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Biobank-scale inference of ancestral 
recombination graphs enables genealogical 
analysis of complex traits

Brian C. Zhang1, Arjun Biddanda1, Árni Freyr Gunnarsson1,2, Fergus Cooper3  
& Pier Francesco Palamara    1,2 

Genome-wide genealogies compactly represent the evolutionary history 
of a set of genomes and inferring them from genetic data has the potential 
to facilitate a wide range of analyses. We introduce a method, ARG-Needle, 
for accurately inferring biobank-scale genealogies from sequencing 
or genotyping array data, as well as strategies to utilize genealogies to 
perform association and other complex trait analyses. We use these 
methods to build genome-wide genealogies using genotyping data for 
337,464 UK Biobank individuals and test for association across seven 
complex traits. Genealogy-based association detects more rare and 
ultra-rare signals (N = 134, frequency range 0.0007−0.1%) than genotype 
imputation using ~65,000 sequenced haplotypes (N = 64). In a subset 
of 138,039 exome sequencing samples, these associations strongly 
tag (average r = 0.72) underlying sequencing variants enriched (4.8×) 
for loss-of-function variation. These results demonstrate that inferred 
genome-wide genealogies may be leveraged in the analysis of complex 
traits, complementing approaches that require the availability of large, 
population-specific sequencing panels.

Modeling genealogical relationships between individuals plays a key 
role in a wide range of analyses, including the study of natural selec-
tion1 and demographic history2, genotype phasing3 and imputation4. 
Due to the very large number of genealogical relationships that may 
give rise to observed genomic variation, data-driven inference of these 
relationships is computationally difficult5. For this reason, available 
methods for the inference of genealogies rely on strategies that trade 
model simplification for computational scalability, such as the use of 
approximate probabilistic models5–11, scalable heuristics12–16 or combi-
nations of the two17,18. Recent advances enabled efficient estimation of 
the genealogical distance between genomic regions from ascertained 
genotype data11, rapid genealogical approximations for hundreds of 
thousands of samples15 and improved scalability of probabilistic infer-
ence17. However, available methods do not simultaneously offer all 
these features, so that scalable and accurate genealogical inference 

in modern biobanks remains challenging. In addition, these datasets 
contain extensive phenotypic information, but applications of inferred 
genealogies have primarily focused on evolutionary analyses. Early 
work suggested that genealogical data may be used to improve associa-
tion and fine-mapping13,19, but the connections between genealogical 
inference and modern methodology for complex trait analysis20–22 
remain under-explored.

We introduce a new algorithm, ARG-Needle, to accurately infer the 
ancestral recombination graph23 (ARG) for large collections of genotyp-
ing or sequencing samples. We demonstrate that the ARG of a sample 
may be used within a linear mixed model (LMM) framework to increase 
association power, detect association to unobserved genomic variants, 
infer narrow sense heritability and perform polygenic prediction. Using 
ARG-Needle, we infer the ARG for 337,464 UK Biobank samples and 
perform a genealogy-wide association scan for seven complex traits. 
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To compute the threading instruction of a sample, ARG-Needle 
first performs genotype hashing24,25 to rapidly detect a subset of can-
didate closest relatives within the ARG. It then uses the Ascertained 
Sequentially Markovian Coalescent (ASMC) algorithm11 to estimate the 
TMRCA between the new sample and each of these individuals at each 
site, threading to the closest individual. When all samples have been 
included, ARG-Needle uses a fast postprocessing step, which we call 
ARG normalization, to refine the estimated node times. ARG-Needle 
builds the ARG in time approximately linear in sample size (see below).

We also introduce a simple extension of ASMC11, called ASMC-clust, 
that builds genome-wide genealogies by forming a tree at each site 
using hierarchical clustering on pairwise TMRCAs output by ASMC. This 
approach scales quadratically with sample size but yields improved 
accuracy compared with ARG-Needle in certain simulated scenarios 
(see below). ARG-Needle and ASMC-clust efficiently represent and 
store ARGs using a graph data structure, which is an adaptation of 
the representation used within the ARGON simulator26. Additional 
details, theoretical guarantees and properties for the ARG-Needle 
and ASMC-clust algorithms are described in the Methods and  
Supplementary Note 1.

Accuracy of ARG reconstruction in simulated data
We used extensive simulations to compare the accuracy and scalability 
of ARG-Needle, ASMC-clust, Relate17, tsinfer and a variant of tsinfer 
designed for sparse datasets we refer to as ‘tsinfer-sparse’15. We consid-
ered several metrics to compare ARGs, including: the Robinson–Foulds 

We show that despite being inferred using only array data, the ARG 
detects more independent associations to rare and ultra-rare variants 
(minor allele frequency (MAF) < 0.1%) than imputation based on a refer-
ence panel of ~65,000 sequenced haplotypes of matched ancestry. We 
use 138,039 exome sequencing samples to confirm that these signals 
correspond to unobserved sequencing variants, which are strongly 
enriched for loss-of-function and other protein-altering variation and 
overlap with likely causal associations detected using within-cohort 
exome sequencing imputation. Using the ARG, we detect associations 
to variants as rare as MAF ≈ 4 × 10−6 and independent higher frequency 
variation that is not captured using imputation.

Results
Overview of the ARG-Needle method
The ARG is a graph in which nodes represent the genomes of individuals 
or their ancestors and edges represent genealogical connections (see 
Supplementary Note 1 for additional details). ARG-Needle infers the 
ARG for large genotyping array or sequencing datasets by iteratively 
‘threading’9 one haploid sample at a time, as depicted in Fig. 1. Given 
an existing ARG, initialized to contain a single sample, we randomly 
select the next sample to be added (or threaded). We then compute a 
‘threading instruction’, which at each genomic position provides the 
index of a sample in the ARG that is most closely related to the target 
sample, as well as their time to most recent common ancestor (TMRCA). 
We use this instruction to thread the target sample to the current ARG, 
and iterate until all samples have been included.
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Fig. 1 | Overview of the ARG-Needle algorithm. ARG-Needle adds one haploid 
sample at a time to an existing ARG, each time performing three steps: (1) 
shortlisting a subset of most related samples already in the ARG through 
genotype hashing, (2) obtaining pairwise coalescence time estimates with these 
samples using ASMC11 and (3) using the ASMC output to ‘thread’9 the new sample 
to the ARG. We depict an example of adding sample S to an ARG, focusing on one 
genomic region. Step 1 divides the genome into ‘words’ and checks for identical 
matches with sample S. Based on these matches (shown in blue), samples 1, 3, 4 
and 7 are output as the K = 4 candidate most related samples already in the ARG. 

Step 2 computes pairwise coalescence time estimates between sample S and each 
of the samples 1, 3, 4 and 7. The minimum time for each position is highlighted. 
Step 3 uses these minimum times and samples to define a ‘threading instruction’ 
that is performed to add sample S to the ARG. Threading connects the new 
sample to the ancestral lineage of each chosen sample at the chosen time. Dotted 
lines indicate previous ARG edges that are inactive due to recombination. When 
all samples have been threaded, ARG-Needle performs a final postprocessing 
step called ARG normalization (Methods).
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distance27, which reflects dissimilarities between the mutations that 
may be generated by two ARGs; the root mean squared error (RMSE) 
between true and inferred pairwise TMRCAs, which captures the accu-
racy in predicting allele sharing between individuals; and the Kendall–
Colijn (KC) topology-only distance28. We found that the KC distance is 
systematically lower for trees containing polytomies (that is, nodes with 
more than two children), which are not output by Relate, ASMC-clust 
or ARG-Needle (Extended Data Fig. 1b,c). We therefore applied a heu-
ristic to allow these methods to output polytomies (see the Methods 
and Supplementary Note 2 for additional discussion). Although these 
three metrics capture similarity between marginal trees, they are not 
specifically developed for comparing ARGs. We therefore developed 
an additional metric, called the ARG total variation distance, which 
generalizes the Robinson–Foulds distance to better capture the ability 
of a reconstructed ARG to predict mutation patterns that may be gener-
ated by the true underlying ARG (see the Methods and Supplementary 
Note 2 for further details).

We measured ARG reconstruction accuracy in synthetic array 
datasets of up to 32,000 haploid samples (Fig. 2 and Methods). We also 
tested a variety of additional conditions, including different demo-
graphic histories, varying recombination rates and genotyping error. 

We also examined the effects of ARG normalization, of variations of 
the KC distance that account for branch lengths and of stratifying 
the total variation distance by allele frequency (Extended Data Figs. 1  
and 2 and Supplementary Figs. 1–4). ARG-Needle tended to achieve best 
performance across all accuracy metrics in array data, sometimes tied 
or in close performance with ASMC-clust or Relate. In simulations of 
sequencing data, ASMC-clust performed best on the ARG total varia-
tion and TMRCA RMSE metrics, with ARG-Needle and Relate close in 
performance, while Relate performed best on the Robinson–Foulds 
metric (Extended Data Fig. 3). We next measured the speed and memory 
footprint of these methods. ARG-Needle requires lower computation 
and memory than Relate and ASMC-clust, which both scale quadrati-
cally with sample size (Fig. 2e,f and Extended Data Fig. 1e). It runs slower 
than tsinfer and tsinfer-sparse but with a similar (approximately linear) 
scaling (also see the Methods and Supplementary Note 1).

We next examined additional properties of the ARG-Needle 
and ASMC-clust algorithms. We found that the order used to thread 
samples into the ARG does not substantially affect accuracy (Sup-
plementary Fig. 5a–d), but that averaging estimates obtained using 
different random threading orders may produce improved estimates 
of genealogical relationships and higher similarity to ARGs inferred 
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Fig. 2 | Comparison of ARG inference algorithms in simulation. a–f, We 
benchmark ARG inference performance for ARG-Needle, ASMC-clust, Relate, 
tsinfer and a variation of tsinfer for sparse data (‘tsinfer-sparse’) in realistic 
CEU demography array data simulations across a variety of metrics related 
to accuracy and computational resources (lower values indicate better 
performance for all metrics). a, The Robinson–Foulds distance (polytomies are 
randomly resolved). b, The ARG total variation distance (Methods). c, Pairwise 
TMRCA RMSE. d, The KC topology-only metric. e, Runtime. f, Peak memory. In 
c, we only run up to N = 4,000 haploid samples. In d, we fix N = 4,000 haploid 
samples and vary the fraction of branches per marginal tree that are collapsed 

to form polytomies, using a heuristic that preferentially collapses branches that 
are less confidently inferred (Methods). For tsinfer and tsinfer-sparse, we instead 
rely on the default amount of polytomies in the output, additionally showcasing 
when polytomies are randomly resolved (dashed lines indicate a linear trend 
that may not hold). All panels use five random seeds, with ASMC-clust and Relate 
capped at N = 8,000 haploid samples due to runtime or memory constraints. 
Data are presented as mean values ± 2 s.e.m. Relate’s default settings cap the 
memory for intermediate computations at 5 GB (see f). ARG-Needle and ASMC-
clust include ARG normalization by default (Methods), while Relate does not. For 
additional simulations, see Extended Data Figs. 1–4 and Supplementary Figs. 1–6.
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using ASMC-clust (Supplementary Fig. 5c–f). We observed that inferred 
genealogies contain realistic linkage disequilibrium (LD) patterns 
(Extended Data Fig. 4a,b). ARG-Needle, ASMC-clust and Relate do not 
guarantee that the variants used to infer genealogies may be mapped 
to inferred marginal trees, but performed well when we considered the 
fraction of unobserved variants that could be mapped back to inferred 
genealogies (Extended Data Fig. 4c; also see ref. 17). Finally, we assessed 
the similarity of ARGs inferred using different algorithms, observing 
highest similarities between ASMC-clust and ARG-Needle, as well as 
between these methods and, in decreasing order, Relate, tsinfer-sparse 
and tsinfer (Supplementary Fig. 6a,b).

A genealogical approach to LMM analysis
LMMs enable state-of-the-art analysis of polygenic traits20,29,30,31. We 
developed an approach that uses the ARG of a set of genomes to perform 
mixed linear model association (MLMA29; Methods). More in detail, we 
use an ARG built from genotyping array data to infer the presence of 
unobserved variants and perform MLMA testing of these variants. This 
increases association power in two ways: the ARG is used to uncover 
putatively associated variants, while the LMM utilizes estimates of 
genomic similarity to model polygenicity, relatedness and population 
stratification29. We refer to association analyses that test variants in the 
ARG as ‘genealogy-wide association’ scans and, more specifically, to 
analyses that incorporate mixed linear model testing as ARG-MLMA. 
Genealogy-wide association complements genotype imputation based 
on a sequenced reference panel, as it enables capturing rare variants in 
the sample that may be absent from the panel or cannot be accurately 
imputed (Extended Data Fig. 5a). It also generalizes rare variant asso-
ciation strategies based on haplotype sharing13,19,25,32–35, as detailed in  
Supplementary Fig. 7. In simulations, we observed that for 
low-frequency variants genealogy-wide association may achieve higher 
association power than testing of variants imputed from a sequenced 
reference panel (Fig. 3a and Extended Data Fig. 6).

In addition, we developed strategies to leverage the ARG to obtain 
estimates of genomic similarity across individuals, which are aggre-
gated in a genomic relatedness matrix (GRM; Methods) and are a key 
element of several mixed-model analyses of complex traits. We refer 

to GRMs built using this approach as ARG-GRMs and provide details of 
their construction and properties in Supplementary Note 3. We used 
ARG-GRMs to measure the amount of phenotypic variance captured 
by inferred ARGs (Extended Data Fig. 7a). In simulations, ARG-GRMs 
built using ARGs inferred by ARG-Needle in array data captured more  
narrow sense heritability than GRMs built using array data30,36,37  
(Methods, Fig. 3b and Supplementary Fig. 8). We also performed 
additional simulations to test whether the modeling of unobserved 
genomic variation using ARG-GRMs may be leveraged to obtain per-
formance gains in other LMM analyses. Indeed, ARG-GRMs built using 
true ARGs performed as well as GRMs computed using sequencing 
data in LMM-based heritability estimation, polygenic prediction and 
association (Methods, Fig. 3c and Extended Data Fig. 8). Applying these 
strategies to large-scale inferred ARGs, however, will require improved 
accuracy and scalability (Discussion).

Overall, these experiments suggest that accurate genealogical 
inference combined with LMMs improves association power, by testing 
variants that are not well tagged using available markers while mod-
eling polygenicity. The ARG may also be potentially utilized to obtain 
improved estimates of genomic similarity and perform additional 
LMM-based complex trait analyses.

Genealogy-wide association scan of rare and ultra-rare 
variants in the UK Biobank
We applied ARG inference methods in a subset of the genome using 
UK Biobank data and observed results consistent with our simula-
tions (Supplementary Fig. 6c,d). We then used ARG-Needle to build 
the genome-wide ARG from SNP array data for 337,464 individuals 
in the white British ancestry subset defined by ref. 38 (Methods). We 
performed ARG-MLMA for height and six molecular traits, compris-
ing alkaline phosphatase, aspartate aminotransferase, low-density 
lipoprotein (LDL) / high-density lipoprotein (HDL) cholesterol, mean 
platelet volume and total bilirubin. To achieve the required scalabil-
ity, we built on a recent MLMA method22,39, implicitly relying on an 
array-based GRM (Methods and Discussion). We compared ARG-MLMA 
with standard MLMA testing of variants imputed using the Haplo-
type Reference Consortium (HRC) and UK10K reference panels38,40,41 
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Fig. 3 | ARG-based analysis of simulated complex traits. a, Power to detect  
a rare causal variant (MAF = 0.025%) in simulations of a polygenic phenotype.  
We compare ARG-MLMA of ground-truth ARGs and ARG-Needle-inferred ARGs 
with MLMA of imputed and SNP array variants as we vary the effect size β  
(100 independent simulations of h2 = 0.8, α = −0.25, N = 20,000 haploid samples 
and 22 chromosomes of 5 Mb each; Methods). b, Heritability estimation 
using ARG-GRMs from ARG-Needle inference on SNP array data, compared 
with using imputed or array SNPs (5 simulations of 25 Mb, N = 5,000 haploid 
samples, h2 = 0.8 and varying α). c, ARG-GRMs computed using ground-truth 
ARGs perform equivalently to GRMs computed using sequencing data in 
heritability estimation, polygenic prediction and mixed-model association 

(N = 10,000 haploid samples, h2 = 0.8 and α = −0.5). Heritability and prediction 
involve 5 simulations of 50 Mb, and association involves 50 simulations of 22 
chromosomes of 2.5 Mb each, for a total of 55 Mb. For association, we show 
the relative improvement in mean −log10(P) of MLMA compared with linear 
regression (Methods). ‘% ref’ indicates the size of the reference panel used for 
imputation as a percentage of the number of haploid samples (N = 20,000 in  
a, N = 5,000 in b). Data are presented as estimates ± 2 s.e.m., where the estimates 
are from meta-analysis in the case of heritability estimation, represent fractions 
in a and represent means otherwise. Additional results are shown in Extended 
Data Figs. 6–8 and Supplementary Fig. 8. linreg, linear regression.
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(hereafter, HRC + UK10K), comprising ~65,000 haplotypes. We focused 
on rare (0.01% ≤ MAF < 0.1%) and ultra-rare (MAF < 0.01%) genomic 
variants. We used resampling-based testing42 to establish genome-wide 
significance thresholds of P < 4.8 × 10−11 for ARG variants (sampled with 
mutation rate μ = 10−5) and P < 1.06 × 10−9 for imputed variants (Supple-
mentary Table 1). For each analysis, we performed LD-based filtering 
to extract a stringent set of approximately independent associations 
(hereafter, ‘independent associations’; Methods). We leveraged a  
subset of 138,039 individuals with whole-exome sequencing (WES) data 
(hereafter, WES-138K) to validate these independent associations. For 
each detected independent variant, we selected the WES variant with 
the largest correlation, which we call its ‘WES partner’.

Applying this approach, we detected 134 independent signals 
using the ARG and 64 using imputation, jointly implicating 152 unique 
WES partners (Supplementary Tables 2 and 3). Of these WES variants, 
36 were implicated using both approaches (Fig. 4a, and see Extended 
Data Fig. 9a for region-level results). The fraction of WES partners 
uniquely identified using the ARG was larger among ultra-rare variants 
(84%) compared with rare variants (42%), reflecting a scarcity of 
ultra-rare variants in the HRC + UK10K imputation panel. The pheno-
typic effects estimated in the 337,464 individuals using ARG-derived 

or imputed associations were strongly correlated to those directly 
estimated for the WES partners in the WES-138K dataset (Fig. 4b), with 
stronger average correlation (bootstrap P = 0.003) for ARG-derived 
variants (r2ARG = 0.93) compared with imputed variants (r2imp = 0.80). 
Only 74% of the WES partners for ARG-derived rare variant associations 
were significantly associated (P < 5 × 10−8) in the smaller WES-138K 
dataset, a proportion that dropped to 59% for ultra-rare variants. Vari-
ants detected using genealogy-wide association had a larger average 
phenotypic effect than those detected via imputation (bootstrap 
P < 0.0001; average ||β̂ARG|| = 1.46; average ||β̂imp|| = 0.90), reflecting lower 
average frequencies. In addition, WES partners of ARG-derived variants 
were ~4.8× enriched for loss-of-function variation (bootstrap P < 0.001; 
Fig. 4c), and WES partners implicated by either ARG or imputation were 
~2.3× enriched for other protein-altering variation (Methods), sup-
porting their likely causal role.

We also used variant-level precision and recall statistics (Methods) 
to measure the extent to which carrying an associated ARG-derived or 
imputed variant is predictive of carrying sequence-level WES partner 
variants (Fig. 4d). ARG-derived and imputed rare variants had similar 
levels of variant-level precision, while imputation had higher recall 
(bootstrap P = 0.0005). For ultra-rare variants, ARG-derived signals 
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distribution function (CDF) for the distance between independent variants and 
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bootstrap 95% CIs in c and d. Additional results are shown in Extended Data Fig. 9. 
HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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performed better than imputed variants for both precision (bootstrap 
P = 0.01) and recall (bootstrap P = 0.002). Similarly, ARG-derived and 
imputed rare variants provided comparable tagging for their WES 
partners (Extended Data Fig. 9b), while ARG-derived ultra-rare variants 
provided stronger tagging compared with imputed ultra-rare variants 
(average rARG = 0.77, rimp = 0.42, bootstrap P < 0.001). Compared with 
ARG-derived variants, genotype imputation has the advantage that 
associated variants that are sequenced in the reference panel may be 
directly localized in the genome. We found that for 21 of 52 rare and 2 
of 12 ultra-rare independent imputation signals the WES partner had 
been imputed, while the remaining signals likely provide indirect tag-
ging for underlying variants. ARG-derived and imputed variants, how-
ever, had similar distributions for the distance to their WES partners  
(Fig. 4e and Extended Data Fig. 9c). This suggests that genealogy-wide 
associations have the same spatial resolution as associations obtained 
using genotype imputation in cases where the variant driving the signal 
cannot be directly imputed.

We compared our results with those of a recent study that lever-
aged exome sequencing data from a subset of ~50,000 participants 
(hereafter, WES-50K) to perform genotype imputation for ~459,000 

samples43. We found that, among the WES partners implicated using 
the ARG but not using HRC + UK10K imputation, 14 of 30 partners of 
rare and 26 of 55 partners of ultra-rare ARG variants were also flagged 
as likely causal associations (P < 5 × 10−8) in ref. 43 (Supplementary 
Table 2). The remaining 45 WES partners detected using the ARG but 
not reported in ref. 43 are often very rare variants (median 
MAF = 3.6 × 10−5; Extended Data Fig. 9d) of large effect (median  
| β̂| = 1.14), which are difficult to impute; 21 of 45 such variants were 
absent or singletons in the WES-50K reference panel or had poor 
imputation quality score. Associations uniquely detected using the 
ARG often extended allelic series at known genes. For instance, 
restricting to loss-of-function or other protein-altering WES partners 
for independent ARG signals not present or marginally significant in 
ref. 43, five novel associations with aspartate aminotransferase are 
mapped to the GOT1 gene (Fig. 4f) and four with alkaline phosphatase 
are mapped to ALPL (Extended Data Fig. 9e). A subset of strong inde-
pendent associations uniquely detected by the ARG had weak  
correlation with their WES partners, possibly due to tagging of  
structural or regulatory variation absent from the WES-138K  
dataset (for example, a signal for aspartate aminotransferase with 
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P = 7.4 × 10−39, MAFARG = 0.0005, WES partner r = 0.21, minor allele 
count (MAC)WES-138K = 6, MACWES-50K = 1).

In summary, genealogy-wide association using an ARG inferred 
from common SNPs revealed more rare and ultra-rare signals than gen-
otype imputation based on ~65,000 reference haplotypes, and detected 
ultra-rare variants that were not associated using within-cohort impu-
tation based on ~50,000 exome-sequenced participants. ARG-derived 
associations accurately predicted effect sizes for underlying sequenc-
ing variants, as well as the subset of carrier individuals.

Genealogy-wide association for low- and high-frequency 
variants
Lastly, we performed genealogy-wide association for low- 
(0.1% ≤ MAF < 1%) and high- (MAF ≥ 1%) frequency variants, which are 
more easily imputed using reference panels that are not necessarily 
large and population-specific. Consistent with this, extending our 
previous analysis to low-frequency variants yielded a similar number of 
independent associations for ARG-derived and HRC + UK10K-imputed 
variants (NARG = 103, Nimp = 100; Supplementary Tables 4 and 5 and 
Extended Data Fig. 10a–c). Associations detected using the ARG had 
slightly larger effects compared with those found using imputation 
(bootstrap P = 0.026; average |βARG| = 0.32, |βimp| = 0.27) but provided 
lower tagging to WES partners (bootstrap P < 0.001; average rARG = 0.57, 
rimp = 0.73), reflecting the large fraction (42 of 100) of imputation WES 
partners that were directly imputed.

We hypothesized that, although imputation of higher frequency 
variants is generally more accurate, branches in the marginal trees 
of the ARG may in some cases complement available markers by pro-
viding improved tagging of underlying variation. This may be the 
case, for instance, for short insertions/deletions or structural vari-
ants44, which are often underrepresented in reference panels41, or 
for variants of moderately high frequency, which may be difficult to 
impute45 (Extended Data Fig. 5a). To test this, we performed MLMA 
for height using HRC + UK10K-imputed variants, filtered as in ref. 38 
(MAF > 0.1%, info score > 0.3; Methods), for which we established a 
resampling-based genome-wide significance threshold of 4.5 × 10−9 
(95% confidence interval (95% CI): 2.2 × 10−9, 9.6 × 10−9). To facilitate 
direct comparison, we selected ARG-MLMA parameters (MAF > 1%, 
μ = 10−5; Methods) corresponding to a higher MAF cutoff but a compara-
ble genome-wide significance threshold of 3.4 × 10−9 (95% CI: 2.4 × 10−9, 
5 × 10−9) and adopted a threshold of 3 × 10−9 for all downstream analyses.

We first assessed the number of 1-megabase (Mb) regions that 
contain an association (P < 3 × 10−9) for genotype array, imputed or 
ARG-derived variants. We found that ARG-MLMA detected 98.9% of 
regions found by both SNP array and imputation, as well as 71% of 
regions found by imputation but not array data and an additional  
8% of regions not found using either imputation or array data (Extended 
Data Fig. 10d). A significant fraction (54 of 92, permutation P < 0.0001) 
of regions identified using the ARG but not imputation contained associ-
ations (P < 3 × 10−9) in a larger meta-analysis by the Genetic Investigation 
of ANthropometric Traits (GIANT) consortium46 (N ≈ 700,000) compris-
ing the UK Biobank and additional cohorts. Inspecting associated loci, 
we observed that ARG-MLMA captures association peaks and haplotype 
structure found using imputation but not array data (Fig. 5a–c and 
Supplementary Figs. 9 and 10a–e) as well as association peaks uniquely 
identified using ARG-MLMA (Fig. 5d and Supplementary Fig. 10f–h).

We sought to further assess the degree of overlap and comple-
mentarity of associations detected using SNP array data, imputation 
and the ARG, by performing LD-based filtering and conditional and 
joint (COJO47) association analyses (Fig. 5e and Methods). When we 
jointly considered either or both ARG-derived and imputed variants 
in addition to array markers, we observed an increase in the num-
ber of approximately independent COJO associations (P < 3 × 10−9; 
NSNP = 964, NSNP+ARG = 1,110, NSNP+imp = 1,126, NSNP+ARG+imp = 1,161). The frac-
tion of COJO-associated array markers was reduced by the inclusion 

of ARG-derived or imputed variants, which resulted in comparable 
proportions of associations when jointly analyzed (Fig. 5e), suggesting 
that both ARG and imputation provide good tagging of underlying sig-
nal. By considering the set of 1-Mb regions harboring significant COJO 
associations, we verified that the additional COJO signals detected 
when including ARG-derived or imputed variants concentrated within 
regions that also harbor significant (P < 3 × 10−9) COJO signals in the 
GIANT meta-analysis46 (Fig. 5f and Extended Data Fig. 10e).

In summary, genealogy-wide association using the ARG inferred 
by ARG-Needle from SNP array data was less effective for the analysis 
of higher frequency variants because these variants could be more 
accurately imputed compared to rare and ultra-rare variants. However, 
ARG-derived variants revealed associated peaks and haplotypes that 
were not found through association of array data alone and in some 
cases complemented genotype imputation in detecting approximately 
independent associations. We note that the choices of filtering criteria, 
such as MAF threshold, imputation info score and ARG mutation rate, 
all affect the sensitivity and specificity of these analyses. Results for 
an analysis restricting to association of variants with MAF > 10% are 
shown in Supplementary Fig. 11.

Discussion
We developed ARG-Needle, a method for accurately inferring 
genome-wide genealogies from genomic data that scales to large 
biobank datasets. We performed extensive simulations, showing that 
ARG-Needle is both accurate and scalable when applied to genotyping 
array and sequencing data. We also developed a framework that com-
bines inferred genealogies with LMMs to increase association power, 
and showed that this strategy may be further leveraged in analyses of 
heritability and polygenic prediction. We built genome-wide ARGs 
from genotyping array data for 337,464 UK Biobank individuals and 
performed a genealogy-wide association scan for seven quantitative 
phenotypes. Using the inferred ARG, we detected more large-effect 
associations to rare and ultra-rare variants than using genotype imputa-
tion from ~65,000 sequenced haplotypes, down to an allele frequency 
of ~4 × 10−6. We validated these signals using exome sequencing, show-
ing that they tag underlying variants enriched for loss-of-function and 
other protein-altering variation. Associations detected using the ARG 
overlap with and extend fine-mapped associations detected using 
within-cohort genotype imputation. Applied to the analysis of higher 
frequency variants, the ARG revealed haplotype structure and inde-
pendent signals complementary to those obtained using imputation.

These results highlight the importance of genealogical modeling 
in the analysis of complex traits. Genome-wide association analyses rely 
on the correlation between available markers and underlying varia-
tion48 and the MLMA framework accounts for polygenicity, relatedness 
and population structure29. In genealogy-wide association, the signal 
of LD is amplified by further modeling of past recombination events to 
infer the presence of hidden genomic variation. Through ARG-GRMs, 
inferred genealogies may facilitate better modeling of genomic similar-
ity and polygenic effects, leading to improved robustness and increased 
statistical power.

These analyses also demonstrate that genealogical inference pro-
vides a complementary strategy to genotype imputation approaches, 
which rely on haplotype sharing between the analyzed samples and 
a sequenced reference panel to extend the set of available markers. 
Imputation has been successfully applied in several complex trait 
analyses4,36, but its efficacy for the study of rare variants hinges on the 
availability of large, population-specific sequencing panels, which are 
not widely available for all populations. Genealogy-wide association 
may therefore offer new avenues to better utilize genomic resources 
for underrepresented groups49.

We highlight several limitations and directions of future devel-
opment. First, although genealogy-wide association enables detect-
ing individuals carrying associated variants, it may implicate large 
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genomic regions, whereas genotype imputation may associate indi-
vidual variants if they are sequenced in the reference panel. When 
sequencing data are available, however, they may be utilized to further 
localize ARG-derived signals, for instance using WES partners. Second, 
although we have shown in simulation that ARG-GRMs built from true 
ARGs may be used to estimate heritability, perform prediction and 
increase association power, real data applications of this approach 
will require methodological improvements to increase LMM scalabil-
ity50,51. Third, although our study was restricted to unrelated samples 
of homogeneous ancestry, we expect genealogy-wide association to 
be as susceptible as standard association to issues such as relatedness 
and population stratification29,52,53, requiring adequate control for 
these confounders. Fourth, although we have focused on leveraging 
an ARG inferred from array data alone, ARG-Needle enables building an 
ARG using a mixture of sequencing and array data. This approach may 
be used to perform additional analyses such as ARG-based genotype 
imputation, which is likely to improve upon approaches that do not 
model the TMRCA between target and reference samples54. In simula-
tions we performed, this ARG-based imputation strategy obtained 
promising results (Supplementary Note 4, Extended Data Fig. 5 and 
Supplementary Fig. 12). Fifth, our analyses were limited to quantitative 
traits; support for MLMA of rare case/control traits will require meth-
odological extensions. Sixth, we adopted a computationally intensive 
resampling-based approach42 to establish significance thresholds 
across filtering parameters; future work may lead to improved strate-
gies to address multiple testing. Seventh, although we relied on several 
existing and novel metrics to analyze properties of the reconstructed 
ARGs, further research should develop additional metrics and explore 
their properties and relationships to downstream analyses. These met-
rics should be applicable for benchmarking methods that only infer the 
topology of an ARG as well as methods that focus on estimating branch 
lengths55. Eighth, reconstructing biobank-scale ARGs will likely aid 
the study of additional evolutionary properties of disease-associated 
variants, including analyses of natural selection acting on complex 
traits11,56,57 which we have not explored in this work. Finally, our analysis 
focused on the UK Biobank dataset, which provides an excellent testbed 
due to the large volumes of high-quality data of different types available 
for validation. Future applications of our methods will involve analysis 
of cohorts that are less strongly represented in current sequencing 
studies. Nevertheless, we believe that the results described in this work 
represent an advance in large-scale genealogical inference and provide 
new tools for the analysis of complex traits.
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Methods
ARG-Needle and ASMC-clust algorithms
We introduce two algorithms to construct the ARG of a set of samples, 
called ARG-Needle and ASMC-clust. Both approaches leverage output 
from the ASMC algorithm11, which takes as input a pair of genotyping 
array or sequencing samples and outputs a posterior distribution of the 
TMRCA across the genome. ARG-Needle and ASMC-clust use this pair-
wise genealogical information to assemble the ARG for all individuals.

ASMC-clust runs ASMC on all pairs of samples and performs hier-
archical clustering of TMRCA matrices to obtain an ARG. At every site, 
we apply the unweighted pair group method with arithmetic mean 
(UPGMA) clustering algorithm58 on the N × N posterior mean TMRCA 
matrix to yield a marginal tree. We combine these marginal trees into 
an ARG, using the midpoints between sites’ physical positions to decide 
when one tree ends and the next begins. Using an O(N2) implementa-
tion of UPGMA59,60, we achieve a runtime and memory complexity of 
O(N2M). We also implement an extension that achieves O(NM) memory 
but increased runtime (Supplementary Note 1).

ARG-Needle starts with an empty ARG and repeats three steps to 
add additional samples to the ARG: (1) detecting a set of closest genetic 
relatives via hashing, (2) running ASMC and (3) ‘threading’ the new 
sample into the ARG (Fig. 1). Given a new sample, step 1 performs a 
series of hash table queries to determine the candidate closest samples 
already in the ARG24. We divide up the sites present in the genetic data 
into nonoverlapping ‘words’ of S sites and store hash tables mapping 
from the possible values of the ith word to the samples that carry 
that word. We use this approach to rapidly detect samples already in 
the ARG that share words with the target sample and return the top K 
samples with the most consecutive matches. A tolerance parameter T 
controls the number of mismatches allowed in an otherwise consecu-
tive stretch. We also allow the top K samples to vary across the genome 
due to recombination events, by partitioning the genome into regions 
of genetic distance L. Assuming this results in R regions, the hashing 
step outputs a matrix of R × K sample identities (IDs) containing the 
predicted top K related samples for each region. We note, however, 
that the hashing step can look arbitrarily far beyond the boundaries 
of each region to select the K samples.

The sample IDs output by step 1 inform step 2, in which ASMC is 
run over pairs of samples. In each of the R regions, ASMC computes 
the posterior mean and maximum a posteriori TMRCA between the 
sample being threaded and each of the K candidate most related sam-
ples. We add burn-in on either side of the region to provide additional 
context for the ASMC model, 2.0 centimorgans (cM) for all simulation 
experiments unless otherwise stated and 1.0 cM in real data inference 
for greater efficiency.

In step 3, ARG-Needle finds the minimum posterior mean TMRCA 
among the K candidates at each site of the genome. Note that both the 
use of a posterior mean estimator with a pairwise demographic prior and 
the selection of a minimum among K estimated values lead to bias in the 
final TMRCA estimates (Supplementary Fig. 3h), which we later address 
using a postprocessing normalization step (see below). The correspond-
ing IDs determine which sample in the ARG to thread to at each site. 
Because the posterior mean assumes continuous values and changes at 
each site, we average the posterior mean over neighboring sites where 
the ID to thread to and the associated maximum a posteriori remain 
constant. This produces piecewise constant values which determine 
how high above the sample to thread, with changes corresponding to 
inferred recombination events. The sample is then efficiently threaded 
into the existing ARG, utilizing custom data structures and algorithms.

Throughout our analyses we adopted K = 64, T = 1, L = 0.5 cM for 
array data and L = 0.1 cM for sequencing data. We used S = 16 in simula-
tions, and in real data analyses we increased S as threading proceeded 
to reduce computation without a major loss in accuracy. For additional 
details on all three steps in the ARG-Needle algorithm and our param-
eter choices, see Supplementary Note 1.

ARG normalization
ARG normalization applies a monotonically increasing mapping from 
existing node times to transformed node times (similar to quantile 
normalization), further utilizing the demographic prior provided 
in input. We compute quantile distributions of node times in the 
inferred ARG as well as in 1,000 independent trees simulated using 
the demographic model provided in input under the single-locus 
coalescent. We match the two quantile distributions and use this to 
rewrite all nodes in the inferred ARG to new corresponding times  
(Supplementary Note 1). ARG normalization preserves the time-based 
ordering of nodes and therefore does not alter the topology of an 
ARG. It is applied by default to our inferred ARGs and optionally to 
ARGs inferred by Relate (Extended Data Figs. 2–4 and Supplementary  
Figs. 1, 3 and 4).

Simulated genetic data
We used the msprime coalescent simulator61 to benchmark ARG infer-
ence algorithms. For each run, we first simulated sequence data with 
given physical length L for N haploid individuals, with L = 1 Mb for 
sequencing and L = 5 Mb for array data experiments. Our primary 
simulations used a mutation rate of μ = 1.65 × 10−8 per base pair per 
generation, a constant recombination rate of ρ = 1.2 × 10−8 per base 
pair per generation and a demographic model inferred using SMC++ 
on CEU (Utah residents with ancestry from Northern and Western 
Europe) 1,000 Genomes samples10. These simulations also output the 
simulated genealogies, which we refer to as ‘ground-truth ARGs’ or 
‘true ARGs’. To obtain realistic SNP data, we subsampled the simulated 
sequence sites to match the genotype density and allele frequency 
spectrum of UK Biobank SNP array markers (chromosome 2, with 
density defined using 50 evenly spaced MAF bins). When running 
ASMC, we used decoding quantities precomputed for version 1.1, 
which were obtained using a European demographic model and UK 
Biobank SNP array allele frequencies, setting two haploid individuals 
for pairwise TMRCA inference as ‘distinguished’ and sampling 298 
haploid individuals as ‘undistinguished’11. ASMC and the hashing step 
of ARG-Needle also require a genetic map, which we computed based 
on the recombination rate used in simulations.

In addition to our primary simulations, we included various addi-
tional simulation conditions where we modified one parameter while 
keeping all others fixed. First, we varied the recombination rate to 
ρ ∈ {6 × 10−9, 2.4 × 10−8} per base pair per generation. Second, we used a 
constant demographic model of 15,000 diploid individuals, for which 
we generated new decoding quantities to run ASMC. Third, we inferred 
ARGs using sequencing data, running ASMC in sequencing mode. 
Fourth, we introduced genotyping errors into the array data. After 
sampling the array SNPs, we flipped each haploid genotype per SNP 
and individual with probability p (Supplementary Fig. 4).

Comparisons of ARG inference methods
We compared ASMC-clust and ARG-Needle with the Relate17 and tsin-
fer15 algorithms. Relate runs a modified Li-and-Stephens algorithm62 
for each haplotype, using all other haplotypes as reference panel. It 
then performs hierarchical clustering on the output to estimate the 
topology of marginal trees at each site. Finally, it estimates the marginal 
tree branch lengths using a Markov chain Monte Carlo algorithm with 
a coalescent prior. tsinfer uses a heuristic approach to find a set of 
haplotypes that will act as ancestors for other haplotypes and to rank 
them based on their estimated time of origin. It then runs a variation of 
the Li-and-Stephens algorithm to connect older ancestral haplotypes 
to their descendants, forming the topology of the ARG. To improve 
the performance of tsinfer in the analysis of UK Biobank array data, 
the authors developed an alternative approach where subsets of the 
analyzed individuals are added as potential ancestors15. This approach 
was motived by the sparsity of the variant sites, so we refer to it as 
‘tsinfer-sparse’, obtaining its code from ref. 63.
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We ran Relate with the mutation rate, recombination rate and 
demographic model used in simulations. We kept Relate’s default 
option which limits the memory used for storing pairwise matrices to 
5 GB. Because the branch lengths output by tsinfer and tsinfer-sparse 
are not calibrated, we omitted these methods in comparisons for 
metrics involving branch lengths. For each choice of sample size, we 
generated genetic data using five random seeds (25 random seeds in 
Extended Data Fig. 3d,e) and applied ARG-Needle, ASMC-clust, Relate, 
tsinfer and (when dealing with array data) tsinfer-sparse to infer ARGs. 
Due to scalability differences, we ran ASMC-clust and Relate in up to 
N = 8,000 haploid samples (N = 4,000 for sequencing) and ARG-Needle, 
tsinfer and tsinfer-sparse in up to N = 32,000 haploid samples. All 
analyses used Intel Skylake 2.6 GHz nodes on the Oxford Biomedical 
Research Computing cluster.

The Robinson–Foulds metric27 counts the number of unique muta-
tions that can be generated by one tree but not the other. Because poly-
tomies can skew this metric, we randomly break polytomies as done 
in ref. 15. We report a genome-wide average, rescaled between 0 and 1.

We generalized the Robinson–Foulds metric to better capture 
the accuracy in predicting unobserved variants by incorporating ARG 
branch lengths. To this end, we consider the probability distribution of 
mutations that arise from uniform sampling on an ARG, and compare 
the resulting distributions for the true and inferred ARG using the 
total variation distance, a metric for comparing probability measures. 
Polytomies do not need to be broken using this metric, as they simply 
concentrate the probability mass on fewer predicted mutations. We 
refer to this metric as the ARG total variation distance, and note that 
it bears similarities to previous extensions of the Robinson–Foulds 
metric64,65 (see Supplementary Note 2 for further details, including an 
extension that stratifies by allele frequencies).

We also used the KC topology-only distance averaged over all 
positions to compare ARG topologies. We observed that for methods 
that output binary trees (Relate, ASMC-clust and ARG-Needle), per-
formance substantially improved when we selected inferred branches 
at random and collapsed them to create polytomies (solid lines in 
Extended Data Figs. 1c and 3g), suggesting that the KC topology-only 
distance rewards inferred ARGs with polytomies. We further quanti-
fied the amount of polytomies output by tsinfer and tsinfer-sparse as 
the mean fraction of nonleaf branches collapsed per marginal tree, 
observing that when polytomies were randomly broken15, perfor-
mance on the KC topology-only distance deteriorated (dashed lines 
in Fig. 2d and Extended Data Figs. 1b,c and 3f,g). To account for these 
observations, we compared all methods both with the restriction of no 
polytomies and with allowing all methods to output polytomies (Fig. 2d  
and Extended Data Figs. 1b,d and 3f,h). In the latter case, we formed 
polytomies in ARGs inferred by Relate, ASMC-clust and ARG-Needle 
using a heuristic to select and collapse branches that are less confi-
dently inferred. For each marginal binary tree, we ordered the N − 2 
nonleaf branches by computing the branch length divided by the height 
of the parent node, and collapsed a fraction f of branches for which this 
ratio is smallest (for additional details, see Supplementary Note 2).

We used the pairwise TMRCA RMSE metric to measure accuracy 
of inferred branch lengths. The KC distance may also consider branch 
lengths28, and we performed evaluations using the branch-length-aware 
versions of the KC distance with parameter λ = 1, which compares 
lengths between pairwise MRCA events and the root, and λ = 0.02, 
which combines branch length and topology estimation (Supple-
mentary Fig. 1).

Supplementary Note 2 provides further details on the computa-
tion of these metrics and their interpretation in the context of ARG 
inference and downstream analyses.

ARG-MLMA
We developed an approach to perform MLMA of variants extracted 
from the ARG, which we refer to as ARG-MLMA. We sampled mutations 

from a given ARG using a specified rate μ and applied a mixed model 
association test to these variants. Note that each mutation occurs 
on a single branch of marginal trees, so that recurrent mutations are  
not modeled.

For simulation experiments (Fig. 3a and Extended Data Fig. 6) 
we tested all possible mutations on a true or inferred ARG, which is 
equivalent to adopting a large value of μ. We used sequencing variants 
from chromosomes 2–22 to form a polygenic background and added 
a single causal sequencing variant on chromosome 1 with effect size 
β. We varied the value of β and measured power as the fraction of runs 
(out of 100), detecting a significant association on the ARG for chro-
mosome 1. For ARG-MLMA UK Biobank analyses we adopted μ = 10−5, 
also adding variants sampled with μ = 10−3 to locus-specific Manhattan 
plots to gain further insights. For additional details on our ARG-MLMA 
methods, including the determination of significance thresholds, see 
Supplementary Note 4.

Construction of ARG-GRMs
Consider N haploid individuals, M sites and genotypes xik for individual 
i at site k, where variant k has mean pk. Under an infinitesimal genetic 
architecture, the parameter α captures the strength of negative selec-
tion30,66, with a trait’s genetic component given by gi = ∑k βkxik where 
Var(βk) = (pk(1 − pk))α. Using available markers, a common estimator 
for the ij-th entry of the N × N GRM21 is

Kα (i, j) =
1
M

M

∑
k=1

(xik − pk) (xjk − pk)
[pk (1 − pk)]

−α . (1)

Given an ARG, we compute the ARG-GRM as the expectation of 
the marker-based GRM that would be obtained using sequencing data, 
assuming that mutations are sampled uniformly over the area of the 
ARG. When sequencing data are unavailable but an ARG can be esti-
mated from an incomplete set of markers, the ARG-GRM may provide 
a good estimate for the sequence-based GRM. We briefly describe 
how ARG-GRMs are derived from the ARG for the special case of α = 0. 
We discuss the more general case and provide further derivations in 
Supplementary Note 3.

Assuming α = 0, equation (1) is equivalent (up to invariances 
described in Supplementary Note 3) to the matrix whose ij-th entry 
contains the number of genomic sites at which sequences i and j differ 
(that is, their Hamming distance). This may be expressed as

KH (i, j) =
1
M

M

∑
k=1

xik ⊕ xjk,

where ⊕ refers to the exclusive or (XOR) function. Assume there are L 
base pairs in the genome and a constant mutation rate per base pair of 
μ, and let tijk denote the TMRCA of i and j at base pair k. The ij-th entry 
of the ARG-GRM is equivalent to the expected number of mutations 
carried by only one of the two individuals, which is proportional to the 
sum of the pairwise TMRCAs across the genome (Extended Data Fig. 7a):

KARG (i, j) = 𝔼𝔼 [KH (i, j) |ARG]

=
L

∑
k=1

P (Poisson (2μtijk) > 0) =
L

∑
k=1

1 − exp (−2μtijk) ≈
L

∑
k=1

2μtijk.

For increased efficiency, we compute a Monte Carlo ARG-GRM 
by uniformly sampling new mutations on the ARG with a high muta-
tion rate and apply equation (1) to build the ARG-GRM using these 
mutations. We used simulations to verify that Monte Carlo ARG-GRMs 
converge to exactly computed ARG-GRMs for large mutation rates, 
saturating at μ ≈ 1.65 × 10−7 (Extended Data Fig. 7b,c), the default value 
we used for ARG-GRM computations. Stratified Monte Carlo ARG-GRMs 
may also be computed by partitioning the sampled mutations based 
on allele frequency, LD or allele age36,31,67,68 (Supplementary Note 3).
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ARG-GRM simulation experiments
We simulated polygenic traits from haploid sequencing samples for 
various values of h2 and α. We varied the number of haploid samples N 
but fixed the ratio L/N throughout experiments, where L is the genetic 
length of the simulated region. For heritability and polygenic predic-
tion experiments, we adopted L/N = 5 × 10−3 Mb per individual. For 
association experiments, we simulated a polygenic phenotype from 
22 chromosomes, with each chromosome consisting of equal length 
L/22 and L/N = 5.5 × 10−3 Mb per individual. Mixed-model prediction 
r2 and association power may be roughly estimated as a function of 
h2 and the ratio N/M, where M is the number of markers39,69,70. We thus 
selected values of M and L such that the N/M ratio is kept close to that 
of the UK Biobank (L = 3 × 103 Mb, N ≈ 6 × 105).

We computed GRMs using ARGs, SNP data, imputed data (IMPUTE4 
(ref. 38) within-cohort imputation) and sequencing data, and performed 
complex trait analyses using GCTA21. Polygenic prediction used cvBLUP71 
leave-one-out prediction within GCTA. ARG-GRM association experi-
ments (Fig. 3c and Extended Data Fig. 8c,f) tested array SNPs on each 
chromosome while using GRMs built on the other 21 chromosomes to 
increase power, measured as the relative increase of mean −log10(P) 
compared with linear regression. We observed that MAF-stratification 
for ARG-GRMs of true ARGs enabled robust heritability estimation and 
polygenic prediction if α is unknown (Extended Data Fig. 8g). In experi-
ments involving inferred ARGs (Fig. 3b and Supplementary Fig. 8), we 
applied MAF-stratification for ARG-Needle ARGs and imputed data, but 
not for SNP data, for which GCTA did not converge.

ARG-Needle inference in the UK Biobank
Starting from 488,337 samples and 784,256 available autosomal array 
variants (including SNPs and short indels), we removed 135 samples 
(129 withdrawn, 6 due to missingness > 10%) and 57,126 variants (miss-
ingness > 10%). We performed reference-free phasing of the remain-
ing variants and samples using Beagle 5.1 (ref. 72) and extracted the 
unrelated white British ancestry subset defined in ref. 38, yielding 
337,464 samples. We built the ARG of these samples using ARG-Needle, 
using parameters described above. We parallelized the ARG inference 
by splitting phased genotypes into 749 nonoverlapping ‘chunks’ of 
approximately equal numbers of variants. We added 50 variants on 
either side of each chunk to provide additional context for inference 
and independently applied ARG normalization on each chunk. For 
our brief comparison of ARG inference methods in real data (Sup-
plementary Fig. 6c,d), we repeatedly sampled independent subsets 
of N = 2,000 and N = 16,000 diploid individuals, and inferred the ARG 
for these individuals using the first chunk in the second half of chromo-
some 1, which amounted to 7.5 Mb.

Genealogy-wide association scan in the UK Biobank
To process phenotypes (standing height, alkaline phosphatase, aspar-
tate aminotransferase, low-density lipoprotein (LDL)/high-density 
lipoprotein (HDL) cholesterol, mean platelet volume and total biliru-
bin) we first stratified by sex and performed quantile normalization. 
We then regressed out age, age squared, genotyping array, assessment 
center and the first 20 genetic principal components computed in  
ref. 38. We built a noninfinitesimal BOLT-LMM mixed model using 
SNP array variants, then tested HRC + UK10K-imputed data38,40,41 and 
variants inferred using the ARG (ARG-MLMA, described above). For 
association of imputed data (including SNP array) we restricted to 
variants with Hardy–Weinberg equilibrium P > 10−12, missingness < 0.05 
and info score > 0.3 (matching the filtering criteria adopted in ref. 38). 
For all analyses we did not test variants with an MAC < 5 and used MAF 
thresholds detailed below.

Association analysis of seven traits
Using the filtering criteria above and no additional MAF cutoff, we 
obtained resampling-based genome-wide significance thresholds of 

P < 4.8 × 10−11 (95% CI: 4.06 × 10−11, 5.99 × 10−11) for ARG and P < 1.06 × 10−9 
(95% CI: 5.13 × 10−10, 2.08 × 10−9) for imputation (Supplementary Table 1 
and Supplementary Note 4). After performing genome-wide MLMA for 
the seven traits, we selected genomic regions harboring low-frequency 
(0.1% ≤ MAF < 1%), rare (0.01% ≤ MAF < 0.1%) or ultra-rare (MAF < 0.01%) 
variant associations. We then formed regions by grouping any associ-
ated variants within 1 Mb of each other and adding 0.5 Mb on either 
side of these groups.

We next performed several further filtering and association 
analyses using a procedure similar to ref. 43 to extract sets of approxi-
mately independent signals (‘independent’ for short; Supplementary  
Tables 2–5 and Supplementary Note 4). Of the seven phenotypes, 
total bilirubin did not yield any rare or ultra-rare independent signals 
and height did not yield any independent ultra-rare signals. We lever-
aged the UK Biobank WES data to validate and localize independent 
associations. We extracted 138,039 exome-sequenced samples that 
overlap with the analyzed set of white British ancestry individuals and 
performed lift-over of exome sequencing positions from genome build 
hg38 to hg19. We computed pairwise LD between the set of independ-
ent associated variants and the set of all WES variants, defining the 
‘WES partner’ of an independent variant to be the WES variant with 
largest r2 to it. In a few instances, the same WES partner was selected 
by two ARG variants or two imputation variants (Supplementary 
Tables 2–5). Additionally, three WES partners were selected by one 
ultra-rare ARG and one rare imputation variant, and one WES partner 
was selected by one rare ARG and two ultra-rare imputation variants; 
these WES partners counted towards the 36 WES partners identified 
by both methods in rare and ultra-rare analyses, but were not counted 
as jointly identified when restricting to only rare or ultra-rare catego-
ries (as in Fig. 4a). We labeled WES variants by gene and functional 
status (‘loss-of-function’ and ‘other protein altering’; Supplementary  
Note 4) based on annotations obtained using the Ensembl Variant 
Effect Predictor (VEP) tool73.

Association analysis for higher frequency variants and height
For genome-wide association analyses of higher frequency variants and 
height, we matched filtering criteria used in ref. 38, retaining imputed 
variants that satisfy the basic filters listed above, as well as MAF ≥ 0.1%. 
Using these criteria, we estimated a resampling-based genome-wide 
significance threshold of 4.5 × 10−9 (95% CI: (2.2 × 10−9, 9.6 × 10−9);  
Supplementary Table 1). To facilitate direct comparison, we aimed 
to select parameters that would result in a comparable significance 
threshold for the ARG-MLMA analysis. Two sets of parameters satisfied 
this requirement: 3.4 × 10−9 (95% CI: 2.4 × 10−9, 5 × 10−9), obtained for 
μ = 10−5, MAF ≥ 1%; and 4 × 10−9 (95% CI: 3.1 × 10−9, 5.3 × 10−9), obtained 
for μ = 10−6, MAF ≥ 0.1%. We selected the former set of parameters, as 
a low sampling rate of μ = 10−6 leads to worse signal-to-noise and lower 
association power. We thus used a significance threshold of P < 3 × 10−9 
for all analyses of higher frequency variants. We used PLINK74,75 
(v.1.90b6.21 and v.2.00a3LM) and GCTA21 (v.1.93.2) to detect approxi-
mately independent associations using COJO47, retaining results with 
COJO P < 3 × 10−9 (Fig. 5e,f, Extended Data Fig. 10e, Supplementary  
Fig. 11 and Supplementary Note 4).

Statistics and reproducibility
For real data analysis in the UK Biobank, we included all 337,464 indi-
viduals of white British ancestry (as reported in ref. 38) who did not 
have genotype missingness > 10% and had not withdrawn from the UK 
Biobank at the time of our analysis. To further explore our findings, we 
selected the 138,039 of these individuals who were exome sequenced 
in the 200,000 UK Biobank whole-exome sequencing release.

Ethics
UK Biobank data were analyzed after approval of UK Biobank proposal 
no. 43206.
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Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
COJO association signals for higher frequency ARG variants with height 
are available at https://doi.org/10.5281/zenodo.7411562. VEP annota-
tions were generated using the Ensembl VEP tool (v.101.0, output pro-
duced February 2021), https://www.ensembl.org/info/docs/tools/vep/
index.html. UK Biobank data can be accessed by approved research-
ers through https://www.ukbiobank.ac.uk/. Other datasets were  
downloaded from the following URLs: summary statistics from 
whole-exome imputation from 50,000 sequences43, https://data.
broadinstitute.org/lohlab/UKB_exomeWAS/; likely causal asso-
ciations from whole-exome imputation from 50,000 sequences43, 
https://www.nature.com/articles/s41588-021-00892-1 Supplementary 
Table 3; GIANT consortium summary statistics in ~700,000 (ref. 46), 
https://portals.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files.

Code availability
The arg-needle and arg-needle-lib software packages, which imple-
ment the ARG-Needle and ASMC-clust methods as well as methods for 
the main analyses in this paper, are available at https://palamaralab.
github.io/software/argneedle/. Python packages can be downloaded 
at https://pypi.org/project/arg-needle/ and https://pypi.org/project/
arg-needle-lib/; analysis scripts are available at https://doi.org/10.5281/
zenodo.7745745. External softwares used in the current study were 
obtained from the following URLs: msprime (v.0.7.4), https://pypi.
org/project/msprime/; tsinfer (v.0.1.4), https://pypi.org/project/
tsinfer/; tsinfer scripts for sparse data (accessed January 2022),  
https://github.com/mcveanlab/treeseq-inference; Relate (v.1.0.15), 
https://myersgroup.github.io/relate/; ARGON (v.0.1.160415),  
https://github.com/pierpal/ARGON/; DASH (v.1.1) and GERMLINE 
(v.1.5.3), http://www1.cs.columbia.edu/~gusev/dash/; IMPUTE4 (v.4.1.2), 
https://jmarchini.org/software/#impute-4; Beagle (v.5.1), https://faculty.
washington.edu/browning/beagle/b5_1.html; PLINK (v.1.90b6.21), 
https://www.cog-genomics.org /plink/; PLINK (v.2.00a3LM),  
https://www.cog-genomics.org /plink/2.0/; GCTA (v.1.93.2),  
https://cnsgenomics.com/software/gcta/; BOLT-LMM (v.2.3.2),  
https://alkesgroup.broadinstitute.org/BOLT-LMM/downloads/; LiftO-
ver (used April 2021), https://genome.ucsc.edu/cgi-bin/hgLiftOver.
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Extended Data Fig. 1 | Additional comparison of ARG inference methods 
with array data and topology-only metrics. We compare methods on 
runtime and topology-only metrics, as in Fig. 2 but with additional simulation 
conditions. All columns are for 5 Mb of CEU demography array data, and 
individual columns represent standard parameters (see Methods), a factor of 
2 smaller recombination rate (ρ = 6 × 10−9), a factor of 2 larger recombination rate 
(ρ = 2.4 × 10−8), and a constant population size demography of 15,000 individuals. 
a. Robinson-Foulds distance as a function of the number of samples N, where 
values are scaled to lie between 0 and 1 (polytomies are randomly resolved).  
b. KC topology-only distance for N = 4,000 samples, showing performance 

as branches in marginal inferred trees are collapsed to form polytomies, 
using a heuristic to preferentially collapse branches that are least certain (see 
Methods). For tsinfer and tsinfer-sparse, we instead rely on the default amount 
of polytomies in the output, additionally showcasing when polytomies are 
randomly resolved (dashed lines indicate a linear trend may not hold). c. The 
same as b, except branches are randomly collapsed to form polytomies. d. KC 
topology-only distance as a function of N, with polytomies randomly resolved. 
e. Inference time as a function of N. All panels use 5 random seeds. Data are 
presented as means ± 2 s.e.m.
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Extended Data Fig. 2 | Additional comparison of ARG inference methods 
with array data and two branch length-aware metrics. We compare methods 
as in Fig. 2b, c, but with additional simulation conditions. All columns are for 
5 Mb of CEU demography array data, and individual columns represent standard 
parameters (see Methods), a factor of 2 smaller recombination rate (ρ = 6 × 10−9), 

a factor of 2 larger recombination rate (ρ = 2.4 × 10−8), and a constant population 
size demography of 15,000 individuals. We show results for the ARG total 
variation distance (a-b) and pairwise TMRCA RMSE (c-d), with (a,c) and without 
(b,d) ARG normalization, as these metrics are sensitive to branch length. All 
panels use 5 random seeds. Data are presented as means ± 2 s.e.m.
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Extended Data Fig. 3 | Comparison of ARG inference methods with 
sequencing data. Simulations use 1 Mb of CEU sequencing data and otherwise 
standard parameters (see Methods). Individual panels correspond to rows of 
Extended Data Figs. 1a, 2a–d, and 1b–e, in that order, with the same metrics used, 
namely a. scaled Robinson-Foulds distance (polytomies are randomly resolved), 
b-c. ARG total variation distance with (b) and without (c) ARG normalization, 

d-e. pairwise TMRCA RMSE with (d) and without (e) ARG normalization, f-g. KC 
topology-only distance for N = 4,000 samples with heuristic (f) and random (g) 
collapsing of branches, h. KC topology-only distance with polytomies randomly 
resolved, and i. inference time. d,e use 25 random seeds, whereas all other panels 
use 5 random seeds. Data are presented as means ± 2 s.e.m.
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Extended Data Fig. 4 | Consistency of inferred ARGs with underlying linkage 
patterns and sequence-level variation. a,b. Linkage disequilibrium (LD) decay 
up to 120 kilobases for ground truth ARGs as well as ARGs inferred by ARG-
Needle, ASMC-clust, and Relate. LD was evaluated by placing mutations with a 
mutation rate of 5 × 10−8 per base pair per generation and filtering to variants 
with MAF > 5%. Lines show mean r2 as a function of distance between variants, 
averaging across 10 independent simulations. Simulations were of 5 Mb of CEU 
demography array data with standard simulation parameters (see Methods). 

Methods including ARG normalization are shown in a, and methods without 
ARG normalization are shown in b, as branch lengths affect the probability for 
mutations to be sampled. c. We compute the fraction of underlying sequencing 
sites, of which the array variants are a subset, that cannot be mapped to branches 
of inferred ARGs (lower is better). Inference is on 5 Mb of CEU demography 
array data simulated with standard parameters (see Methods), averaging over 5 
random seeds. no polytomies refers to randomly resolving polytomies of tsinfer 
and tsinfer-sparse (see Methods). Data are presented as means ± 2 s.e.m.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | A genealogical view of genotype imputation and 
an algorithm for ARG-based imputation. a. The marginal tree represents 
the relationships of 10 haploid samples and variant ages at a locus. 3 of the 10 
samples are sequenced and used as a reference panel to impute sequenced 
variants into the remaining samples. An imputation algorithm may recognize 
sample 6 as the closest relative in the reference panel for samples 4 and 5, but if 
TMRCAs and variant times are not modeled, it may incorrectly impute variant 
‘A’ into sample 4. Variant ‘B’ may represent a high frequency variant that is not 
present in the sequencing panel (for example, an undetected indel or structural 
variant). Non-sequenced variants cannot be imputed. All variants may be  
tested for association using branches of an accurately inferred genealogy.  

b. Schematic of an ARG-based imputation algorithm (see Supplementary Fig. 12  
for exploratory results). Given a polymorphic sequenced site containing 
sequenced samples, unobserved genotypes for array samples, and a marginal 
tree relating all samples, we perform genotype imputation as follows. We first 
identify all branches in the tree for which a mutation on that branch best explains 
the observed sequencing data in terms of Hamming distance (red branches in the 
example). Each branch implies genotypes of 0 or 1 for the array samples, and we 
weight by branch length to produce a weighted predicted dosage for each array 
sample. In this example, the three branches have lengths in ratio 1:1:2, resulting in 
the predicted dosages shown in red.

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Additional simulations of ARG-MLMA genealogy-wide 
association power. a. Similar to Fig. 3a, except with a low-frequency causal 
variant (MAF = 0.05%) and a smaller simulation with N = 10,000 haploid samples 
and 22 chromosomes of 2.5 Mb each. b. Similar to a, except with the causal 
variant MAF chosen to be 0.1%. c. Similar to a, except using linear regression 
instead of the linear mixed model to test for association. d. We combine the 
association power results of ARG-Needle association from a and c, highlighting 

the improvement of ARG-MLMA compared to directly testing ARG clades using 
linear regression. e. As in a, but with N = 10,000 diploid instead of N = 10,000 
haploid individuals. ARG-Needle is run with the true phase known and with 
reference-free phasing. % ref indicates the size of the reference panel used for 
imputation as a percentage of the number of haploid samples (N = 10,000 in a-c, 
2 N = 20,000 in e). All panels use 100 independent simulations to measure power. 
Data are presented as fractions ± 2 s.e.m.
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Extended Data Fig. 7 | Overview of ARG-GRM definition and Monte Carlo 
estimator. a. Schematic of ARG-GRMs. Given an ARG between samples, we 
can compute the TMRCA matrix at each site and sum this over the genome to 
obtain the α = 0 ARG distance matrix (top, in blue). This equals a scaled version 
of the expected Hamming distance matrix (bottom, in red), which is formed 
by counting the number of differences between the genotypes of samples. By 
applying a series of simple matrix transformations to the ARG distance matrix 
(see Supplementary Note 3), we obtain the ARG-GRM, which can subsequently be 

used in complex trait analysis just like genotype-based GRMs. b,c. We compare 
the use of an exact α = 0 ARG-GRM to Monte Carlo α = 0 ARG-GRMs for heritability 
estimation (b) and polygenic prediction (c). As we increase the mutation rate 
for the Monte Carlo ARG-GRMs (rightmost value of μ = 1.65 × 10−7), we approach 
results from using the exact ARG-GRM. Shown are 5 independent simulations of 
N = 2,000 haploid samples, h2 = 0.8, α = 0, 10 Mb. Data are presented as estimates 
± 2 s.e.m., where the estimates are from meta-analysis in the case of heritability 
estimation and represent means otherwise.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | Additional simulations for ground-truth ARG-GRMs. 
a-f. As in Fig. 3c, with N = 10,000 haploid samples, except we vary h2 ∈ {0.8, 0.3} 
and α ∈ {0, −0.5, −1}. a, d. Heritability estimation for a 50 Mb region for h2 = 0.8 
(a) and h2 = 0.3 (d). b, e. Polygenic prediction for a 50 Mb region for h2 = 0.8 (b) 
and h2 = 0.3 (e). c, f. Mixed-model association for 22 chromosomes of 2.5 Mb each 
for h2 = 0.8 (c) and h2 = 0.3 (f). g. Panels a-f assumed it is possible to infer α and 
used the true α when building genotype-based or ARG-GRMs. If this value of α is 
misspecified, heritability estimation is biased and prediction r2 is hampered. This 
is true both for ARG-GRMs and sequencing GRMs. However, using MAF-stratified 

ARG-GRMs provides a robust way to estimate the true heritability when α is 
unknown, and achieves prediction r2 comparable to using the true α (N = 10,000 
haploid samples, 50 Mb, h2 = 0.8). For all panels, heritability and prediction 
experiments involve 5 simulations per bar, and most association experiments 
involve 50 simulations per bar, except for the h2 = 0.3, α = −1 condition in f, which 
involved 500 simulations. Data are presented as estimates ± 2 s.e.m., where 
the estimates are from meta-analysis in the case of heritability estimation and 
represent means otherwise. Prediction r2 for individual simulations is shown  
in b and e.

http://www.nature.com/naturegenetics
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Extended Data Fig. 9 | Further results for rare and ultra-rare variant 
associations. a. Counts of implicated 5 Mb regions containing ARG and 
HRC + UK10K imputation (‘HRC-imp’) independent associations, partitioned by 
traits and frequency and showing overlap. Total bilirubin was not associated at 
these frequencies. b. Average Pearson correlation between independent variants 
and their WES partners as a function of frequency, for ARG-derived variants, 
HRC + UK10K imputed variants, and HRC + UK10K imputed variants for which the 
WES partner was not the imputed variant. Dots represent the upper end of a 
frequency range. Central lines represent means and shaded areas represent 95% 
bootstrap confidence intervals. c. Cumulative distribution function for the 
distance between independent variants and their WES partners, partitioned by 
frequency. As in Fig. 4b, but also showing HRC + UK10K imputed variants for 
which the WES partner was not the imputed variant. d. Box plots of MAF for WES 

partners found by ARG-derived but not HRC + UK10K imputed independent 
variants (center line, median; box limits, upper and lower quartiles, whiskers, 1.5× 
interquartile range; points, outliers), stratifying by status in WES-50K-imp 
(imputation from WES-50K). e. Scatter plot of β̂ (estimated effect) for ARG-
derived independent variants (estimated within 337,464 samples) against β̂ for 
their WES partners (estimated within 138,039 samples), as in Fig. 4f but for 
associations with alkaline phosphatase in the ALPL gene and with LDL cholesterol 
in the APOB gene. We color points based on whether the WES partner is likely 
causal in WES-50K-imp, not likely causal but marginally significant in WES-50K-
imp, or not marginally significant in WES-50K-imp (‘ARG only’ in figure). We also 
plot the β̂ for the additional likely causal variants in WES-50K-imp against the β̂ in 
WES-138K. Error bars represent 1.96 s.e.m.

http://www.nature.com/naturegenetics
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Extended Data Fig. 10 | Additional results for low (0.1% ≤ MAF < 1%) and high 
frequency (MAF ≥ 1%) variant associations. a-c. Association of ARG-derived 
and imputed low-frequency variants with 7 quantitative traits. a. Counts of 
unique WES partners for ARG and HRC + UK10K imputed (‘HRC-imp’) 
independent associations, partitioned by traits and showing overlap. b. Counts 
of implicated 5 Mb regions containing ARG and HRC + UK10K imputation 
independent associations, partitioned by traits and showing overlap. c. Scatter 
plot of estimated effect ( β̂) for independent variants (estimated within 337,464 
samples) against β̂ for their WES partners (estimated within 138,039 samples), 
with linear model fit. Error bars represent 1.96 s.e.m. d, e. Association of higher 

frequency variants with height. d. Venn diagram of number of 1 Mb regions 
containing a significant hit at P < 3 × 10−9 for ARG-Needle (MAF ≥ 1%, μ = 10−5), HRC 
+ UK10K imputed (MAF ≥ 0.1%, info score > 0.3) and SNP array association. 
ARG-Needle association detected 971 out of 982 (98.9%) 1 Mb regions found by 
both imputation and array, 108 out of 153 (71%) 1 Mb regions found by imputation 
but not array and an additional 92 (8% increase upon 1140) 1 Mb regions to those 
already found by imputation and array. e. Percent of 1 Mb regions containing 
independent associations (defined as having COJO P < 3 × 10−9, see Methods) in 
association scans of 337,464 UK Biobank individuals that were also present in a 
GIANT consortium meta-analysis of ∼700,000 samples.

http://www.nature.com/naturegenetics
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