramid networks (FPNs) are essential modules for handling multi-scale
features [27]. FPNs comprise different resolutions of feature pyramids, to which objects are
assigned according to their scale. These feature pyramids are fused by a top-down pathway.
However, there is a discrepancy problem between each pyramid feature map, because they
are generated from different convolution layer depths. Additionally, low-level features are
reflected to a smaller extent in the final prediction.

Path aggregation networks (PANets) have been proposed for a new fusion method
to alleviate the problem by adding a bottom-up pathway to the FPN [28]. PANets using
both high-level and low-level features have been proposed. PANets utilize bottom-up path
augmentation, which connects low-level features to high-level features, and then a new
feature pyramid is created (denoted as N). This leads to accurate bounding box localization
prediction due to plentiful low-level features. Finally, the generated vectors in each feature
map are combined using adaptive feature pooling. The PANet is an effective feature
fusion model, and it was selected for the neck module of YOLOv4. NAS-FPN found an
effective feature pyramid architecture by AutoML [36]. NAS stands for neural architecture
search. The previous methods were designed by handcrafted fusion connection. However,
NAS-FPN searched for the best feature fusion method by a reinforcement learning scheme.
Additionally, a bidirectional feature pyramid network (BiFPN) pointed out other models
considering all pyramid feature maps equally regardless of their resolution [37].

Tan et al. proposed a weighted fusion method for feature pyramids [37]. Liu et al.
proposed a composite backbone network architecture (CBNet) [38]. CBNet used dual or
triple backbones to strengthen features for training. There were two types of backbone:
the lead backbone, which connected the detection head, and the other assistant backbones.
Then, CBNet fused the output feature maps from each backbone using the adjacent higher-
level composition (AHLC) method. CBNetV2 applied a training strategy with auxiliary
supervision [39]. Since multiple backbones were used, additional optimization was re-
quired. CBNetV2 used two detection heads. One detection head was trained by the original
detection loss, and the other detection head supervised assistant backbones to optimize the
learning process.

Recently, the dynamic head introduced three attention modules: scale-aware attention,
spatial-aware attention, and task-aware attention [31]. The scale-aware attention module
was trained according to the importance of adapting the pyramid level to the object scale.
Additionally, the dynamic head utilized a general view that concatenated the pyramid
feature maps after resizing them to medium feature map resolution. Finally, the self-
attention between the feature maps of the general view was computed.
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However, most previous studies have fused pyramid features by simple summing
and concatenation. This simple structure cannot sufficiently consider the correlation be-
tween all pyramid feature maps. In this paper, the proposed scale sequence (S2) feature
was concatenated to pyramid feature maps. It reflected the correlation across the whole
feature pyramid by participating in 3D convolution. Therefore, it could enrich the feature
information of the FPN for detecting multi-scale objects.

2.3. Scale-Invariant Features

A scale-invariant feature is defined as a feature that does not change even when the
object scale changes [25]. In traditional computer vision, scale-invariant features have been
studied to deal with multi-scale objects. Image pyramids, which are a basic approach, can
represent various scales of objects.

Scale-invariant feature transform (SIFT) extracts features that are robust to scale and
rotation. These scale-invariant features can be found through scale-space theory [40]. First,
an image pyramid is created by resizing an original image. To create a scale space, Guassian
filters with different scale factors are applied to the image pyramid. Then, extrema can be
detected by the difference of Guassians (DoG). These extrema become candidates for key
points, and the most stable key points are selected as scale-invariant features. The SIFT
algorithm has traditionally been widely used for image matching tasks.

Meanwhile, some studies have considered scale correlation in feature pyramids in-
stead of image pyramids to reduce computation complexity. The deep-scale relationship
network (DSRN) was proposed to address large variations in text scale [41]. DSRN utilized
two modules: a scale-transfer module and a scale-relationship module. The scale-transfer
module unified the dimensions of the feature maps for aggregation. The scale-relationship
module aggregated multi-scale features from different stages and mapped them onto
scale-invariant space. This model effectively handled the scale problem. DSRN improved
performance, demonstrating a fast inference speed on a scene text detection dataset. Ad-
ditionally, pyramid convolution (PConv) considered feature pyramids as scale space and
extracted scale-invariant features [29]. Three convolution kernels were designed for three
adjacent sizes of feature maps. These were used to extract the scale and spatial features
between them. The convolution kernel size was the same, but the stride value was dif-
ferent. After convolution, three output feature maps were integrated. Furthermore, a
scale-equalizing pyramid convolution (SEPC) method using deformable convolution was
proposed. PConv improved the performance in terms of AP on the MS COCO dataset.

However, these approaches computed the convolution of each pyramid feature map
independently. In this paper, the FPN was regarded as a scale space, and we extracted
scale-invariant features by 3D convolution. The extracted features were defined as scale
sequence (S2) features that were unique features of the FPN. All pyramid feature maps
were computed by 3D convolution. Through this process, the correlation across all pyramid
features could be considered sufficiently. Furthermore, the proposed scale sequence (S2)
feature included sequence information of scale transformation.

2.4. Super Resolution

Super resolution is the task of generating a high-resolution (HR) image from a low-
resolution (LR) image. It can be divided into image-level super resolution and feature-level
super resolution, depending on the purpose of the application.

Image-level super resolution predicts the whole high-resolution image. In general,
deep-learning-based super-resolution models involve image-level super resolution, which
has been studied over the past several years [42–45]. An enhanced deep super-resolution
network (EDSR) [45] was trained by residual learning, and many super-resolution models
have been studied based on EDSR [45]. Lim et al. divided a deeper network into residual
blocks for stable training and connected them using a skip connection. Furthermore, the
EDSR generated high-resolution images through pixel shuffling. Some studies on the
super-resolution approach have also been conducted in the field of object detection [46,47].
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However, image-level super resolution is inefficient for object detection and classification
tasks, which do not require the generation of the whole image. Additionally, it increases
the complexity of models and can affect the inference speed adversely.

Recently, some feature-level super-resolution methods have been studied to reduce
computational complexity [48,49]. These methods super-resolve the feature map, not the
low-resolution image. Unlike image-level super-resolution, object detection or classification
predicts targets based on semantic features from the last layer of the model. Therefore, it
is not necessary to predict the whole image, which would bring a computational burden.
Feature-level super resolution is sufficient to create high-quality super-resolved features for
performance improvement when using low-resolution images. Noh et al. [49] proposed a
super-resolution feature generator based on generative adversarial networks (GANs) [50].

Motivated by their approach, we introduce herein a feature-level super-resolution
method using scale sequence (S2) features. Since the scale sequence (S2) features include the
scale sequential information of the input images, they can help to generate super-resolved
high-resolution features.

3. Proposed Architecture

3.1. Scale Sequence (S2) Features

This section introduces a new feature: the scale sequence (S2) feature. We aimed to
find a scale-invariant feature of the FPN. A scale-invariant feature does not change when
the size of the image is changed. First, this section explains scale-space theory [26] in
traditional computer vision. Scale space is constructed along the scale axis of an image.
It represents not one scale, but various scale ranges that an object can have. The space
is generated by blurring an image using a Guassian filter instead of resizing the image
directly.

Figure 2 shows a comparison of image sequences on different axes. Figure 2a rep-
resents the scale space using a Guassian filter on the scale axis, and Figure 2b presents a
general view concatenated with identical resolution features on the level axis [31]. Figure 2c
shows video frames on the time axis.

(c) Video frames

( 𝒕𝒊𝒎𝒆 ,𝑤 , ℎ , 𝑐 )

𝑠𝑐𝑎𝑙𝑒

(a) Scale space

( 𝒔𝒄𝒂𝒍𝒆 ,𝑤 , ℎ , 𝑐 )

𝑙𝑒𝑣𝑒𝑙

(b) General view

( 𝒍𝒆𝒗𝒆𝒍 ,𝑤 , ℎ , 𝑐 )

𝑤

ℎ

𝑤

ℎ

𝑡𝑖𝑚𝑒

𝑤

ℎ

Figure 2. Comparison of image sequences on different axes. The source of the images was the
YouTube-8M dataset [51]. (a) Scale space using a Gaussian filter on the scale axis. (b) General view
concatenated with identical resolution features on the level axis [31]. (c) Video frames on the time axis.

As illustrated in Figure 2a, the larger the scale parameter value, the more blurred the
generated image. According to this theory, the scale indicates the level of detail of the
image. In other words, a blurred image loses detail. However, the structural features of the
image are prominent. It can be computed as follows:

gσ(x, y) =
1

2πσ2 e−(x2+y2)/2σ2
, (1)

fσ(x, y) = gσ(x, y) ∗ f (x, y), (2)



Sensors 2023, 23, 4432 7 of 19

where f (x, y) is a 2D image; fσ(x, y) is generated by smoothing through a series of con-
volutions with a 2D Guassian filter gσ(x, y); and σ is a scale parameter as the standard
deviation of the 2D Guassian filter, which is used in convolution. As a result, these images
have the same resolution but different scale parameter values.

This paper considers the feature pyramid network (FPN) as a scale space. The FPN
is composed of output feature maps through convolution layers when an input image
is fed into the CNN. A low-level pyramid feature map is high-resolution and contains
information on localization, especially for small objects. On the other hand, a high-level
pyramid feature map is low-resolution, but it contains plenty of semantic features. These
characteristics are similar to those of scale space, which features trade-off information on
the scale axis. Based on this structure, the general view from the dynamic head [31] was
concatenated with all pyramid features after resizing them to the same resolution. This is
illustrated in Figure 2b, which shows that the feature representations differed according to
the level axis. Finally, a unique feature of this general view was extracted from the scale
view of the FPN.

G = {Pi}L
i=3, (3)

where Pi is a pyramid feature map from the i− th levels; the highest-resolution feature
pyramid is P3; and the general view G is generated by concatenating identical-resolution
feature maps after resizing the pyramid feature maps to a specific resolution. The general
view was constructed as a 4D tensor: G = (level · width · height · channel).

A unique feature of the FPN has to consider all general view feature maps. This
paper was motivated by 3D convolution [30] in video recognition tasks. In this area, 3D
convolution is used to extract motion in videos. Figure 2c shows video frames on the time
axis. Motion involves the sequential as well as spatial information of frames. The pyramid
feature maps of the general view are regarded as video frames; hence, the general view is a
sequence of convolutions. The time axis of video frames can be considered the level axis of
the general view.

A unique feature of the general view is defined as a scale sequence (S2) feature. It
is extracted by 3D convolution on the level axis of the general view. The proposed scale
sequence (S2) feature is a spatio-temporal feature of the general view, such as motion.
Furthermore, all pyramid feature maps of the FPN contribute to the 3D convolution
operation.

As a result, this approach includes scale correlation across feature pyramids. It differs
from other FPN-based feature fusion methods that employ simple summing and con-
catenation between pyramid feature maps. The scale sequence (S2) feature is defined as
follows:

S2 f eature = Θs2(G), (4)

where Θs2 is the scale sequence module based on 3D convolution. This module can
extract the scale sequence (S2) feature from the general view. To apply 3D convolution,
we regarded the level axis of the general view as the time axis of video frames; G =
(time · width · height · channel). As time refers to the length of frames, it could be denoted
as the number of levels of the general view.

3.2. Framework Based on Scale Sequence (S2) Module

In this section, Θs2 , i.e., the scale sequence (S2) module, is explained in detail. Figure 3
shows the proposed scale sequence (S2) module framework, and Figure 4 illustrates the
architecture in detail. Figure 3a depicts the neck module of the FPN for feature fusion, and
Figure 3b shows the process of the proposed scale sequence module using 3D convolution.
Additionally, Figure 3c,d depict the one-stage detector head and two-stage detector head,
respectively.
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Generally, an object detection model is composed of a backbone network, a neck
module for feature fusion, and a detection head. The input image is fed into the backbone
network. A CNN or transformer [52] are employed as the backbone to extract features.
Convolution features obtained through convolution layers are denoted as {C1, C2, C3, C4,
C5}. This module selects only C3 to C5 among the output feature maps of the corresponding
convolution layers, because low-level feature maps lack semantic information.

(a) NeckBackbone (c) One-stage Head
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Figure 3. Scale sequence module framework: (a) neck module of FPN for feautre fusion, (b) process
of proposed scale sequence module using 3D convolution, (c) one-stage detector head, (d) two-stage
detector head.
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Figure 4. The architecture of the scale sequence (S2) module in detail.

Next, the generated convolution features are aggregated by top-down and bottom-up
fusion in the neck. The path aggregation network (PAN) architecture [28] is adopted instead
of the FPN for effective multi-scale feature fusion. The pyramid features are denoted as
{P3,P4,P5}. Figure 3 illustrates a basic YOLOv4-P5 model with the proposed scale sequence
(S2) module that employs an input size of 896× 896. Therefore, the baseline model produces
up to P5. If the model uses an input resolution larger than 896 × 896, the scale sequence
module can extend the maximum pyramid level up to P6 and P7.
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Figure 3b shows the pyramid features fed into the scale sequence module. In this
module, a general view is generated by concatenating all pyramid feature maps after
resizing them to the same resolution. In a previous method [31], the general view set the
image resolution to the medium pyramid resolution. However, the general view with the
scale sequence (S2) module was designed based on P3, because small objects are detected
in the high-resolution feature map P3. Hence, high-resolution feature maps include small
object features and localization information. The pyramid feature maps are resized to the
resolution of P3 by nearest-neighbor upsampling. To construct a general view, the level
dimension is added to each resized feature map using the unsqueeze function. Finally, P3
and all upsampled feature maps are concatenated.

This general view is fed into the 3D convolution block. The 3D convolution block is
composed of 3D convolution, 3D batch normalization, and the leaky ReLU [53] activation
function. The 3D convolution is performed along the axis of the pyramid level and extracts
a scale sequence feature of the general view. The 3D convolution operation uses a 3 × 3 ×
3 (depth, height, width) kernel size with appropriate padding and a stride of 1. As a result,
there is no change in resolution size between the input and output. In addition, the number
of input channels and output channels is the same. Due to 3D convolution complexity, one
convolution block is employed to reduce computation. However, a 3D convolution block
can be added in accordance with the purpose.

The output features from the 3D convolution block are computed by average pooling
3D on the level axis only. As a result, the generated general view can compress the features
of the level with spatial and channel information preserved. Then, the axis of the level
is removed. Finally, the scale sequence features have a width, height, and channel size
identical to those of P3. For small object detection, both the scale sequence (S2) features and
P3 are combined or used in the detection head together. The new detection head for small
objects has the same resolution but twice the channel size, as follows:

PS2
3
= CAT(P3, S2 f eature), (5)

where PS2
3

is the result of concatenation between scale sequence (S2) features and P3, which
is the highest resolution among the pyramid feature maps. As a result, small objects are
detected in this new detection head, PS2

3
.

P3 is used to extract the proposed scale sequence (S2) features for small objects by
default. However, the basic resolution size for the scale sequence (S2) features does not
need to be high. It can be changed to a different resolution depending on the purpose of
the application.

The scale sequence (S2) module can be applied to both one-stage and two-stage
detectors. Figure 3c shows the process of the one-stage detector head, and Figure 3d
shows that of the two-stage detector head. In order to modularize the two-stage RoI head
effectively, 1 × 1 convolution is added to PS2

3
. As a result, the channel size of PS2

3
in the

two-stage detector is identical to that of P3.

3.3. Feature-Level Super Resolution Based on Scale Sequence (S2) Features

For small object detection, the super-resolution of images can be an effective approach.
Through super resolution, the spatial information of small objects can be enriched so that
they are more easily recognizable. However, the super resolution of input images causes
a decrease in the inference speed. This would be a serious problem in real-time object
detection.

Recently, feature-level super resolution has been studied to reduce computational
complexity. This method super-resolves the feature map, not the input image. Unlike
super-resolution tasks, object detection predicts bounding boxes and classes based on
semantic features from the model. Therefore, it is not necessary to predict the whole image,
which would bring a computational burden. Feature-level super resolution is sufficient
to create high-quality super-resolved features for performance improvement when using
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low-resolution images. Noh et al. [49] proposed a super-resolution feature generator based
on generative adversarial networks (GANs) [50] for small object detection. Motivated by
their approach, a feature-level super-resolution method using scale sequence (S2) features
is introduced in this study.

Figure 5 shows the proposed feature-level super-resolution method based on scale
sequence (S2) features for classification tasks. High-resolution (HR)–low-resolution (LR)
pairs are used for training. The HR image is easily classified as a whale, but the LR image
is difficult to predict. If a model generates an HR image from an LR image, the LR image
can be precisely recognized as the desired class.

Prediction
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Figure 5. The architecture of the feature-level super-resolution model with scale sequence features.

HR features are extracted from HR images and used as target data for super resolution.
The HR encoder uses ResNet-101 as a backbone, and an additional FPN is attached for
scale sequence (S2) features. The standard feature map of the general view is a P3 pyramid
feature map, and the size of P3 is 8 × 8 × 256 (width, height, channel). HR features are
created by concatenating HR P3 and HR scale sequence (S2) features from the scale sequence
module. The size of HR features for training is 8 × 8 × 512.

Before the super-resolution module, the LR encoder is identical to ResNet-101 with
the FPN architecture and HR encoder. However, after upsampling the resolution of the HR
image via bicubic interpolation, LR images are fed into the LR encoder. As a result, LR
P3 and LR scale sequence (S2) features are extracted for the super-resolution module and
concatenated. These features are denoted as LR features.

The super-resolution module is composed of two residual blocks, which were intro-
duced in the enhanced deep super-resolution network (EDSR) [45]. Through the residual
blocks, the size of the input feature map remains the same. For feature-level super reso-
lution, pixel shuffling, which is an upsampling step, is removed, because the extracted
super-resolved (SR) features do not need to be large. One convolution layer transforms
the channel size of the LR feature map from 512 to 1024, and the features are fed into the
residual blocks. The residual blocks consist of convolution, ReLU, and convolution layers
without a normalization step. Before the residual blocks, one convolution layer transforms
the channel size of the LR feature map from 512 to 1024, and the features are used as the
residual block input. Then, one convolution layer adjusts the number of channels of the
feature map to 512, which is the same as the target number of HR features. The output
from the super-resolution module is the final SR feature.
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To train the model end-to-end, both classification loss and super-resolution loss are
combined as follows:

Ltotal = (1− α) ∗ Lcls + α ∗ Lsr, (6)

where Ltotal is the total loss, combining the classification loss (Lcls) with the super-resolution
loss (Lsr); Lcls is the cross-entropy loss function; and Lsr is the mean squared error (MSE)
between HR features and SR features. Since classification is the main task, the model should
focus on classification loss above super-resolution loss. α is the weight between both losses.
In this paper, α was set to 0.3 for Lsr and 0.7 for Lcls.

In the inference step, LR images from upsampled HR images are fed into the ResNet-
101 FPN model. Then, LR features concatenated from LR P3 and the S2 features of the LR
image are extracted. Through the super-resolution module, the SR features are flattened,
and, finally, the fully connected layer predicts the classes. As a result, the features of
low-resolution images can be super-resolved to HR features that can be recognized easily
for classification and detection.

4. Experimental Results
4.1. Dataset and Evaluation Metrics

All experiments were conducted on the MS COCO 2017 dataset [21]. This dataset is
commonly used as a benchmark dataset for object detection and segmentation tasks. It
has 80 object categories and consists of a 118 k training set, 5 k validation set, and 20 k
test-dev set. We trained the models on the training set without extra data. Evaluations were
conducted on the validation set or test-dev set by uploading our model onto the official
evaluation server.

All results were evaluated by the average precision (AP) on the MS COCO dataset.
We averaged over multiple intersection over union (IoU) values. The primary challenge
metric was AP at IoU = 0.50:0.05:0.95, and others were denoted as AP50 at IoU = 0.50 and
AP75 at IoU = 0.75. Additionally, we report AP values for different object scales, i.e., split
into small APS, medium APM, and large APL based on the segmentation mask area.

4.2. Implementation Details

Experiments were conducted to check the performance improvement when scale
sequence (S2) features were built on baseline models. For comparison, the training strategy
and default configuration were set with each baseline model used in the paper. Pytorch
was used for implementation, and pre-trained COCO weights were used as initial weights.

When adding scale sequence (S2) features, the neck modules of each baseline model
were utilized. For example, the one-stage detector of YOLO used a path aggregation
network (PAN) as the neck module. Scale sequence (S2) features were implemented based
on the PAN. Additionally, the two-stage detectors of detectron2 used a feature pyramid
network (FPN). Therefore, the scale sequence (S2) features were equipped with FPN. All
training procedures were performed by single-scale training without ensemble.

For one-stage detectors, Scaled-YOLOv4 (Scaled-YOLOv4-P5, Scaled-YOLOv4-P6)
and YOLOR (YOLOR-P6, YOLOR-W6, YOLOR-D6) were used as baseline models. Hyper-
parameters and initial training options followed the settings reported in [54]. Stochastic
gradient decent (SGD) was employed as the optimizer, and the learning rate scheduler was
OneCycleLR [55], with an initial learning rate of 0.01. One-stage detectors were trained
using three Tesla NVIDIA V100 GPUs, and it took about two weeks to train the models.
The batch sizes for YOLOv4-P5 and YOLOv4-P5 were 24 and 21, respectively. Additionally,
the YOLOR series (YOLOR-P6, YOLOR-W6, YOLOR-D6) was trained with a batch size of
18. The performance of the one-stage detector was evaluated on the MS COCO test-dev
dataset.

On the other hand, two-stage detectors were trained using detectron2. Both ResNet-50
and ResNet-101 [56] were selected as the baseline models for Faster R-CNN, Mask R-CNN,
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and Cascade R-CNN. These three models used an FPN as the neck module. The two-stage
detectors were evaluated on the MS COCO validation dataset.

For comparison, the models were re-trained using a batch size of 8. After building the
scale sequence (S2) features, the two-stage detectors + S2 were trained using the same batch
size. The training strategy and hyper-parameters were set according to detectron2’s default
configuration. The training epochs were 3× scheduled (270 k iterations), and the learning
rate decreased by a factor of 0.1 at 210 k and 250 k iterations. The two-stage detectors were
trained on four NVIDIA RTX 2080Ti GPUs, and it took about one week to train the models.

4.3. Results and Discussion
4.3.1. Overall Performance Analysis

The one-stage detectors’ built-in scale sequence (S2) features were evaluated with
other YOLO-based models on the MS COCO test-dev dataset. The results are shown in
Table 1. All models with scale sequence (S2) features consistently improved the perfor-
mance. YOLOv4-P5 with scale sequence (S2) features achieved a 52.3% AP, representing a
0.9% improvement compared to the model without the proposed features. AP50 and AP75
were improved by factors of 0.8% and 1.1%, respectively. Additionally, the AP increased
even if the model size was larger. For example, YOLOv4-P6 equipped with scale sequence
(S2) features demonstrated a 0.5% improvement in all AP metrics, including AP50 and AP75.
Furthermore, YOLOR-P6 with scale sequence (S2) features achieved 53.1% AP, representing
a 0.5% improvement compared to the model without the proposed features. Both AP50
and AP75 were improved by a factor of 0.5%. The state-of-the-art architecture YOLOR-D6
achieved 55.4% AP using the proposed scale sequence (S2) feature (bold face).

Table 1. Comparison of the one-stage detectors with scale sequence (S2) features and baseline models
evaluated on COCO test-dev dataset.

Model Backbone Size AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

DyHead ResNext-64× 4d-101 - 47.7 65.7 51.9 31.5 51.7 60.7
PyCenterNet [57] Swin-L - 53.2 71.4 57.4 33.2 56.2 68.7

DetectoRS [58] ResNeXt-101-32×4d - 53.3 71.6 58.5 33.9 56.5 66.9
QueryInst [59] Swin-L - 56.1 74.2 53.8 31.5 51.8 63.2

YOLOv4-P5 CSP-P5 896 51.4 69.9 56.3 33.1 55.4 62.4
YOLOv4-P6 CSP-P6 1280 54.3 72.3 59.5 36.6 58.2 65.5
YOLOR-P6 CSPdarknet53 1280 52.6 70.6 57.6 34.7 56.6 64.2
YOLOR-W6 CSPdarknet53 1280 54.1 72.0 59.2 36.3 57.9 66.1
YOLOR-D6 CSPdarknet53 1280 55.3 73.3 60.6 38.0 59.2 67.1

YOLOv4-P5 + S2 CSP-P5 896 52.3[+0.9] 70.7[+0.8] 57.4[+1.1] 34.2[+1.1] 56.2[+0.8] 63.7[+1.3]
YOLOv4-P6 + S2 CSP-P6 1280 54.8[+0.5] 72.8[+0.5] 60.0[+0.5] 37.7[+1.1] 58.5[+0.3] 65.9[+0.4]
YOLOR-P6 + S2 CSPdarknet53 1280 53.1[+0.5] 71.2[+0.6] 58.2[+0.6] 35.6[+0.9] 56.5[–0.1] 64.7[+0.5]
YOLOR-W6 + S2 CSPdarknet53 1280 54.2[+0.1] 72.3[+0.3] 59.4[+0.2] 36.7[+0.4] 57.8[–0.1] 66.2[+0.1]
YOLOR-D6 + S2 CSPdarknet53 1280 55.4[+0.1] 73.5[+0.2] 60.0[+0.0] 38.1[+0.1] 58.9[–0.3] 67.2[+0.1]

Furthermore, Table 2 shows a comparison of our scale sequence feature with two-
stage object detector baselines. These experiments were only conducted on the MS COCO
validation set. Unlike the one-stage detectors, the scale sequence (S2) module for two-stage
detectors added 1 × 1 convolution to modularize the ROI head effectively. Faster R-CNN,
Mask R-CNN, and Cascade R-CNN were evaluated with the proposed method.
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Table 2. Comparison of the two-stage detectors with scale sequence (S2) features and baseline models
evaluated on COCO validation dataset.

Model Backbone AP (%) APmask (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

Faster R-CNN ResNet-50 37.9 - 58.1 41.3 22.0 40.9 49.1
Faster R-CNN ResNet-101 39.7 - 60.1 43.3 23.5 43.4 51.4
Mask R-CNN ResNet-50 38.5 35.1 58.7 42.0 22.4 41.4 49.9
Mask R-CNN ResNet-101 40.6 36.9 61.1 44.0 24.6 44.0 52.7

Cascade R-CNN ResNet-50 41.9 36.5 59.6 45.4 24.8 45.2 54.4

Faster R-CNN + S2 ResNet-50 39.1[+1.2] - 59.6[+1.4] 42.5[+1.2] 23.3[+1.2] 43.0[+2.0] 50.9[+1.7]
Faster R-CNN + S2 ResNet-101 41.3[+1.6] - 61.6[+1.5] 44.8[+1.5] 25.2[+1.2] 44.9[+1.5] 53.5[+2.1]
Mask R-CNN + S2 ResNet-50 39.8[+1.3] 36.2[+1.1] 60.0[+1.3] 43.6[+1.6] 23.5[+1.1] 43.0[+1.6] 51.1[+1.2]
Mask R-CNN + S2 ResNet-101 42.0[+1.4] 37.9[+1.0] 62.1[+1.0] 46.0[+2.0] 25.7[+1.1] 45.4[+1.4] 54.0[+1.3]

Cascade R-CNN + S2 ResNet-50 43.2[+1.3] 37.5[+1.0] 60.8[+1.3] 47.1[+1.7] 25.8[+1.0] 46.6[+1.4] 56.4[+2.0]

As shown in Table 2, Faster R-CNN with the scale sequence (S2) features achieved a
39.1% AP, which was 1.2% higher than that of Faster R-CNN without the proposed feature.
Additionally, AP50 and AP75 were improved by 1.4% and 1.2%, respectively.

For Mask R-CNN and Cascade R-CNN, the proposed scale sequence (S2) feature
improved the AP as well as APmask. Mask R-CNN with scale sequence features was
improved by a factor of 1.3% in terms of AP and 1.1% in terms of APmask. Additionally,
Cascade R-CNN achieved a 43.2% AP and 37.5% APmask, which were 1.3% and 1.0% higher
than the model without our feature, respectively. The proposed scheme also significantly
improved the AP50 and AP75.

4.3.2. Analysis of the Performance in Terms of Object Scale

AP improvement for different object scales: small, medium, and large scales were
analyzed. All YOLO-based one-stage detectors with scale sequence (S2) features increased
the AP for all scales. In particular, APS increased more than the other scales. This was
because the scale sequence feature was designed based on a high-resolution pyramid
feature map for small objects. YOLOv4-P5, which used the smallest resolution as the input
image, achieved 1.1% and 1.3% AP improvements for APL and APS, respectively.

On the other hand, YOLOv4-P6 was more complex and used larger input resolutions
than YOLOv4-P5. When the scale sequence (S2) feature was added to YOLOv4-P6, it
showed the highest improvement of 1.1% in APS, followed by 0.3% in APM and 0.4% in
APL.

Additionally, YOLOR-D6 with the scale sequence (S2) features showed improvements
in the primary AP. We observed an increased APS and APL, but APM decreased slightly.
For the YOLOR series architecture, the pyramid feature map for medium objects had the
smallest number of channels when S2 was concatenated to a pyramid feature map for small
objects. This caused a slight drop in APM, but the overall AP was improved.

Furthermore, two-stage detectors equipped with the scale sequence (S2) feature could
improve the AP for all scales consistently. However, the highest improvement in AP among
the scales differed, because the proposed scale sequence (S2) features were added to P3
through 1 × 1 convolution to adjust the feature channel in the two-stage scale sequence
(S2) module. This caused a lack of information in P3 compared to the one-stage detectors.

Figure 6 visualizes the MS COCO bounding box results for small objects (kite and
snowboard) with and without scale sequence (S2) features. On the left are the outputs from
YOLOv4-P6, and on the right are the outputs from YOLOv4-P6 + S2 (proposed) for the MS
COCO dataset. With the scale sequence (S2) features, small objects were more efficiently
detected.
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Original image YOLOv4-P6 YOLOv4-P6+ 𝑆2 Original image YOLOv4-P6 YOLOv4-P6+ 𝑆2

Figure 6. Comparison of bounding box results for small objects between YOLOv4-P6 and the
proposed scheme on MS COCO dataset.

4.4. Ablation Study
4.4.1. Ablation Study for Different Pyramid Level Positions

Ablation experiments were conducted to explore the number of scale sequence (S2)
features and different pyramid level positions. Table 3 shows the results. Under the default
settings, the proposed scale sequence (S2) features were generated based on P3 and had the
same resolution of P3. We resized these features to other pyramid resolutions, P4 and P5.
Finally, the scale sequence (S2) features were concatenated to P4, P5, or both.

Table 3. Ablation study on different pyramid level positions for concatenating the scale sequence (S2)
features.

Level AP (%) APS (%) APM (%) APL (%)

YOLOv4-P5 51.4 33.1 55.4 62.4

P3 +S2 52.3 34.2[+1.1] 56.2[+0.8] 63.7[+1.3]
P3, P4 +S2 52.2 34.2[+1.1] 56.4[+1.0] 63.3[+0.9]
P3, P4, P5 +S2 52.2 33.7[+0.6] 56.5[+1.1] 63.2[+0.8]

As a result, models with the scale sequence (S2) features showed improved perfor-
mance compared to those without the proposed features. When concatenating the scale
sequence (S2) features to only P3, we achieved the best performance. This improved the
APS as well as the AP for other scales with low complexity.

4.4.2. Ablation Study on Neck Model

To analyze the effect of different necks, the neck module of Scaled-YOLOv4 was
changed from PAN to FPN. Table 4 shows the results of this ablation study. Scale sequence
(S2) features were extracted from FPN instead of PAN. As a result, the model with scale
sequence (S2) features generated from PAN had better performance.
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Table 4. Ablation study on different neck modules (FPNs).

Model AP (%) AP50 (%) AP75 (%)

YOLOv4-P5

w PAN 51.4 69.9 56.3
w FPN + S2 47.5 67.6 51.7
w PAN + S2 52.3 70.7 57.4

Path aggregation networks (PANs) have bi-directional aggregation paths from FPNs.
These connect feature pyramids through top-down and bottom-up pathways and make all
feature pyramids reflect each other; however, they only have different feature map sizes
on the level axis. These feature pyramids resemble scale space. Therefore, scale-invariant
features can easily be extracted from scale space.

4.5. Runtime Analysis

As shown in Table 5, the number of model parameters and the inference speed were
analyzed when adding the proposed scale sequence (S2) features (blod faces). Models
with the scale sequence (S2) features showed parameter increased of approximately 2 M.
Additionally, the runtime with a batch size of 8 on a NVIDIA Tesla V100 was tested. The
speed of YOLOv4-P5 with the scale sequence (S2) features was increased by 1.7 ms using an
896 × 896 input image. When using a 1280 × 1280 image as input, the speed was increased
by 4.7 ms for YOLOv4-P6 with the scale sequence (S2) features. We could see by the runtime
that the proposed S2 features did not introduce a high complexity.

4.6. Feature-Level Super-Resolution Results

This section presents the results of the feature-level super-resolution approach using
scale sequence (S2) features. The purpose of the experiment was to demonstrate whether
super-resolved features could improve the classification performance compared to training
using only low-resolution images.

Table 5. Comparison of runtime analysis.

Model Size Param. (M) AP (%) AP50 (%) Speed (ms)

YOLOv4-P5 896 71 51.4 69.9 11.8
YOLOv4-P6 1280 128 54.3 72.3 23.7
YOLOR-P6 1280 37 52.6 70.6 12.4
YOLOR-W6 1280 80 54.1 72.0 14.0

YOLOv4-P5 + S2 896 73 52.3 70.7 13.5[+1.7]
YOLOv4-P6 + S2 1280 130 54.8 72.8 28.4[+4.7]
YOLOR-P6 + S2 1280 40 53.1 71.2 16.6[+4.2]
YOLOR-W6 + S2 1280 82 54.2 72.3 18.3[+4.3]

4.6.1. Implementation Details

Experiments were conducted using classification tasks on the CIFAR-100 [60] dataset.
The HR images were the original CIFAR-100 images that had a resolution of 32× 32. On the
other hand, the LR images were created by downsampling ×2. Therefore, the LR images
had a resolution of 16 × 16. ResNet-101 was used as a baseline model, and the additional
FPN architecture was equipped with the baseline to extract scale sequence (S2) features.
For a fair comparison, all models were trained using 100 epochs and a batch size of 512.
Models were trained with an SGD optimizer by setting the learning rate to 0.1, using a
Tesla NVIDIA V100 GPU. It took about five hours to train the models.
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4.6.2. Classification Results

Table 6 shows the classification accuracy results of ResNet-101 as the baseline model,
trained on LR or HR images. Additionally, it shows how much the performance improved
with the addition of scale sequence (S2) features and the feature-level super-resolution
approach. The performance of ResNet-101 trained on HR images was 53.6%. ResNet-101
with scale sequence features trained on HR images achieved a 57.2% classification accuracy,
which was 3.6% higher than without the scale sequence (S2) features.

However, training on LR images achieved a poorer performance than training on HR
images. For example, the classification accuracy of ResNet-101 trained on LR images was
47.1%, which was 6.5% lower than that of ResNet-101 trained on HR images. Furthermore,
the experimental results demonstrated that the scale sequence (S2) features could improve
the classification accuracy of small-image data such as CIFAR-100 data (32 × 32) (even if
the CIFAR-100 resolution was downsampled to 16 × 16). For example, when training on
LR images, ResNet-101 with S2 features achieved a 49.1% classification accuracy, which
was 2% higher than without scale sequence (S2) features. Nevertheless, it demonstrated a
poorer performance than models trained on HR images. The accuracy of ResNet-101 with
scale sequence (S2) features trained on LR images was 8.1% and 4.5% lower than that of
ResNet-101 trained on HR images with and without S2 features, respectively.

However, the proposed feature-level super-resolution method using scale sequence
(S2) features could improve the performance of models trained on LR images to approach
that of models trained on HR images. By training using the feature-level super-resolution
approach, ResNet-101 with scale sequence (S2) features trained on LR images achieved a
55.2% accuracy, which was 6.1% higher than without the super-resolution method. Further-
more, this result was 2% lower than when an HR encoder was used to generate target HR
features but 1.6% higher than when ResNet-101 was trained on HR images. Thus, the results
showed that the scale sequence (S2) feature was effective for feature-level super resolution.

Table 6. Performance comparison of super-resolution results and baseline model on CIFAR-100
dataset.

Image Size Model SR Accuracy (%) Epochs

HR (32 × 32) ResNet-101 + S2 × 57.2 100
HR (32 × 32) ResNet-101 × 53.6 100

LR (16 × 16) ResNet-101 + S2 X 55.2 100
LR (16 × 16) ResNet-101 + S2 × 49.1 100
LR (16 × 16) ResNet-101 × 47.1 100

5. Conclusions

In this paper, we proposed a new scale sequence (S2) feature for improved object
detection. It is extracted from the neck module of object detection models such as the FPN.
The proposed feature could enrich FPN features by reflecting a sequence of convolution
that has not been considered before. In particular, the proposed feature was designed based
on high-resolution pyramid feature maps for improving small object detection. In addition,
scale sequence (S2) features could be simply extended to most object detection models
with FPNs. In addition, a feature-level super-resolution approach using scale sequence
(S2) features was proposed. Both LR and HR encoders were based on FPNs with a scale
sequence module, and additional residual blocks generated super-resolved features for
prediction. Feature-level super-resolution involves less computational burden, because it is
not necessary to recreate the original image resolution.

In the experiments, we achieved a noticeable improvement in AP for small as well as
other scales. Additionally, we demonstrated that both one-stage and two-stage detectors
with scale sequence (S2) features increased the AP on the MS COCO dataset. Based on
the scale sequence (S2) features, we achieved up to 0.9% and 1.4% AP improvements for
YOLOv4-P5 and Mask R-CNN, respectively. Furthermore, YOLOv4-P6 and Faster R-CNN
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with our scale sequence (S2) features achieved APS improvements of up to 1.1% and 1.2%,
respectively.

For the super-resolution approach, an experiment was conducted for classification on
the CIFAR-100 dataset, which was composed of small-resolution images. The proposed
feature-level super-resolution approach using scale sequence (S2) features could improve
the performance of models trained on LR images to approach that of models trained on
HR images. ResNet-101 with scale sequence (S2) features trained on LR images achieved a
55.2% classification accuracy, which was 6.1% higher than that without the super-resolution
method. Additionally, the designed scheme showed a 1.6% higher accuracy than ResNet-
101 trained on HR images.

In future work, we need to conduct experiments on feature-level super resolution
with scale sequence features for object detection model. If small object features are super-
resolved, the AP for small objects could be improved. Furthermore, research on shortening
the inference and training times is needed. Additionally, model robustness against noise
must be assessed.
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