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Abstract

Graphical modeling of multivariate functional data is becoming increasingly important in a 

wide variety of applications. The changes of graph structure can often be attributed to external 

variables, such as the diagnosis status or time, the latter of which gives rise to the problem of 

dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating 

samples, but largely ignore the subject-level heterogeneity due to the external variables. In this 

article, we introduce a conditional graphical model for multivariate random functions, where we 

treat the external variables as conditioning set, and allow the graph structure to vary with the 

external variables. Our method is built on two new linear operators, the conditional precision 

operator and the conditional partial correlation operator, which extend the precision matrix and 

the partial correlation matrix to both the conditional and functional settings. We show that 

their nonzero elements can be used to characterize the conditional graphs, and develop the 

corresponding estimators. We establish the uniform convergence of the proposed estimators and 

the consistency of the estimated graph, while allowing the graph size to grow with the sample size, 

and accommodating both completely and partially observed data. We demonstrate the efficacy of 

the method through both simulations and a study of brain functional connectivity network.
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1. Introduction

Functional graphical modeling is gaining increasing attention in the recent years, where 

the central goal is to investigate the interdependence among multivariate random functions. 

Applications include time course gene expression data in genomics (Wei and Li 2008), 
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multivariate time series data in finance (Tsay and Pourahmadi 2017), electrocorticography, 

and functional magnetic resonance data in neuroimaging (Zhang et al. 2015), among many 

others.

Our motivation is brain functional connectivity analysis based on functional magnetic 

resonance imaging (fMRI). Functional MRI measures brain neural activities via blood 

oxygenlevel-dependent signals. It depicts brain functional connectivity network, which is 

shown to alter under different disorders or during different brain developmental stages. 

Such alterations contain crucial insights of both disorder pathology and development of 

the brain (Fox and Greicius 2010). The fMRI data are often summarized in the form of a 

location by time matrix for each individual subject. The rows correspond to a set of brain 

regions, and the columns correspond to time points that are usually 500 msec to 2 sec 

apart and span a few minutes in total. From the fMRI scans, a graph is constructed, where 

nodes represent brain regions, and links represent interactions and dependencies among the 

regions (Fornito, Zalesky, and Breakspear 2013). Numerous statistical methods have been 

developed to estimate functional connectivity network. Most of these methods treat the 

fMRI data as multivariate random variables with repeated observations, where each region 

is represented by a random variable and the time-course data are taken as repeated measures 

of that variable (e.g., Bullmore and Sporns 2009; Wang et al. 2016b). There are recent 

proposals to model the fMRI data as multivariate functions, where the time-course data of 

each region are taken as a function (e.g., Li and Solea 2018). Given the continuous nature 

and the short-time interval between the adjacent sampling points of fMRI, we treat the data 

as multivariate functions, and formulate the connectivity network estimation as a functional 

graphical modeling problem in this article.

Nearly, all existing graph estimation methods tackle the problem by aggregating samples, 

sometimes according to the diagnostic groups. However, there is considerable subject-level 

heterogeneity, which may contain crucial information for our understanding of the network, 

but has been largely untapped or ignored by existing methods (Fornito, Zalesky, and 

Breakspear 2013). Heterogeneity could arise due to a subject’s phenotype profile; for 

example, in our study in Section 7, the brain connectivity network may vary with an 

individual’s intelligence score. It could also arise due to a time variable, for example, the 

subject’s age, and the connectivity network may vary with age, which leads to dynamic 

graphical modeling. In this article, we introduce a conditional functional graphical model 
for a set of random functions, by modeling the external variables such as the phenotype or 

age as the conditioning set. Our proposal thus extends two lines of existing and relevant 

research: from conditional and dynamic graphical modeling of random variables to that 

of random functions, and from unconditional functional graphical modeling to conditional 

functional graphical modeling.

The first line of relevant research is the class of graphical models of random variables. 

Within this class, there is a rich literature on unconditional graphical models (Yuan and Lin 

2007; Friedman et al. 2008; Peng et al. 2009, among others). There are extensions to joint 

estimation of multiple graphs, which arise from a small number of groups, typically two 

or three, according to an external variable such as the diagnostic status (Danaher, Wang, 

and Witten 2011; Chun, Zhang, and Zhao 2015; Lee and Liu 2015; Zhu and Li 2018). 
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There have also been some recent proposals of dynamic graphical models (Kolar et al. 2010; 

Xu and Hero 2014; Zhang and Cao 2017). However, they only considered a discrete-time 

setting, in which the network is estimated only at a small and discrete number of time 

points. The most relevant work to ours is Qiu et al. (2016), who also targeted estimation 

of the individual graph according to an external variable, for example, age. Although both 

Qiu et al. (2016) and our method are designed for graph estimation at the individual level, 

the two solutions differ in many ways. Particularly, Qiu et al. (2016) assumed that the 

repeated observations of each individual come from the same Gaussian distribution, whose 

dependency was required to follow a certain stationary time series structure. By contrast, we 

treat the repeated measurements as realizations from a random function, and do not impose 

any structural or relational assumption on the entire function. More importantly, compared 

to the random variable setting in Qiu et al. (2016), our functional setting involves an utterly 

different and new set of modeling techniques and theoretical tools.

The second line of relevant research is the class of unconditional graphical models of 

random functions, which appeared only recently. Qiao, Guo, and James (2019) introduced 

a functional Gaussian graphical model, by assuming that the random functions follow a 

multivariate Gaussian distribution. Li and Solea (2018) relaxed the Gaussian assumption, 

developed a precision operator that generalizes the concept of precision matrix to the 

functional setting, and used it to estimate the unconditional functional graph. However, 

their precision operator is nonrandom, and their graph dimension is fixed. By contrast, we 

introduce a conditional precision operator (CPO), which is a function of the conditioning 

variable and is thus random, and we allow the graph dimension to diverge with the sample 

size. These differences bring extra challenges in analyzing the operator-based statistics. 

Moreover, because the relation between the CPO and the conditioning variable can be 

nonlinear, its estimation requires the construction of a reproducing kernel Hilbert space 

(RKHS) of the conditioning variable, which leads to a more complex asymptotic analysis 

than that of Li and Solea (2018). We also derive a number of concentration bounds and 

uniform convergence for our proposed estimators, while such results are not available in Li 

and Solea (2018).

To address the problem of conditional graphical modeling of random functions, we 

introduce two new linear operators: the CPO, and the conditional partial correlation operator 

(CPCO), which extend the precision matrix and the partial correlation matrix from the 

random variable setting to both the conditional and functional settings. We show that, when 

the conditional distribution is Gaussian, the conditional graph can be thoroughly captured 

by the nonzero elements of CPO or CPCO. This property echoes the classic result where 

a static graph can be inferred by the precision matrix or the partial correlation matrix 

under the Gaussian assumption. We note that, some early works, such as Lee, Li, and Zhao 

(2016a,b), also estimated the parameters of interest through linear operators. However, we 

studied utterly different problems: Lee, Li, and Zhao (2016b) targeted variable selection in 

classical regressions, Lee, Li, and Zhao (2016a) targeted unconditional graph estimation for 

random variables, while we target conditional graph estimation for random functions. Both 

the methodology and theory involved are thus substantially different.
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Our proposal makes useful contributions at multiple fronts. On the method side, it offers 

a new class of statistical models to study conditional graph estimation for multivariate 

functional data, a problem that remains largely unaddressed. We investigate the parallels 

between the random variable-based and random function-based graphs, and between the 

unconditional and conditional graphs. On the theory side, our work develops new tools 

for operator-based functional data analysis. We establish the conditional graph estimation 

consistency, along with a set of concentration inequalities and error bounds, for our 

proposed method. To our knowledge, very little work has investigated function-on-function 

dependency at such a level of complexity that involves estimating the linear operators under 

a conditional framework. The tools we develop are general, and can be applied to other 

settings in high-dimensional functional data analysis. On the computation side, under a 

properly defined coordinate system, the proposed operators are functions of the sample 

covariance operator of dimension n × n, with n being the sample size. It is relatively easy to 

calculate, and the accompanying estimation algorithm can be scaled up to large graphs.

The rest of the article is organized as follows. We begin with a formal definition of 

conditional functional graphical model in Section 2. We introduce a series of linear operators 

in Section 3, develop their estimators in Section 4, and study their asymptotic properties in 

Section 5. We report the simulations in Section 6, and an analysis of an fMRI dataset in 

Section 7. We relegate all proofs and some additional results to the supplementary appendix.

2. Model

In this section, we formally define the conditional functional graphical model. Let (ΩX, ℱX) 

be a measurable space. Suppose ΩXi is a Hilbert space of ℝ-valued functions on an interval 

T ⊂ ℝ, for i = 1, …, p, and ΩX is the Cartesian product ΩX1 × ⋯ × ΩXp. Suppose X = (X1, 

…, Xp)⊤ is a p-dimensional random element on ΩX. Let G = (V, E) be an undirected graph, 

where V = {1, …, p} represents the set of vertices corresponding to the p random functions, 

and E = {(i, j) ∈ V × V, i = j} represents the set of undirected edges. A common approach to 

modeling an undirected graph is to associate the separation on the graph with the conditional 

independence; in other words, nodes i and j are separated in G if and only if Xi and Xj are 

independent given the rest of X, that is,

(i, j) ∉ E Xi ⫫ Xj |X−(i, j), (1)

where X−(i,j) represents X with its ith and jth components removed, and ⫫ represents 

statistical independence. Based on Equation (1), Qiao, Guo, and James (2019) proposed 

a functional graphical model, which assumed that X follows a multivariate Gaussian 

distribution.

Next, we introduce a conditional functional graphical model that allows the graph links to 

vary with the external variables. We focus on the univariate external variable case, but our 

method can be generalized to multivariate external variables, or external functions. Let Y be 

a random element defined on ΩY, and ℱY  be the Borel σ-field generated by the open sets 

in ΩY. Let ℱY ℝ and PX ∣ Y( ⋅ ∣ ⋅ ):ℱX × ΩY ℝ be the distribution of Y and conditional 

distribution of X | Y, respectively. We next give our formal definition.
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Definition 1.

Suppose a random graph Ey for each y ∈ ΩY is defined via the mapping ΩY → 2V×V, y 
→ Ey, where 2V×V is the power set of V × V. We say X follows a conditional functional 

graphical model with respect to Ey if and only if, for y ∈ ΩY,

(i, j) ∉ Ey Xi ⫫ Xj ∣ X−(i, j), Y = y . (2)

We note that Li, Chun, and Zhao (2012) introduced the notion of conditional graphical 

model. However, our notion of conditional functional graphical model is considerably 

different, in that our model extends theirs not only from the setting of random variables to 

random functions, but also from the setting of static graphs to random graphs. Specifically, 

letting X = (X1, …, Xp)⊤ and Y = (Y1, …, Yq)⊤ denote two random vectors, Li, Chun, and 

Zhao (2012) considered the model,

(i, j) ∉ E0 Xi ⫫ Xj ∣ X−(i, j), Y = y

for all y ∈ ℝq. In this model, E0 ⊆ 2V×V is a fixed graph, and does not change with the value 

of Y. In comparison, our model in Equation (2) allows X to be a p-variate random function, 

and the graph Ey to vary with Y.

3. Linear Operators

In this section, we first introduce a series of linear operators, based on which we then 

formally define the CPO and the CPCO. Finally, we study the relation between these two 

operators and the conditional functional graph.

We adopt the following notation throughout this article. For two generic Hilbert spaces 

Ω, Ω′, let ℬ Ω, Ω′  and ℬ2 Ω, Ω′  denote the class of all bounded and Hilbert–Schmidt 

operators from Ω to Ω′, respectively. We abbreviate ℬ(Ω, Ω) and ℬ2(Ω, Ω) as ℬ(Ω) and 

ℬ2(Ω) whenever they are appropriate. Moreover, let ∥·∥ and ∥·∥HS be the operator norm in 

ℬ(Ω) and Hilbert-Schmidt norm in ℬ2(Ω). Moreover, let ker(A), range(A), range(A) denote 

the null space, the range, and the closure of the range of an operator A, respectively.

3.1. Conditional Covariance and Correlation Operators

We first define three covariance operators, VY Y , VXiXj, and VY Xij. We then define the 

conditional covariance operator VXiXj
y , and the conditional correlation operator ℭXiXj

y , which is 

the building block of CPO and CPCO.

Let κY : ΩY × ΩY ℝ be a positive-definite kernel, ℋY  be its corresponding RKHS, and 

L2(PY) be the collection of all square-integrable functions of Y under PY. The next 

assumption ensures the square-integrability of Xi under PX|Y, and that ℋY  is a subset of 

L2(PY).
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Assumption 1.—There exist M0 > 0 and MY > 0 such that 

sup E Xi ΩXi
2 ∣ y : y ∈ ΩY ≤ M0, for i = 1, …, p, and κy(Y, Y) ≤ MY.

We comment that, we choose RKHS as the modeling space, so that the relation of X on 

Y can be very flexible, and the kernel matrix of Y is of dimension n × n, an attractive 

feature when the dimension of Y is large compared with n. In addition, a good number 

of asymptotic tools for RKHS operators have been developed (see, Bach 2009; Lee, Li, 

and Zhao 2016a). That being said, our theoretical development can also be easily extended 

to the spaces beyond RKHS. In fact, our population development only requires that ℋY

is a proper subset of L2(PY), which can be ensured by the square-integrable condition, 

var ℎ Y = M ∥ ℎ ∥ℋY  for an M > 0 and every ℎ ∈ ℋY .

Let ⊗ denote the tensor product; then κy(·, Y) ⊗ κy(·, Y), Xi ⊗ Xj and κy(·, Y) ⊗ Xi ⊗ 
Xj are random elements in ℬ2 ℋY , ℬ2 ΩXj, ΩXi , and ℬ2 ℬ2 ΩXj, ΩXi , ℋY , respectively. Their 

expectations uniquely define the covariance operators,

VY Y = E κy( ⋅ , Y ) ⊗ κy( ⋅ , Y ) ,  via
ℎ1, VY Yℎ2 = E ℎ1(Y )ℎ2(Y ) ,

VXiXj = E Xi ⊗ Xj ,  via
f, VXiXjg = E f, Xi g, Xj ,

VY Xij = E κy( ⋅ , Y ) ⊗ Xi ⊗ Xj ,  via
ℎ, VY Xij(f ⊗ g) = E Xi, f Xj, g ℎ(Y ) ,

(3)

for all f ∈ ΩXi, g ∈ ΩXi, and h, h1, ℎ2 ∈ ℋY . The next proposition justifies the existence of VY Y , 

VXiXj, and VY Xij.

Proposition 1.—If Assumption 1 holds, then there exist linear operators VY Y , VXiXj, and 

VY Xij satisfying the relations in Equation (3).

We next introduce a regression operator, MXij ∣ Y  through the relation, MXij ∣ Y = VY Y
† VY Xij, 

where † is the Moore–Penrose inverse. We first need an assumption on the ranges of VY Y  and 

VY Xij, and ℋY  is sufficiently rich in L2(PY).

Assumption 2.—For every (i, j) ∈ V × V, range VY Xij ⊆ range VY Y . Moreover, ℋY is dense 

in L2(PY).

By Assumption 2, for any ℎ ∈ range VY Y , there exists a unique ℎ′ ∈ range VY Y  such that 

ℎ = VY Yℎ′. Therefore, the inverse VY Y
†  is defined as VY Y

† : range VY Y range VY Y , h ↦ h′, 

which implies that MXij |Y  is well-defined. The range condition that range VY Xij ⊆ range VY Y

is satisfied generally. For instance, it holds when the rank of ℬ2 ΩXj, ΩXi  is finite, which is 

reasonable, because in practice ΩXi can often be approximated by the spanning space of a 

few leading eigenfunctions of VXiXi.
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The next proposition shows that MXij ∣ Y  maps every (f, g) ∈ ΩXi × ΩXj to E(〈f, Xi〉 〈g, Xj〉 | 

y), that is, the conditional expectation, and thus this operator can be viewed as a regression 

operator.

Proposition 2.—If Assumptions 1 and 2 hold, then for all y ∈ ΩY and (f, g) ∈ ΩXi × ΩXj, we 

have MXij ∣ Y(f ⊗ g) ∘ (y) = E f, Xi g, Xj ∣ y .

Now we are ready to define the conditional covariance operator, whose existence is justified 

by Proposition 2 and Riesz representation theorem.

Definition 2.—For each y ∈ ΩY, the bilinear form, ΩXi × ΩXj ℝ, 

(f, g) MXij ∣ Y(f ⊗ g) ∘ (y), uniquely defines an operator VXiXj
y ∈ ℬ ΩXj, ΩXi , via 

f, VXiXj
y g ΩXi = E f, Xi g, Xj   ∣  y  for all (f, g) ∈ ΩXi × ΩXj. We call VXiXj

y  the conditional 

covariance operator.

Note that the mapping ΩY ℬ ΩXj, ΩXi , y VXiXj
y  defines a random operator. If the 

conditional expectations E(〈f, Xi〉| y) = 0, then VXiXi
y  induces the conditional covariance 

cov(〈f, Xi〉, 〈g, Xj〉 | y). When Xi and Xj are random vectors, Fukumizu, Bach, 

and Jordan (2009) introduced the homoscedastic conditional covariance operator, which 

induces E[cov(〈f, Xi〉, 〈g, Xj〉 | Y)]. Our conditional covariance operator is different 

from that of Fukumizu, Bach, and Jordan (2009), as it extends the classical conditional 

covariance to the functional setting, and it deals directly with cov(〈f, Xi〉, 〈g, Xj〉 | 
y), instead of its expectation. We write the joint operator VXX

y : ΩX ΩX as the block 

matrix of operators whose (i, j)th element is VXiXj
y ,1 ≤ i, j ≤ p, or more explicitly, 

VXX
y f = ∑j = 1

p VX1Xjfj, …, ∑j = 1
p VXpXjfj

⊤, for any f = (f1, …, fp)⊤ ∈ ΩX.

Given the conditional covariance operator VXiXj
y , we next define the conditional correlation 

operator, ℭXiXj
y : ΩXj ΩXi, for each y ∈ ΩY via,

VXiXj
y = VXiXi

y 1/2ℭXiXj
y VXjXj

y 1/2,  with ‖ℭXiXj
y ‖ ≤ 1. (4)

Its existence and uniqueness are ensured by Baker (1973). Similar to the construction of 

VXX
y , we write the joint operator ℭXX

y : ΩX ΩX as the block matrix of operators whose (i, j)th 

element is ℭXiXj
y , 1 ≤ i, j ≤ p. Let DX

y  denote the block diagonal matrix DX
y

i, i = VXiXi
y , for i ∈ V. 

We then have VXX
y = DX

y 1/2ℭXX
y DX

y 1/2.

Next, we impose the distributional assumption on X | y.

Assumption 3.—Suppose X | y follows the conditional functional graphical model as 

defined via (2), and the conditional distribution of X = (X1, …, Xp)⊤ given Y = y follows a 

centered Gaussian distribution.

The zero-mean condition is imposed to simplify both methodological and theoretical 

development, and can be relaxed with some modifications. Moreover, we require the 
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conditional distribution X | y to follow a Gaussian distribution. It is possible to relax 

this Gaussian assumption, by extending the notion of functional additive conditional 

independence (Li and Solea 2018), or the copula graphical model (Liu et al. 2012). 

However, we feel that the Gaussian case itself is worthy of a full investigation, and we 

leave the non-Gaussian extension as future research.

Assumption 3, together with Definition 2, imply that, for f = (f1, …, fp)⊤ ∈ ΩX, 

E exp ∑i = 1
p ι fi, Xi ΩXi ∣ y = exp  −1/2∑i, j = 1

p fi, VXiXj
y fj ΩXi , where ι = −1.

3.2. Conditional Precision and Partial CorrelationOperators

We next formally define the operators CPO and CPCO, then establish their relations with 

the conditional functional graph. We introduce two assumptions, which ensure that ℭXiXj
y

is Hilbert-Schmidt and ℭXX
y  is invertible. We present some intuitions here, but relegate the 

detailed technical discussion to Section S.3 in the appendix.

Assumption 4.—For each y ∈ ΩY and i ∈ V, let λi
y, a, ηi

y, a
a ∈ ℕ denote the collection of 

eigenvalue and eigenfunction pairs of VXiXi
y . Let ℕi

y = a ∈ ℕ : λi
y, a > 0 . There exists c1 > 0 

such that,

max
i, j ∈ V, i ≠ j

∑
a ∈ ℕi

y, b ∈ ℕj
y

cov2 ηi
y, a, Xi , ηj

y, b, Xj ∣ y
var2 ηi

y, a, Xi ∣ y var2 ηj
y, b, Xj ∣ y

≡ max
i, j ∈ V, i ≠ j

∑
a ∈ ℕi

y, b ∈ ℕj
y

ρi, j
y, a, b 2 ≤ c1 .

(5)

Assumption 5.—For each y ∈ ΩY, ker VXX
y = 0.

Assumption 4 characterizes the level of smoothness for the underlying distributions of the 

random functions. Assumption 5 is to prevent the existence of a constant function consisting 

of linear combination of nonconstant functions. It can be viewed as the generalization 

of the nonexistence of collinearity in linear models, or the empty concavity space in 

generalized liner models (Hastie and Tibshirani 1990). Assumption 4 ensures that ℭXiXj
y  is 

Hilbert-Schmidt, and thus compact. Mean-while, Assumptions 4 and 5 together ensure that 

ℭXX
y  is lower-bounded by a strictly positive constant. This implies that ℭXX

y  is invertible, and 

that Py = ℭXX
y −1 is bounded, which justifies the following definition.

Definition 3.—Define the CPO as the inverse of the joint conditional correlation operator, 

Py = ℭXX
y −1 ∈ ℬ ΩX , for any y ∈ ΩY.

The operator Py generalizes the precision matrix to the functional and conditional settings. 

We should clarify that, unlike the standard definition where the precision matrix is defined 

as the inverse of the covariance matrix (Cai, Liu, and Luo 2011), our CPO is defined as 

the inverse of the conditional correlation operator. This is to avoid taking inversion on 

the covariance operator, which is usually not invertible because of its compactness. Next, 

we develop an operator that generalizes the partial correlation matrix to the functional 
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and conditional setting. Similar to the definition for VXX
y , we define VXAXB

y  for any subsets 

A, B ⊆ V. Therefore, for any subsets A ⊆ V\{i, j}, We define an intermediate operator, 

VXiXj ∣ XA
y : ΩXj ΩXi through the relation, VXiXj ∣ XA

y = VXiXj
y − VXiXA

y VXAXA
y †VXAXj

y , for any (i, j) ∈ 

V × V. We then have the following result if A= −(i, j).

Proposition 3.—There uniquely exists ℜXiXj ∣ X−(ij)
y ∈ ℬ ΩXj, ΩXi  which satisfies that 

VXiXj ∣ X−(i, j)
y = VXiXi ∣ X−(i, j)

y 1/2ℜXiXj ∣ X−(i, j)
y VXjXj ∣ X−(i, j)

y 1/2, and ‖ℜXiXj ∣ X−(i, j)
y ‖ ≤ 1.

Its proof is similar to that of (Lee, Li, and Zhao 2016a, theo. 1) and is thus omitted. It 

justifies the definition of the following operator.

Definition 4.—We call the operator ℜXiXj ∣ X−(i, j)
y  in Proposition 3 the CPCO between Xi and 

Xj given X−(i,j) and Y.

3.3. Relation With Conditional Functional Graph

We first show that the conditional covariance operator can be constructed by the 

functions of conditional covariances between the Karhunen-Loève coefficients and the 

associated eigenfunctions. This simple form provides a convenient way to estimate the 

conditional covariance operator later. Let λi
a, ηi

a
a ∈ ℕ denote the collection of eigenvalue and 

eigenvector pairs of VXiXi, with λi
1 ≥ λi

2 ≥ ⋯ ≥ 0. Then Xi can almost surely be represented as 

Xi = ∑a ∈ ℕ αi
aηi

a, where αi
a = Xi, ηi

a , for all a ∈ ℕ. This expression is known as the Karhunen-

Loève (K-L) expansion (Bosq 2000).

Proposition 4.—Suppose the same conditions in Proposition 2 hold. Then we have

VXiXj
y = ∑

a, b ∈ ℕ
E αi

aαj
b ∣ y ηi

a ⊗ ηj
b ,  for each y ∈ ΩY ,

where (αi
a, ηi

a) and (αj
b, ηj

b) are from the Karhunen-Loève expansion.

We next show that CPO and CPCO fully characterize the conditional functional 

independence, and are thus crucial for our estimation of conditional functional graph.

Theorem 1.—If Assumptions 1–5 hold, then we have, for any y ∈ ΩY,

Xi ⫫ Xj ∣ X−(i, j), Y = y Py
i, j = 0,

where Py
i, j denotes the (i, j)th element of Py.

Under the Gaussian distribution, the equivalence between the conditional independence and 

the zero element of a nonrandom precision matrix is well known in the classical random 

variables setting. By contrast, Theorem 1 extends to the setting of random functions and also 

allows the precision operator to vary with Y.
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Theorem 2.—If Assumptions 1–3 hold, then we have, for any y ∈ ΩY,

Xi ⫫ Xj ∣ X−(i, j), Y = y ℜXiXj ∣ X−(i, j)
y = 0 .

Theorems 1 and 2 suggest that one can estimate the conditional functional graph Ey in 

Equation (2) through the proposed operators, CPO or CPCO. In the following, we primarily 

focus on the graph estimation based on CPO, and investigate the corresponding asymptotics. 

The results based on CPCO can be derived in a parallel fashion, which we only briefly 

discuss in Section S.4 in the Appendix.

4. Estimation

In this section, we first derive the sample estimate of CPO and the conditional graph at the 

operator level. We then construct empirical bases and develop coordinate representations for 

the functions observed at a finite set of time points. Using these coordinate representations, 

we are able to compute our estimated linear operators. Last, we provide a step-by-step 

summary of our proposed estimation procedure.

4.1. Operator-Level Estimation

We first derive the sample Karhunen-Loève expansion. We and then sequentially develop the 

estimators of VXX
y , ℭXX

y , Py, and finally Ey.

Let (Y1, …, Yn) denote iid samples of Y, and (X1, …, Xn) denote iid samples of X, with 

Xk = X1
k, …, Xp

k ⊤, for k = 1, …, n. Let En denote the sample mean operator; that is, for a 

sample (ω1, …, ωn) from Ω, En(ω) = ∑k = 1
n ωk/n. We estimate the covariance operators, VXiXi, 

VY Xij, and VY Y , by

VXiXi = En Xi ⊗ Xi ,

VY Xij = En κY ( ⋅ , Y ) ⊗ Xi ⊗ Xj ,

VY Y = En κY ( ⋅ , Y ) ⊗ κY ( ⋅ , Y ) ,

for any (i, j) ∈ V × V. For i ∈ V, let λ i
a, η i

a
a ∈ ℕ

 denote the collection of eigenvalue and 

eigenfunction pairs of VXiXi. Then, we have Xi
k = ∑a ∈ ℕ αi

k, aη i
a, where αi

k, a = Xi
k, η i

a  is the ath 

coefficient from the K-L expansion of Xi
k for the kth subject. Furthermore, we use the 

leading d terms to approximate Xi
k; in other words, we have, Xi

k ≈ ∑a = 1
d αi

k, aη i
a, for all k = 1, 

…, n, and i ∈ V.

By its definition, we estimate the regression operator MXij ∣ Y  by
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MXij ∣ Y ϵY = VY Y + ϵYI −1VY Xij, (6)

where ϵY > 0 is a prespecified ridge parameter, and it imposes a level of smoothness on 

the regression structure. Next, by Propositions 2 and 4, given y, d, i, j, we estimate the 

conditional covariance operator VXiXj
y  by

VXiXj

y
d, ϵY = ∑

a, b = 1

d
MXij ∣ Y ϵY η i

a ⊗ η j
b ∘ (y) η i

a ⊗ η j
b , (7)

where η i
a and η j

b are from the sample Karhunen-Loève expansion. Let VXX
y d, ϵY  denote the 

block matrix of operators VXX
y d, ϵY = VXiXj

y d, ϵY i, j ∈ V. Similarly, we can define VXAXB
y d, ϵY , 

for any A, B ⊆ V.

Therefore, by Equation (4), we estimate the conditional correlation operator ℭXiXj
y  by

ℭXiXj

y
d, ϵY , ϵ1 = VXiXi

y
d, ϵY + ϵ1I

−1/2VXiXj

y
d, ϵY VXjXj

y
d, ϵY + ϵ1I

−1/2, (8)

for i ≠ j, i, j ∈ V, and ℭXiXi
y = I, for i ∈ V, which is the identity mapping from ΩXi to ΩXi, 

and ϵ1 is a ridge regularization parameter imposed on the inverses of VXiXi
y

 and VXjXj
y

. Let 

ℭXX
y d, ϵY , ϵ1  denote the block matrix of operators ℭXX

y d, ϵY , ϵ1 = ℭXiXj
y d, ϵY , ϵ1 i, j ∈ V. The next 

result shows that the norm of ℭXiXj
y d, ϵY , ϵ1  is bounded by one, which resembles the property 

of the correlation in the classical setting.

Proposition 5.—If κY(y1, y2) ≥ 0 for any y1, y2 ∈ ΩY, then ℭXX
y d, ϵY , ϵ1 i, j ≤ 1, for any 

(i, j) ∈ V × V.

Finally, we estimate the conditional precision matrix operator Py by

Py d, ϵY , ϵ1, ϵ2 = ℭXX
y

d, ϵY , ϵ1 + ϵ2I
−1, (9)

where ϵ2 > 0 is another ridge parameter. Using Py d, ϵY , ϵ1, ϵ2 , for each y ∈ ΩY, we estimate 

the graph Ey by

ECPO
y d, ϵY , ϵ1, ϵ2, ρCPO

= (i, j) ∈ V × V : Py d, ϵY , ϵ1, ϵ2 i, j HS
> ρCPO, i ≠ j , (10)

where ρCPO > 0 is a thresholding parameter. That is, we can obtain an estimator 

of the conditional graph by hard thresholding. For notational simplicity, hereafter we 

abbreviate MXij ∣ Y ϵY , VXiXj
y d, ϵY , VXX

y d, ϵY , ℭXiXj
y d, ϵY , ϵ1 , ℭXX

y d, ϵY , ϵ1 , Py d, ϵY , ϵ1, ϵ2 , and 

ECPO
y d, ϵY , ϵ1, ϵ2, ρCPO , by MXij ∣ Y , VXiXj

y
, VXX

y
, ℭXiXj

y
, ℭXX

y
, Py

, and ECPO
y

, respectively.
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4.2. Empirical Bases and Coordinate Representation

We next introduce a set of empirical bases and the corresponding coordinate representations. 

We adopt the following notation. Let Ω be a Hilbert space of functions of T, spanned by 

a set of bases ℬ = b1, …, bm . For any ω ∈ Ω, let ω ℬ = ω ℬ, 1, …, ω ℬ, m
⊤ denote its 

coordinate with respect to ℬ. Then ω can be represented as ∑i − 1
m ω ℬ, ibi = ℬ⊤ ω ℬ. Let 

Kℬ = bs, bt Ω s, t = 1
m  denote the Gram kernel matrix, which implies that, for any (ω1, ω2) ∈ 

Ω, the inner product ω1, ω2 Ω = ω1 ℬ
⊤ Kℬ ω2 ℬ. Throughout the article, we use the symbol ⌊·⌋ 

exclusively for a chosen coordinate system. Let Ω and Ω′ be two Hilbert spaces spanned by 

ℬ = b1, …, bm  and ℬ′ = b1
′ , …, bm′

′ , respectively. Let A : Ω → Ω′ be a linear operator. Then 

the coordinate representation of A with respect to ℬ and ℬ′ is Ab1 ℬ′, …, Abm ℬ′ ≡ ℬ′ A ℬ. 

For a third Hilbert space Ω″ with base ℬ′′, and another linear operator A′ : Ω′ → Ω″, it is 

easy to see that ℬ′′ A′A ℬ = ℬ′′ A′ ℬ′ ℬ′ A ℬ . For simplicity, we use ⌊A⌋ instead of ℬ′ A ℬ

when there is no confusion.

Note that the random function Xi
k can only be observed at a finite set of points. 

To enable computation, we need to approximate the random functions using the 

partially observed data. We adopt the construction used in Li and Solea (2018), 

which assumes the sample path of Xk lies on an RKHS of the time variable T 
with a finite basis. Specifically, suppose Xi

k is observed on a finite set of time 

points Tk = Tk1, …, Tknk , k = 1, … n. Let T = T11, …, T1, n1, …, Tn1, …, Tnnn
⊤ = T1, …, TN

⊤

which pools together all the unique time points across all subjects, and N is the 

length of T. Letting κT :T × T ℝ be a positive-definite kernel, then ΩXi can be 

constructed through ΩN = span κT ⋅ , T1 , …, κT ⋅ , TN = span ℬt
0( ⋅ ): t = 1, …, N , for i ∈ 

V. Let KT = κT Ts, Tt s, t = 1
N  be the N × N Gram matrix of κT, and its eigen-decomposition, 

KT = UT
1DT

1 UT
1 ⊤ + UT

0DT
0 UT

0 ⊤, where UT
1DT

1 UT
1 ⊤ is associated with the m leading eigenvalues, 

and UT
0DT

0 UT
0 ⊤ associated with the last N − m eigenvalues. Here we require m ≤ N. 

Therefore, we can construct an orthonormal basis of ΩN via

ℬ( ⋅ ) = ℬ1( ⋅ ), …, ℬm( ⋅ ) ⊤ = DT
1 −1/2 UT

1 ⊤ℬ0( ⋅ ), (11)

where ℬ0( ⋅ ) = ℬ1
0( ⋅ ), …, ℬN

0 ( ⋅ ) ⊤. Then Xi
k can be represented as 

Xi
k( ⋅ ) = ∑t = 1

m Xi
k

ℬ, t ℬt( ⋅ ) = ℬ⊤( ⋅ ) Xi
k

ℬ. Note that for the kth individual, the function is 

observed at nk time points, which implies that Xi
k Tk ≡ Xi

k Tk1 , …, Xi
k Tknk

⊤ = ℬk ⊤ Xi
k

ℬ, 

where ℬk is the m × nk matrix ℬ Tk1 , …, ℬ Tknk . Therefore, for a given ridge parameter 

ϵT, the coordinate Xi
k

ℬ can be estimated by

Xi
k = ℬk ℬk ⊤ + ϵTIm

−1
ℬk Xi

k Tk . (12)
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We next derive the coordinate representations of VXiXi, VY Xij, VY Y , which then lead to the 

coordinates of VXX
y

, ℭXX
y

, and Vy
. Recall κY :ΩY × ΩY ℝ is the kernel used to build the 

RKHS of Y. Let KY = κY Y s, Y t
s, t = 1

n
 be the corresponding n × n Gram matrix of κY, and 

ℋY = span κY ⋅ , Y 1 , …, κY ⋅ , Y n ≡ span ℬY( ⋅ ) .

Proposition 6.—For (f, g) ∈ ΩN × ΩN, VXiXi = En Xi Xi
⊤ , VY Y = n−1KY , and 

VY Xij(f ⊗ g) = n−1 f T Xi
1 g ⊤ Xj

1 , …, f ⊤ Xi
n g ⊤ Xj

n ⊤
.

Moreover, for each i ∈ V, let λ i
a, η i

a
a = 1

m
 denote the collection of eigenvalue and 

eigenvector pairs of VXiXi ; that is VXiXi η i
a = λ i

a η i
a . Then for each i ∈ V, k = 1, …, 

n, the sample Karhunen-Loève expansion of Xi
k is of the form,

Xi
k = ∑

a = 1

d
αi

aη i
a = ∑

a = 1

d
Xi

k, η i
a η i

a = ∑
a = 1

d
Xi

k ⊤ η i
a η i

a . (13)

Proposition 7.—Let ℬi
* = η i

1, …, η i
d , for each i ∈ V. For y ∈ ΩY, the coordinate 

representation of VXiXj
y

 with respect to ℬi
* and ℬj

* is

ℬi* VXiXj

y

ℬj*
= ai

a ⊤c(y)aj
b

a, b = 1

d
, (14)

where c(y) = diag[ℓ(y)] with ℓ (y) = KY + ϵYIn
−1ℬY(y), and ai

a = αi
1, a, …, αi

n, a ⊤. Moreover, if 

ℬ* is the collection ℬi
*: i ∈ V , then,

ℬ* VXX
y

ℬ*
= ℬi* VXiXj

y

ℬj* i, j = 1

p
,

ℬ* ℭXX
y

ℬ* i, j
=

Ai
−1/2

ℬi* VXiXj

y

ℬj*
Aj

−1/2 when i ≠ j,

Id when i = j,

ℬ* Py
ℬ*

= ℬ* ℭXX
y

ℬ*
+ ϵ2Ip × d

−1,

(15)

where Ai =ℬi* VXiXi
y

ℬi*
+ ϵ1Id, and Id is the d × d identity matrix.

Finally, we compute the squared Hilbert–Schmidt norm of Py
i, j

 as

Py
i, j HS

2
= ∑

a = 1

d
Py

i, jη j
a, Py

i, jη j
a

= ∑
a = 1

d
ηj

a
ℬj*ℬj*
⊤ Py

i, j ℬi*ℬi*
Py

i, j ℬj* ηj
a

ℬj*

= ℬi* Py
i, j ℬj* F

2
= [ℬ* Py

ℬ*
]i, j F

2
,
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for (i, j) ∈ V × V with i ≠ j, and ∥ · ∥F is the Frobenius norm.

4.3. Algorithm

We now summarize our conditional functional graph estimation algorithm based on CPO. 

The algorithm based on CPCO is similar and is thus omitted. Let λi(A) be the ith largest 

eigenvalues of an a × a matrix A, for i = 1, …, a.

1. Choose the kernel function κT. Some commonly used kernel functions include 

the Brownian motion function κT(s, t) = min(s, t), or the radial basis function 

(RBF) κT(s, t) = exp[−γT(s − t)2], (s, t) ∈ ℝ2. For RBF, the bandwidth γT is 

determined by ∑s < t Ts − Tt
2γT = N2(N − 1)2/4.

2. Compute the N × N Gram matrix KT of κT, and let UT
1DT

1 UT
1  be its eigen-

decomposition associated with its m leading eigenvalues. Then use (11) to 

construct the reduced basis ℬ( ⋅ ), and the matrix ℬk. We suggest choosing 

m by min m′: ∑i = 1
m′ λi KT /∑i = 1

N λi KT ≥ 0.99 , in the sense that the cumulative 

percentage of total variation of KT explained exceeds 99%.

3. Calculate the coordinate Xk
i , i = 1, …, p, k = 1, …, n, using (12) with a given ϵT. 

We choose ϵT = N−1/5λ1(KT) (see, for example Lee, Li, and Zhao 2016a).

4. Perform eigen-decomposition of VXiXi , for i ∈ V, and obtain the ath eigenvector 

η i
a , and the ath K-L coefficient αi

k, a using (13), a = 1, …, d. Stack αi
1, a, …, αi

n, a to 

form ai
a, a = 1, …, d, i = 1, …, p, a = 1, …, d, i = 1, …, p. We choose d according to 

min d′: ∑j = 1
d′ λj VXiXi /∑j = 1

N λj VXiXi ≥ 0.99 .

5. Choose the kernel function κY, and compute the corresponding n × n Gram 

matrix KY. Compute the coordinate ℬi* VXiXj
y

ℬj* using (14), with the ridge 

parameter ϵY = n−1/5λ1(KY).

6. Compute the representation of Vy
 using (15), for a given y ∈ ΩY and the ridge 

parameters ϵ1 = n−1/5max λ1 VXiXi
y : i ∈ V , and ϵ2 = n−1/5λ1 Py

.

7. Estimate the conditional functional graph for a given y ∈ ΩY by 

Ey ρCPO = (i, j) ∈ V × V: ℬ* Py ℬ*
i, j F

> ρCPO, i ≠ j , with a given threshold 

ρCPO. We determine ρCPO by minimizing the following generalized cross-

validation (GCV) criterion over a set of grid points,

GCVy(ρ) = ∑
i = 1

p
GCVi

y(ρ), with 

GCVi
y(ρ) =

ℬi* VXiXi ∣ XNi
y(ρ)

y
ℬi* F

2
/n

1 − DFi(ρ)/n 2 ,
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where VXiXi ∣ XNi
y(ρ)

y
 is the sample estimate of VXiXi ∣ XNi

y(ρ)
y

, and its coordinate 

representation is derived in Section S.4 of the appendix, and DFi(ρ) = d2 card 

[Ni(ρ)], with card(·) being the cardinality and Ni
y(ρ) = j ∈ V:(i, j) ∈ Ey(ρ)  the 

neighborhood of the ith node in Ey(ρ).

Our graph estimation algorithm involves multiple tuning parameters, and their choices are 

given in the above algorithm. We further study their effects in Section S.6 of the appendix. 

In general, we have found that the estimated graph is not overly sensitive to the tuning 

parameters as long as they are within a reasonable range.

We also remark that, the above algorithm assumes the zero-mean condition. In practice, if 

this does not hold, we can easily modify the algorithm. Specifically, from the coordinates 

of the estimated conditional covariance operator, we can estimate E αi
a ∣ y  by ai

a ⊤c y 1n, 

where 1n is the n-dimensional vector with all ones. By redefining the conditional 

covariance operator as VXiXj
y = ∑a, b ∈ ℕ E αi

aαj
b ∣ y − E αi

a ∣ y E αj
b ∣ y ηi

a ⊗ ηj
b , we can estimate 

the coordinates of VXiXj
y

 by ℬi* VXiXj
y

ℬj*
′

= ai
a ⊤c′(y)aj

b
a, b = 1

d
, where c′ (y) = diag[ℓ(y)] − ℓ(y) 

ℓ(y)⊤. We then replace ℬi* VXiXj
y

ℬj* in Step 5 of the algorithm, and all subsequent procedures, 

by ℬi* VXiXj
y

ℬj*.

5. Asymptotic Theory

We begin with some useful concentration inequalities and uniform convergence for several 

relevant operators. We next establish the uniform convergence of the CPO, and the 

consistency of the estimated graph. For simplicity, we first assume that the trajectory of 

the random functions X(t) = [X1(t), …, Xp(t)]⊤ is fully observed for all t ∈ T. We then 

discuss the setting when Xi is only partially observed in Section 5.3. We also remark that, all 

our theoretical results allow the dimension of the graph to diverge with the sample size.

5.1. Concentration Inequalities and Uniform Convergence

We first derive the concentration bound and uniform convergence rate for the sample 

estimators VXiXj, VY Xij, and VY Y . For two positive sequences {an} and {bn}, write an ≺ bn 

if an = o(bn), an ⪯ bn if an = O(bn), and an ≍ bn if an ⪯ bn and bn ⪯ an; moreover, let an ∨ bn = 

bn if an ⪯ bn. Similarly, if cn is a third positive sequence, then we let an ∨ bn ∨ cn = (an ∨ bn) 

∨ cn.

Theorem 3.—If Assumptions 1 and 3 hold, then there exist positive 

constants C1 to C6, such that, (i) P VXiXj − VXiXj HS > t) ≤ C1exp −C2n t ∧ t2 ; 

(ii) P VY Xij − VY Xij HS > t) ≤ C3exp −C4n t ∧ t2 ; (iii) P VY Y − VY Y HS > t) ≤ C5exp −C6nt2 , 

for any t ≥ 0 and any (i, j) ∈ V × V. Moreover, 

if log p/n → 0, then (iv) maxi, j ∈ V VXiXj − VXiXj HS
= OP (logp/n)1/2 ; (v) 

maxi, j ∈ V VY Xij − VY Xij HS = VXiXj HS
= OP (logp/n)1/2 ; (vi) VY Y − VY Y HS = OP n−1/2 , as n 

→∞.
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For any (i, j) ∈ V × V and y ∈ Ω, let VXXXj
y (d) be the truncated version of 

VXiXj
y :VXiXj

y (d) = ∑a, b = 1
d E αi

aαj
b ∣ y) ηi

a ⊗ ηj
b . Next, we establish the uniform convergence rate 

for VXiXj
y − VXiXj

y (d) HS. We define the exponent of a compact and self-adjoint operator as 

Aβ = ∑a ∈ ℕ λa
β ηa ⊗ ηa , for any β > 0, where λa, ηa a ∈ ℕ is the collection of eigenvalue and 

eigenfunction pairs of A. We need another assumption.

Assumption 6.—For any (i, j) ∈ V × V, there exist β ∈ (0, 1), c2 > 0, and 

Mij
0 ∈ ℬ ℬ2 Ωj, Ωi , ℋY  such that MXij ∣ Y = VY Y

β Mij
0  with Mij

0 ≤ c2.

This assumption regulates the complexity of (Xi, Xj)⊤ given Y. To see this, note that, 

as β increases, the regression relation from (Xi, Xj)⊤ on Y are more concentrated 

on those eigenfunctions corresponding to larger eigenvalues of VY Y . Also, we define 

κd ≡ min λi
a − λi

b :1 ≤ a < b ≤ d + 1, i ∈ V  as the minimal isolation distance among all d + 

1 leading eigenvalues of VXiXi, for all i ∈ V. Note that we allow d to grow with n.

Theorem 4.—If Assumptions 1–3 and 6 hold, ϵY ≺ 1, and (logp/n) ≺ κd
2, then 

maxi, j ∈ V VXiXj
y − VXiXj

y (d) HS = OP d2ϵY
−1κd

−1(logp/n)1/2 + d2ϵY
−1n−1/2 + d2ϵY

β .

Next, we establish the uniform convergence of the estimated conditional correlation operator 

ℭXX
y

. We need an assumption on the tail behavior of random functions.

Assumption 7.—There exists γy > 0 such that maxi ∈ V ∑a = d + 1
∞ E αi

a 2 ∣ y ⪯ d−γy, for any y 

∈ ΩY.

Assumption 7 is on the decaying rate of the tail eigenvalues of VXiXi
y , which, in a sense, 

characterizes the smoothness of the distribution of Xi given Y.

Theorem 5.—If Assumptions 1–4, 6, and 7 hold, ϵY, ϵ1 ≺ 1, and 

d2ϵY
−1κd

−1(logp/n)1/2 + d2ϵY
−1n−1/2 + d2ϵY

β ≺ 1, then, for any y ∈ ΩY,

max
i, j ∈ V

ℭXX
y

i, j − ℭXX
y

i, j HS
= Op δy ,

where δy = ϵ1
−3/2 d2ϵY

−1κd
−1(logp/n)1/2 + d2ϵY

−1n−1/2 + d2ϵY
β + d−γy + ϵ1

1/2.

To better understand Theorem 5, suppose d = O na1/2 , ϵY = O n−a2 , ϵ1 = O n−2a3 , and 

kd = O n−a4 , for a1, …, a4 > 0. Then we have

max
i, j ∈ V

ℭXX
y

i, j − ℭXX
y

i, j HS
= Op logp/n1 − π 1/2 + n− 1

2a1γy + 3a3 + n−a2β + a1 + 3a3+n− 1
2 + a1 + a2 + 3a3

+ n−a3 ,
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where π = 2(a1 + a2 + a4) + 6a3 < 1. This implies that the graph dimension p can diverge 

with the sample size n at an exponential rate. In comparison, in the classical random variable 

setting, the uniform convergence rate of the sample covariance is (log p/n)1/2 (Bickel and 

Levina 2008). Theorem 5 thus can be viewed as an extension to both the functional and 

conditional settings where the parameter of interest ℭXX
y  is a random RKHS operator.

5.2. Uniform Convergence of CPO and Graph Consistency

We next derive the convergence of the estimated CPO, Py
. We need an assumption to 

regulate the relation between Xi and Xj when conditioning on X−(i,j) and Y.

Assumption 8.—There exists c3 > 0 such that, maxi, j ∈ V, i ≠ j ℭXiXj ∣ X−(i, j
y

HS ≤ c3, where 

ℭXiXj ∣ X−(i, j)
y = ℭXiXj

y − ℭXiX−(i, j)
y ℭX−(i, j)X−(i, j)

y −1ℭX−(i, j)Xj
y , for any y ∈ ΩY

The following proposition provides a condition under which Assumption 8 is satisfied. Its 

proof is similar to Proposition S2 and is omitted.

Proposition 8.—Suppose Assumptions 1, 3–5 hold. Then, for any y ∈ ΩY, there exists c3 

> 0 such that, maxi, j ∈ V, i ≠ j‖ℭXiXj ∣ X−(i, j)
y ‖HS ≤ c3, if there exists c4 > 0 satisfying that

max
i, j ∈ V, i ≠ j

∑
a ∈ ℕi

y, b ∈ ℕj
y
cor2 ψ i

y, a, Xi , ψj
y, b, Xj ∣ X−(i, j), y ≤ c4,

(16)

where ψi
y, a = ψi

y, a/ μi
y, a 1/2, and μi

y, a, ψi
y, a

a ∈ ℕ are the pairs of eigenvalue and eigenfunction of 

VXiXi ∣ X−(i, j)
y , and ℕi

y = a ∈ ℕ : μi
y, a > 0 , for any i ∈ V and y ∈ ΩY.

Both conditions (5) and (16) introduce certain levels of smoothness on the conditional 

distribution of X given Y. Nevertheless, they target different subjects: Equation (5) is about 

the relation between Xi and Xj given Y, which is required for the consistency of ℭXiXj′
y , 

whereas Equation (16) is about the relation between Xi and Xj given X−(i,j) and Y, which is 

required for the consistency of Py
i, j.

Theorem 6.—If Assumptions 1–8 hold, ϵY, ϵ1 ≺ 1, and 

d2ϵY
−1κd

−1(logp/n)1/2 + d2ϵY
−1n−1/2 + d2ϵY

β ≺ 1, then for any y ∈ ΩY,

max
i, j ∈ V, i ≠ j

Py
i, j − Py

i, j HS
= Op ϵ2

−1pδy + ϵ2 .

Moreover, if ρCPO = min ‖ Py
i, j‖HS: (i, j) ∈ V × V, i ≠ j, Py

i, j ≠ 0 /2, and ρCPO ≻ ϵ2
−1pδy + ϵ2 , 

then,

P ECPO
y = Ey 1,  as n ∞ .
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We make a few remarks. First, Li and Solea (2018) established the consistency of their 

precision operator, as well as the unconditional graph estimation consistency. Note that 

their operator is nonrandom, and their results were derived with the graph size p fixed. By 

contrast, Theorem 6 establishes the uniform convergence of the operator Py
i, j

, which is 

random, and the graph estimation consistency is obtained with a diverging p. For instance, 

if ϵ2 O(n−π′/2) with π′ > 0, then Theorem 6 says that the uniform convergence rate of the 

estimated CPO depends on p(log p/n1−π−π′)1/2. This implies that we allow p to grow at the 

polynomial rate of n.

Second, a careful inspection of our proof reveals that, the convergence rate of the empirical 

CPO depends on the difference ℭXX
y − ℭXX

y
HS, whose order, by Theorem 5, can be no 

faster than p(log p/n1−π′)1/2. We note that, under the classical random variable setting, the 

convergence rate of the hard thresholding sample covariance matrix in terms of Frobenius 

norm is [pc0(p) log p/n]1/2, where the term c0(p) imposes a sparsity structure on the 

covariance matrix and satisfies that ∑j = 1
p 1 cov Xi, Xj ≠ 0 ≤ c0(p), for i = 1, …, p, with 1(·) 

being the indicator function (Bickel and Levina 2008, theo. 2). We feel our rate of p(log 

p/n1−π)1/2 is reasonable and is comparable to the classical result. We also note that there is 

a difference between p and p1/2 in our rate and the rate of (Bickel and Levina 2008, theo. 

2). This difference is mainly due to different sparsity settings imposed by our method and 

by Bickel and Levina (2008). Note that we do not impose any sparsity structure on the 

conditional correlation operator ℭXX
y . This means we need to estimate all the off-diagonal 

elements of ℭXX
y , whose cardinality grows in the order of p2. In comparison, Bickel and 

Levina (2008) imposed a sparsity structure on the covariance matrix and the cardinality of 

nonzero covariances grows only in the order of pc0(p). Moreover, we are dealing with a 

more complicated setting of random functions and random operators. On the other hand, 

we show in Section S.5 in the appendix that, if we introduce additional sparsity and 

regularization, we can further improve the rates in Lemma S8 in the appendix and Theorem 

6, so that p can grow at an exponential rate of n. Actually, we have developed a theoretical 

platform that is not only limited to the present setting. The concept of using vanishing CPO 

to identify the conditional independence between random functions in a conditional graph 

can have divarication beyond the scenarios studied in this article; for example, when there 

are additional sparsity or bendable structures.

Finally, in our theory development, we have imposed a series of technical conditions, which 

are commonly imposed in the literature, and are usually easy to satisfy.

5.3. Consistency for Partially Observed Random Functions

We next derive the consistency under the scenario when the random functions are only 

partially observed. Partially observed functions are collected via a dense or a non-dense 

measurement schedule; see Wang, Chiou, and Muller (2016a) for more discussion on 

measurement schedule. To avoid digressing from the main context, in this article, we do not 

go after any specific measurement schedule or regularity setting on the partially observed 

random function. For partially observed functions X(t), suppose X(t) = X1(t), …, Xp(t) ⊤ is 
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the estimate of X(t) using the empirical bases developed in Section 4.2. We then estimate the 

series of the operators and the graph by

VXiXi = En Xi ⊗ Xi , VY Xij = En κY ( ⋅ , Y ) ⊗ Xi ⊗ Xj ,

VXiXj
y = ∑

a, b = 1

d
MXij ∣ Y ηi

a ⊗ ηj
b °(y) ηi

a ⊗ ηj
b ,

ℭXiXj
y = VXiXi

y + ϵ1I
−1/2VXiXj

y VXjXj
y + ϵ1I −1/2

for i ≠ j,  and I for i = j,

Py = ℭXX
y + ϵ2I

−1,

Ey(ρ) = (i, j) ∈ V × V : ‖ Py
i, j‖HS

> ρ, i ≠ j ,

where MXij ∣ Y = VY Y + ϵYI −1VY Xij, ηi
a is the eigenfunction of VXiXi, and ℭXX

y
 is the block matrix 

of operators with (i, j)th element being ℭXiXj
y

.

Theorems 5 and 6 show that the convergence of the estimated CCO and CPO depends on 

the uniform convergence of the sample covariance operators in Theorem 3. In particular, 

it relies on the convergence rates of maxi, j ∈ V‖VXiXj − VXiXj‖HS and maxi, j ∈ V‖VY Xij − VY Xij‖HS. 

When the random functions are completely observed, both rates, by Theorem 3, are equal to 

(log p/n)1/2. When the random functions are only partially observed, we let the convergence 

rates of maxi, j ∈ V‖VXiXi − VXiXi‖HS and maxi, j ∈ V‖VY Xij − VY Xij‖HS to be slower than (log p/n)1/2. 

More specifically, as specified in Equation (17), we introduce a quantity a that reflects how 

dense the time points are observed in the random functions. The denser the time points are, 

the closer a is to zero. Correspondingly, the next theorem extends Theorem 6 to partially 

observed functions. Its proof is similar to that of Theorem 6, and is thus omitted.

Theorem 7.—If Assumptions 1–8 hold, ϵY, ϵ1 ≺ 1, and there exists a ∈ 
[0, 1) such that d2ϵY

−1κd
−1logp/n(1 − a)/2 + d2ϵY

−1n−1/2 + d2ϵY
β ≺ 1, ϵ2

−1pδy
a + ϵ2 ≺ ρCPO with 

δy
a = ϵ1

−3/2 d2ϵY
−1κd

−1logp/n(1 − a)/2 + d2ϵY
−1n−1/2 + d2ϵY

β + d−γy + ϵ1
1/2, and

max
i, j ∈ V

‖VXiXj − VXiXj‖HS = OP logp/n(1 − a)/2 ,

max
i, j ∈ V

‖VY Xij − VY Xij‖HS = OP logp/n(1 − a)/2 . (17)
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Then, max ‖ Py
i, j − Py

i, j‖HS
: (i, j) ∈ V × V, i ≠ j = Op ϵ2

−1pδy
a + ϵ2 , and P Ey ρCPO = Ey 1, 

for any y ∈ ΩY, as n →∞.

The first condition of Equation (17) is satisfied if the tail of ‖VXiXj − VXiXj‖HS behaves as 

a sub-Exponential distribution. That is, when there exist c′, c″ > 0 and a ∈ [0, 1), such 

that P ‖VXiXj − VXiXj‖HS > t ≤ c′exp −c2
′′n(1 − a)/2t , for any t ≥ 0. A similar condition also 

holds for the second condition of Equation (17). Recall in Theorem 3, we have shown that, 

for completely observed functions, ‖VXiXj − VXiXj‖HS > t and ‖VY Xij − VY Xij‖HS > t behave as 

a sub-Gaussian distribution for a small t. As such, Equation (17) is more appropriate for 

partially observed functions.

6. Simulations

Next, we study the finite-sample performance of our method through simulations. 

Specifically, we consider three graph structures of E: a hub, a tree, and a random graph, 

as shown in Table 1. We consider p = 10 nodes with the sample size n = 100 first, and 

consider larger graphs later. Given the graph structure E and the conditional variable y, we 

generate Xj(t) and its parent nodes based on the following model:

Xj(t) ∣ y = ∑
i ∈ P j

yvij(1 − y)1 − vij × Xi(t) + cj × εj(t),

where X(t) | y =[X1(t) | y, …, Xp(t) | y]⊤ is constructed sequentially via the given graph, 

Pj is the set of the parent nodes of j, and cj is the scale parameter as specified in Table 

1. We generate the error function, εi(t) as ∑u = 1
J ξuκT t, tu , where ξ1, …, ξJ are iid standard 

normal variables, t1, …, tJ are equally spaced points between [0, 1] with J = 50, and κT is a 

RBF or a Brownian motion covariance function. We then generate the conditioning variable, 

Y1, …, Yn, as iid Uniform(0, 1). We generate each Xi
k, k = 1, …, n, i = 1, …, p, with nk 

= 50 time points. In this model, there are two types of edge patterns: when νij = 1, the 

strength of edges grows with y, and when νij = 0, the strength of edges decays with y. The 

tuning parameters are determined by the rules suggested in Section 4.3. In Section S.6 of the 

appendix, we discuss in detail the effect of the tuning parameters, and show that our method 

is relatively robust to a range of tuning parameters.

We compare our method with three alternative solutions, all of which are variants 

of graphical Lasso (Friedman et al. 2008, gLASSO). The first solution, which we 

refer as “Average,” is similar to Kolar et al. (2010). It first estimates the conditional 

covariance matrix by ΣXX
y = ∑k = 1

n κy y, Y k ∑j = 1
50 Xk T j Xk T j

⊤/50 /∑k = 1
n κy y, Y k , where 

Xk T j = X1
k T j , …, Xp

k T j
⊤, j = 1, …, 50, k = 1, …, n. It then estimates the 

conditional precision matrix Θy by applying gLASSO to ΣXX
y

. The second solution, 

which we refer as “Majority,” is similar to a procedure in Qiao, Guo, and 

James (2019). It first estimates the covariance matrix at each time point by 

ΣXX
y T j = ∑k = 1

n κy y, Y k Xk T j Xk T j
⊤ /∑k = 1

n κy y, Y k . It then estimates the conditional 
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precision matrix at each time point, by applying gLASSO to ΣXX
y T j . It selects those 

edges that are detected by the majority of the estimates among all the estimated graphs. 

The third solution, referred as “Unconditional,” is similar to the naive procedure in Qiu 

et al. (2016), which, without using the information of Y, estimates the covariance matrix 

by ΣXX
k = ∑j = 1

50 Xk T j Xk T j
⊤/50. It then estimates the conditional precision matrix by 

applying gLASSO to ΣXX
k

. For the penalty parameter in gLASSO, we adopt the empirical 

rule suggested by Rothman et al. (2008), and set it to (log p/n)1/2. We use the RBF kernel for 

both κT and κY in all simulations.

We evaluate the accuracy of the estimated graph using the area under ROC curve (AUC). We 

first compute the false positive (FP) and true positive (TP) as,

TPy, ρ =
∑1 ≤ i < j ≤ p1 (i, j) ∈ E0, (i, j) ∈ Ey(ρ)

∑1 ≤ i < j ≤ p1 (i, j) ∈ E0 ,

FPy, ρ =
∑1 ≤ i < j ≤ p1 (i, j) ∉ E0, (i, j) ∈ Ey(ρ)

∑1 ≤ i < j ≤ p1 (i, j) ∉ E0 ,

for a given ρ and y ∈ ΩY, and E0 is the true graph. We then compute the pairs of (TPy,ρ, 

FPy,ρ) over a set of values of ρ, which we set to be the sorted norms of empirical CPO.

Figure 1 reports the AUC for the estimated graph with respect to the external variable Y, 

under three graph structures, and by the four methods. It is seen that the methods “Majority” 

and “Unconditional” perform consistently the worst, while “Average” and our proposed 

CPO methods perform similarly in this example.

We next extend our simulations to larger graphs, where we set the graph size p = {30, 50, 

100}, with the sample size n = 30 and nk = 30 time points, k = 1, …, n. We then generate 

the graph in a similar way as before. Specifically, for the hub structure, we generate p/5 

independent hubs, and within each hub, two edges have their strength growing with y, and 

two edges decaying with y. For the tree structure, we expand the tree until the graph reaches 

the designated size, and in each subsequent layer of the tree, one edge has growing strength 

and the other has decaying strength with y. For the random structure, we select the edges 

randomly following a Bernoulli distribution with probability 1/(p−1), and also randomly 

select half of the selected edges to have growing strength and the other half to have decaying 

strength. Due to the poor performance of “Majority” and “Unconditional” in the previous 

simulation setting, we only compare our CPO method with “Average” in the large-graph 

setting. Figure 2 reports the AUC. It is seen that our CPO method clearly outperforms the 

“Average” method in some settings, and is comparable in other settings. In particular, for 

a large graph with p = 100, the improvements of CPO over “Average” in both the hub and 

random structures are substantial.
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7. Application

In this section, we illustrate our conditional functional graph estimation method with a 

brain functional connectivity analysis example. We analyze a dataset from the Human 

Connectome Project (HCP), which consists of resting-state fMRI scans of 549 individuals. 

Each fMRI scan has been processed and summarized as a spatial temporal matrix, with rows 

corresponding to 268 brain regions-of-interest, and columns corresponding to 1200 time 

points (Greene et al. 2018). Additionally, each subject is collected with a score of the Penn 

Progressive Matrices, which is a nonverbal group test typically used in educational settings 

and is generally taken as a surrogate of fluid intelligence. It is of scientific interest to unravel 

the connectivity patterns of the brain regions conditioning on the intelligence measure.

We apply our conditional functional graphical modeling approach for the whole brain of 

268 × 268 connectivity network. Applying the hard thresholding approach would yield a 

sparse estimate of the conditional graph at each value of Y = y. To identify edges that 

vary along with the conditional variable Y, we further employ a permutation test approach. 

Specifically, we permute the observations of Y five hundred times. For each permuted 

sample, we compute the Hilbert-Schmidt (H-S) norm of the sample CPO for each edge. 

We then compute the variance of the H-S norms based on 500 permutations. We treat those 

edges whose corresponding variances above 95% percentile as significant, since in this 

context a nonzero variance implies that the CPO varies with the conditional variable. In 

addition, those 268 brain regions have been partitioned into eight functional modules: medial 

frontal, frontoparietal, default mode, motor, visual, limbic, basal ganglia, and cerebellum 

(Finn et al. 2015). We count the number of significant edges from the permutation test 

within each functional module, then use the Fisher’s exact test to determine if a module is 

significantly enriched.

We have found that the medial frontal module is significantly enriched with numerous 

significant edges that vary along with the intelligence score. Figure 3 shows the identified 

significant edges. This finding agrees with the literature, as this module has been reported to 

contribute to high-level cognitive functions such as emotional responses (Smith et al. 2018) 

and learning (Zanto and Gazzaley 2013). Moreover, this module was found to have more 

impact on fluid intelligence compared to other modules (Finn et al. 2015). We have also 

observed more cross-lobe and inter-hemisphere interactions, which suggests the importance 

of these edges in cognitive functions. This again complies with the existing literature in 

neuroscience that the altered interhemispheric interactions of prefrontal lobe is closely 

related to higher level cognitive traits such as the Internet gaming disorder (Wang et al. 

2015). Figure 4 reports the changes of the identified significant edges for the medial frontal 

module at five different values of the intelligence score. We see from the plot that both 

increasing and decreasing patterns exist for the strength of the significantly varying edges.

As an independent validation, we replicate the analysis using another resting-state fMRI 

data of 828 individuals in HCP. We report the changes of the identified significant edges 

for the medial frontal module from the new dataset in Figure S6 of the appendix. We again 

find that the medial frontal module is enriched. Hearne, Mattingley, and Cocchi (2016) 

identified positive correlations between functional connectivity and intelligence in general. 
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Song et al. (2008) reported that most of the brain regions whose connectivity patterns are 

negatively correlated with the intelligence are around medial frontal gyrus, or part of motor 

regions, which are part of medial frontal module. Combined with our findings, it suggests 

that the medial frontal module may play a unique role in intelligence compared to other 

brain modules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Area under the ROC curve for the estimated graph with respect to the external variable Y, 

under three graph structures, and by the four methods. From left to right: CPO, Average, 

Unconditional, Majority. The graph size p = 10.
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Figure 2. 
Area under the ROC curve for the estimated graph with respect to the external variable Y, 

under three graph structures, and by the two methods. From left to right: CPO, Average. The 

graph size p = {30, 50, 100}.

Lee et al. Page 27

J Am Stat Assoc. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Medial frontal network, with significant edges. Different colors of nodes indicate the ROIs 

in different lobes: prefrontal, motor, parietal, temporal, limbic and cerebellum. Red lines 

indicate inter-lobe edges and cyan ones for inner-lobe edges.
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Figure 4. 
Medial frontal network changes, with respect to the intelligence score at 7, 11, 15, 19, 23. 

Blue color represents the small H-S norm value of CPO, green the medium norm value, and 

red the high H-S norm value.
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