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Anti-PD-1/PD-L1 agents have transformed the treatment landscape of 
advanced non-small cell lung cancer (NSCLC). To expand our understanding 
of the molecular features underlying response to checkpoint inhibitors 
in NSCLC, we describe here the first joint analysis of the Stand Up To 
Cancer-Mark Foundation cohort, a resource of whole exome and/or RNA 
sequencing from 393 patients with NSCLC treated with anti-PD-(L)1 therapy, 
along with matched clinical response annotation. We identify a number 
of associations between molecular features and outcome, including (1) 
favorable (for example, ATM altered) and unfavorable (for example, TERT 
amplified) genomic subgroups, (2) a prominent association between 
expression of inducible components of the immunoproteasome and 
response and (3) a dedifferentiated tumor-intrinsic subtype with enhanced 
response to checkpoint blockade. Taken together, results from this cohort 
demonstrate the complexity of biological determinants underlying 
immunotherapy outcomes and reinforce the discovery potential of 
integrative analysis within large, well-curated, cancer-specific cohorts.

The introduction of PD-1/PD-L1 inhibitors in the management of 
advanced non-small cell lung cancer (NSCLC) has led to a major para-
digm shift in the treatment of the disease. Following multiple studies 
demonstrating improved overall survival, these agents have garnered 

approval either alone1–4 or in combination with chemotherapy5,6 or 
CTLA4 blockade7. However, with responses observed in only one in five 
unselected patients1–3, improved predictors of response are needed to 
identify patients most likely to benefit.
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To facilitate a more comprehensive analysis, we performed logistic 
regression, testing the relationship between 49 known lung cancer 
drivers20,21 and response (that is, CR/PR versus SD/PD; Methods). In all, 
six genes achieved significance or near significance, defined as a false 
discovery rate (FDR) threshold of 10% or 25%, respectively (Fig. 1d). In this 
analysis, mutations in ATM appeared to be most favorable with respect to 
checkpoint blockade response (logistic regression FDR q = 0.04, OR = 3.5, 
CI95% (1.5, 8.0)), while EGFR alterations were least favorable (q = 0.12, 
OR = 0.29, CI95% (0.11, 0.79)). Given the strong association between ATM 
and response in our cohort, we tested this association in an independ-
ent cohort of patients with NSCLC treated with PD-(L)1 blockade and 
profiled by MSK-IMPACT22. In this external cohort, ATM alterations were 
associated with improved overall survival following checkpoint blockade 
(P = 0.03; Extended Data Fig. 2b). As this association was not seen at the 

Given that the potential for long-term disease control is only real-
ized in a minority of patients, extensive effort has been dedicated to 
identifying biomarkers of response and resistance. The dominant 
biomarkers to date are PD-L1 protein expression on tumor cell mem-
branes4 and tumor mutational burden (TMB)8–10, which may underlie 
the generation of neoantigens that can serve as targets for immune 
recognition and targeting.

While additional features have begun to emerge including 
potential roles for mutation clonality11, an inflamed microenviron-
ment12,13 and alterations in individual genes such as EGFR14,15 and STK11  
(ref. 16), further identification and integration of relevant predictors 
have been hindered by the absence of large, multi-omic, NSCLC-specific 
patient cohorts.

Here we describe findings from the first integrative analysis of the 
Stand Up To Cancer-Mark Foundation (SU2C-MARK) NSCLC cohort, 
a dataset of 393 patients treated with checkpoint inhibitors in the 
advanced-stage setting. We performed whole exome sequencing (WES) 
and RNA sequencing (RNA-seq) along with detailed clinical response 
assessments, enabling the composite assessment of genomic and 
transcriptomic biomarkers of response and resistance. Collectively, 
these richly annotated data will be a resource to the field in furthering 
both the basic and applied investigation into the role of PD-1/PD-L1 
agents in advanced NSCLC.

Results
Cohort description and mutation summary
We analyzed formalin-fixed paraffin-embedded (FFPE) tumor samples 
collected before receipt of checkpoint blockade (defined as the first 
line of therapy in which a patient received a PD-1/PD-L1 agent) from a 
total of 393 patients with advanced NSCLC across nine cancer centers 
(Table 1 and Fig. 1a). The majority of these patients were treated with 
single-agent therapy (81%), with additional subsets receiving combina-
tion therapy including either CTLA4 blockade (17%) or chemotherapy 
(1%). Both tumor and matched normal specimens (from blood, or in 
rare cases, adjacent normal tissue) underwent WES; for a subset of 
patients, tumor tissue was additionally profiled by whole transcriptome 
RNA-seq. After stringent quality control (Methods), a total of 309 WES 
and 152 RNA-seq specimens were included for analysis. The primary 
outcome was best overall response (BOR) determined by a dedicated 
review of clinical imaging and quantified using RECIST v1.1 criteria.

As is typical for patients with NSCLC, the SU2C-MARK cohort 
consisted predominantly of adenocarcinoma (73%) and squamous cell 
carcinoma (20%), with smaller contributions from large cell neuroen-
docrine (LCNE) carcinoma (2%) and other histologies (4%; Extended 
Data Fig. 1a). Among patients with annotated PD-L1 staining assess-
ments (224/393 available, 43% missing), 25% had a tumor proportion 
score (TPS) of less than 1%, 33% had PD-L1 TPS 1–49%, and 42% had 
PD-L1 TPS ≥ 50%. As expected, higher PD-L1 TPS was associated with an 
increased response rate to checkpoint blockade (Extended Data Fig. 1b).  
Thus, our dataset reflected the histologic and biomarker compositions 
typically observed in unselected, real-world NSCLC cohorts17,18.

Somatic alterations and PD-(L)1 blockade response in NSCLC
To better understand the relationship between mutational drivers 
and response, we assessed the prevalence of known drivers in lung 
cancer across our three response categories: partial or complete 
response (PR/CR), stable disease (SD) and progressive disease (PD; 
Fig. 1b and Extended Data Fig. 2a). Consistent with prior reports8–10, 
nonsynonymous TMB associated with response category (P = 6 × 10−9), 
with median TMB 14.0 mut/MB among those with PR/CR, compared 
to 9.0 mut/MB for SD, and 7.4 mut/MB for PD (Fig. 1c). Initial examina-
tion of the cohort was also consistent with previously observed driver 
associations15,16,19, such as EGFR alteration or KRAS/STK11 comutation 
being a negative predictor of checkpoint blockade response (Extended 
Data Fig. 1c,d).

Table 1 | Baseline clinical characteristics of the SU2C-MARK 
cohort

Patient characteristics (n = 393) All patients, no. (%)

Age (years), median (range) 64 (29–90)

Sex

  Male 182 (46)

  Female 207 (53)

Smoking status

  Never 46 (12)

  Former 283 (72)

  Current 60 (15)

Smoking pack-years

  0 47 (12)

  1–10 46 (12)

  11–20 50 (13)

  21–40 125 (32)

  >40 113 (29)

Histology

  Adenocarcinoma 286 (73)

  Squamous 77 (20)

  LCNE 9 (2)

  Other 17 (4)

PD-L1 expression

  0% 56 (14)

  ≥1% 168 (43)

Prior lines of therapy

  0 143 (36)

  1 150 (38)

  ≥2 96 (24)

Therapy

  PD-(L)1 only 317 (81)

  PD-(L)1 + CTLA4 65 (17)

  PD-(L)1 + chemotherapy 2 (1)

BOR

  CR/PR 142 (36)

  SD 110 (28)

  PD 132 (33)

The SU2C-MARK cohort consists of 393 patients with NSCLC treated with immune checkpoint 
blockade therapy in the advanced setting. BOR to the first line containing a PD-(L)1 agent was 
recorded.
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cohort-wide level (P = 0.45), these results suggest a predictive rather 
than simply prognostic role for ATM alteration.

We next explored relationships between copy number alterations 
and response in the cohort (Extended Data Fig. 3a). Among focal events, 

only focal amplification of 5p15.33, the cytoband containing TERT, 
achieved significance, and was associated with reduced response 
to immunotherapy (q = 0.07, OR = 0.59, CI95% (0.40, 0.87); Fig. 1e and 
Extended Data Fig. 3b). Of note, this association was not reproduced in 
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Fig. 1 | Overview of the SU2C-MARK cohort and initial genomic 
characterization. a, Overview of clinical and genomic data collected across 
the SU2C-MARK cohort (n = 393 patients). b, CoMut plot of SU2C-MARK cohort 
organized by response category. c, Log10 of the TMB as a function of response 
category. Significance was assessed via a two-sided Mann–Whitney U test.  
d, Volcano plot of logistic regression results for oncogenic mutations in known 
lung cancer drivers and binned BOR category comparing patients with a PR 
or CR to patients with SD or PD. ATM alterations reached significance (q < 0.1, 
Benjamini–Hochberg), while EGFR, RBM10, ARID1A, KEAP1 and SMARCA4 were 
all near significance (q < 0.25). e, Volcano plot of logistic regression results for 
gene-level copy number. Focal amplifications of TERT as well as the cytoband 

it is located on, 5p15.33 (Extended Data Fig. 3b), are associated with resistance 
to checkpoint blockade. f, Summary of exome-derived genomic features 
and logistic regression with response. Neoantigens were estimated using 
NetMHCpan-4.0 (ref. 60) following HLA allele identification with POLYSOLVER61. 
Subclone count was assessed via PhylogicNDT62. Aging, smoking and APOBEC 
burdens were calculated based on the mutation burden attributable to these 
processes (SBS5, SBS4 and SBS13, respectively) following mutational signature 
analysis (Extended Data Fig. 4 and Methods). HLA was estimated via LOHHLA24. 
B- and T-cell rearranged receptor abundance was estimated via MiXCR27. LOH, 
loss of heterozygosity; TMB, tumor mutation burden; PR, partial response; CR, 
complete response; SD, stable disease; PD, progressive disease.
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the MSK-IMPACT cohort, which may be a function of the more limited 
sensitivity of amplifications in panel data (Extended Data Fig. 3c). 
Taken together, these results suggest that in addition to the aggregate 
metric of TMB, individual driver events may also define favorable and 
unfavorable NSCLC subsets for checkpoint blockade.

Predicted neoantigens, antigen presentation and response
To better understand how the determinants of immune recognition in 
our cohort related to response, we calculated the neoantigen burden 
for each exome in the SU2C-MARK cohort (Methods). Total neoantigen 
burden was significantly associated with response (q = 4 × 10−5, OR = 8.8, 
CI95% (4.2,19); Fig. 1f). As clonal neoantigens have been suggested to 
be more effective targets of immune recognition11, we additionally 
examined the role of clonal and subclonal neoantigen burden, along 
with total subclone count (Methods). Indeed, clonal neoantigen burden 
was also significantly associated with response (q = 2 × 10−4, OR = 5.4, 
CI95% (2.7,11)), whereas neither subclonal neoantigen burden nor total 
subclone count was significant (q = 0.7 and q = 0.6, respectively; Fig. 1f).

As different mutational processes may have different propensi-
ties for neoantigen generation, we also evaluated the mutation bur-
den attributable to distinct mutational signatures (Extended Data  
Fig. 4a,b; Methods). Of the three dominant signatures, smoking was 
most strongly associated with response (q = 5 × 10−5), consistent with 
its association with clonal neoantigens, while aging (q = 0.05) and 
APOBEC (q = 0.01) were more weakly associated with response (Fig. 1f). 
We additionally observed a significant response association for indels 
(q = 2 × 10−5), which are suspected to be particularly immunogenic given 
their potential to generate new reading frames11,23.

Previous studies have suggested that compromised antigen pres-
entation, due to loss of heterozygosity (LOH) at HLA loci24, decreased 
total unique HLA alleles25, or loss of B2M26 may enable immune evasion 
in certain cancer types. We did not observe an association of any of 
these factors measured before therapy and response in this cohort 
(Fig. 1f), potentially suggesting disease-specific variation in mecha-
nisms of resistance.

To further assess for variation in immune infiltrate, we used 
MiXCR27 to identify B- and T-cell clonotypes from rearranged VDJ reads 
in our WES data (Methods). Of these subsets, T-cell receptor (TCR) 
burden was associated with response but did not reach statistical sig-
nificance (q = 0.3). Thus, among our expanded set of exome-derived 
features, tumor-intrinsic markers reflective of TMB as well as clonal 
mutation burden emerged as top predictors of response.

Transcriptional correlates of response
We next focused on the identification of transcriptional predictors of 
response. Using limma voom28, we performed a genome-wide analysis 
of differentially expressed genes between responders (PR/CR) and 
nonresponders (SD/PD; Fig. 2a and Methods). Initial assessment of 
these results identified three related genes that achieved cohort-wide 
significance (padj < 0.05; Methods): PSME1, PSME2 and PSMB9. These 
genes are notable for their prominent role in the function of the immu-
noproteasome (further described below), a noncanonical peptide 
processing complex thought to promote differential and enhanced 
antigen presentation in the setting of proinflammatory cytokines29. 
Examination of the broader collection of genes achieving nominal 
significance (nominal P < 0.05) revealed additional interferon-gamma 
(IFN-γ)-induced transcripts including TAP1 (a cytosolic peptide trans-
porter in the antigen presentation pathway) and CD274 (which encodes 
PD-L1), inflammatory chemokines such as CXCL9, CXCL10 and CXCL11, 
and lymphocyte receptor genes (for example, CD3D and CD7), poten-
tially surrogates for immune infiltration (Fig. 2a and Extended Data 
Fig. 5a). Top genes associated with nonresponse appear to span both 
developmental and immune-related pathways. AUTS2 and TCF7L1, 
interacting transcription factors within the Wnt/B-catenin signal-
ing axis, are postulated to have roles in both stem cell30 and immune 

signaling31. Another nonresponse-associated gene, PDLIM3, is a mem-
ber of a protein family thought to negatively regulate NF-κB-mediated 
inflammatory responses32. KALRN, a guanine nucleotide exchange 
factor expressed in stromal and myeloid cells, has been associated with 
inflammation in the context of atherogenesis (Extended Data Fig. 5a).

To systematically identify differentially expressed pathways, we 
performed gene set enrichment analysis (GSEA) using the Hallmark 
Gene Sets33 (Fig. 2b). Top response-associated pathways included 
ALLOGRAFT_REJECTION, INTERFERON_GAMMA_RESPONSE and 
DNA_REPAIR, which has previously been observed as a predictor of 
checkpoint blockade response in urothelial carcinoma34,35. Pathways 
associated with resistance were diverse, with EPITHELIAL_MESENCHY-
MAL_TRANSITION, WNT_BETA_CATENIN_SIGNALING and TGF_BETA_
SIGNALING gene sets all significantly associated with nonresponse  
(Fig. 2b). Taken together, these top genes and gene sets from  
bulk RNA-seq suggest the relevance of both immune and nonimmune 
components to the biology of checkpoint blockade.

Immunoproteasome expression and response
Given the remarkable convergence of all three genes (PSME1, PSME2 
and PSMB9) on components of the proteasome/immunoproteasome 
system responsible for peptide generation, we expanded our explora-
tion of genes specific to this antigen presentation pathway. Notably, 
PSME1 and PSME2 encode for the IFN-γ inducible PA28ɑβ complex that 
binds and enhances peptide processivity of both the constitutive and 
immunoproteasome. PSMB9 (LMP2) encodes the β1i IFN-γ inducible 
subunit that together with β2i (PSMB10) and β5i (PSMB8) represent the 
three inducible subunits whose incorporation transforms the constitu-
tive proteasome into a specialized immunoproteasome with distinct 
peptide cleavage patterns29. Hence, as all the inducible components of 
this complex (PSMB8, PSMB9, PSMB10, PSME1 and PSME2) are known 
to be downstream of IFN-γ, which itself was nominally associated with 
response in our analysis (IFNG P = 0.001; log2 fold change 1.1), we evalu-
ated the response association of these components alongside canonical 
IFN-γ targets (HALLMARK_INTERFERON_GAMMA_RESPONSE) as well 
as a comprehensive list of proteasome components (GOCC_PROTEA-
SOME_COMPLEX; Fig. 2c). Notably, immunoproteasome components 
were enriched in terms of the significance of association with response 
relative to both IFN-γ targets more broadly, as well as all proteasome 
components (P = 9 × 10−9 and P = 2 × 10−5, respectively; Fig. 2c and 
Extended Data Fig. 5b).

Although the inducible subunits of the immunoproteasome 
were highly correlated with one another, increases in their expression 
could only partly be explained by elevated levels of IFN-γ (Extended 
Data Fig. 5c). Given that experimental evidence suggests they may 
also be induced by tumor necrosis factor-α (TNF-α)36, we evaluated 
whether higher levels of TNF may also contribute to upregulation 
of these components. Indeed, a linear combination of IFNG and TNF 
demonstrated improved model fit for immunoproteasome subunit 
expression (R2 = 0.31 for the combined model compared to 0.19 for the 
univariate model; Fig. 2d). Thus, immunoproteasome subunits appear 
to be singularly important predictors of response—even among the 
broader class of IFN-γ-induced transcripts—perhaps owing to their role 
as integrators of multiple cytokine cascades, enabling more efficient 
generation of peptide epitopes for HLA-I presentation.

Immune subset signatures
Given that both individual gene and pathway level analysis highlighted 
key roles for immune signaling, we aimed to better delineate discrete 
immune cell subsets in our bulk transcriptome data using previously 
identified signatures derived from single-cell RNA data37 (Methods). 
Of the 11 signatures we evaluated, exhausted CD8+ T-cells showed the 
strongest positive association with response, while the monocyte/
macrophage and dendritic cell signatures were most strongly associ-
ated with resistance (Fig. 2e).
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As a growing body of work suggests that distinct myeloid subsets 
may have differing roles in antitumor immunity38,39, we investigated 
more specific subsignatures related to these cell types. Using a marker 
list derived from a comprehensive single-cell RNA-seq study of infiltrat-
ing myeloid cells in human and mouse lung cancers40, we identified 
the hMono3 and hN3 subtypes as being particularly associated with 
resistance to checkpoint blockade (Extended Data Fig. 6). Notably, 
the hMono3 subtype is characterized by high expression of S100A8, a 
cytokine-like protein that can drive the accumulation of myeloid-derived 
suppressor cells41. The neutrophil hN3 subtype is defined by high expres-
sion of CXCR2, which has been shown to inhibit CD8 T-cell activation 
within the lung cancer microenvironment42. Thus, our focused analysis of 
immune subsets identified plausible mechanistic connections between 
myeloid infiltration and decreased response to checkpoint blockade.

Microenvironmental (M) expression signatures
To identify M signatures relevant to immunotherapy response beyond 
individual cell types, we applied Bayesian non-negative matrix 

factorization (B-NMF) to our top 770 differentially expressed genes, 
yielding three distinct M signatures as follows: M-1, M-2 and M-3 (Fig. 3a,b; 
Methods). Because these signatures were derived from bulk sequencing, 
they are expected to reflect the complete microenvironmental signature, 
inclusive of both tumor and nontumor (that is, immune and stromal) 
sources. GSEA of these signatures revealed M-1 to be associated with 
epithelial–mesenchymal transition (a gene set that includes wound heal-
ing and fibrosis) and M-2 to be associated with allograft rejection/IFN-γ 
response, consistent with an inflamed immune environment (Fig. 3c).  
M-3 had a weak association with cell cycle-related E2F targets, poten-
tially reflecting a proliferative tumor signature, which in conjunction 
with the relative depletion of infiltrating myeloid and lymphoid cells, 
most resembles the previously reported immune desert phenotype43  
(Fig. 3d and Extended Data Fig. 7). Notably, the response rate to check-
point blockade varied across these subtypes, with increased response 
rates observed in M-2 relative to M-1 and M-3 (P = 0.06; Fig. 3e). Overall, 
these results suggest that there may be at least two distinct transcrip-
tional states associated with checkpoint blockade resistance in NSCLC.
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Fig. 2 | Transcriptomic features associated with response and resistance in 
the SU2C-MARK cohort. a, Volcano plot of limma voom results for top response-
associated genes from RNA-seq samples in the SU2C-MARK cohort (n = 152 
RNA samples). Nominal P values from two-sided significance testing are shown. 
Cutoffs of absolute log2(fold change) > 0.5 and P < 0.05 were used to identify 
significantly differentially expressed genes (red). b, Hallmark GSEA of response 
and resistance-associated pathways from limma voom. c, Dot plot of significance 
values for interferon-gamma (IFN-γ) targets (n = 198 genes), proteasome subunits 
(n = 56 genes) and immunoproteasome subunits (n = 5 genes). Boxplot overlay 
depicts the 25th percentile (minima), 50th percentile (center) and 75th percentile 
(maxima) of distribution with whiskers bounding points within 1.5× interquartile 

range (Q3–Q1) from each minimum and maximum. Immunoproteasome 
subunits as a set showed a greater association with response than IFN-γ targets 
and proteasome targets (P = 7 × 10−9 and P = 4 × 10−6, respectively, two-sided 
Mann–Whitney U test). d, Contour plot of a linear, 2D model predicting 
expression of representative immunoproteasome subunit PSMB8 as a function of 
the inflammatory cytokines IFNG and TNF. Contour levels correspond to roughly 
1.2-fold TPM increments in PSMB8 expression. Patients with high expression 
of both IFNG and TNF demonstrated the highest PSMB8 expression (R2 = 0.31). 
e, Logistic regression summary results for tumor-associated immune cell 
signatures derived from single-cell sequencing37.
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Tumor intrinsic subtyping
Having explored aggregate microenvironmental states, we next 
turned our attention to tumor intrinsic expression factors that may 
have a relationship with response. To define relevant tumor intrinsic 
(TI) lung cancer subtypes, we assembled a large reference collection 
of over 1,000 transcriptomes (TCGA-LCNE) representing the three 

predominant NSCLC histologies, namely adenocarcinoma, squamous 
cell carcinoma and large cell neuroendocrine carcinoma (Fig. 4a and 
Methods). To define signatures of individual subtypes in this collection, 
we first performed B-NMF across this cohort, converging on a robust 
four-cluster solution (Fig. 4b and Extended Data Fig. 8a). Of these TI 
clusters, TI-1 and TI-2 contained predominantly adenocarcinomas, TI-3 
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Fig. 3 | Derivation of M subtypes and association with checkpoint blockade 
response. a, Overview of M signature generation using B-NMF. b, H-matrix of 
SU2C-MARK samples and normalized M signature activity from semisupervised 
B-NMF. c, Dot plot of hallmark GSEA results for B-NMF-derived M signatures. 
Nominal P values from the one-sided hypergeometric test are shown.  
d, Swarmplots of selected tumor-associated immune cell signatures by M 
clusters. Myeloid cells were generally enriched in the wound healing (M-1, 

n = 52 RNA samples) subtype, while most immune cell types were enriched in 
the immune-activated (M-2, n = 56 RNA samples) subtype and depleted in the 
immune desert (M-3, n = 44 RNA samples) subtype (P < 0.001 for all signatures, 
Kruskal–Wallis test). e, Response rate by M subtype. The immune-activated (M-2) 
subtype was enriched for responders compared to the wound healing (M-1) and 
immune desert (M-3) subtypes (P = 0.06, one-sided Fisher’s exact test).
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was composed largely of squamous cell carcinomas, and TI-4 was pri-
marily large cell neuroendocrine carcinomas (Extended Data Fig. 8b).  
Notably, unlike our M signatures above—which were derived solely 
from the subset of genes with significant response associations and 
were enriched for immune and stromal components—our TI signatures 

emerged from the unsupervised factorization of primary lung cohorts 
spanning three distinct histologies, explaining the high concordance 
between our TI subtypes and existing histologic categories.

To understand these signatures in more detail, we explored the 
expression of canonical markers of adenocarcinoma and squamous 
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Fig. 4 | Derivation of TI NSCLC transcriptional subtypes. a, Overview of 
B-NMF approach to the generation of TI subtype signatures. A total of 1,082 
RNA-seq samples spanning the three dominant NSCLC histologies were used 
as input for signature identification. Specifically, the TCGA LUAD and LUSC 
cohorts were used in addition to a published LCNE Cohort by George et al.63 
to generate the combined TCGA-LCNE cohort. b, H-matrix of TCGA-LCNE 
samples and normalized TI signature activity. c, Violin plots of cancer subtype 

immunohistochemistry markers based on membership in TI clusters TI-1 (n = 81 
samples), TI-2 (n = 433 samples), TI-3 (n = 447) and TI-4 (n = 55). Dedifferentiated 
(TI-1) samples expressed lower levels of canonical adenocarcinoma and 
squamous markers, but notably high levels of markers associated with 
neighboring endodermal lineages (top row). Significance was assessed by the 
Kruskal–Wallis test (***P < 0.001).
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differentiation, namely NAPSA (which encodes Napsin A) and TP63 
(which encodes both p63 and p40), respectively (Extended Data  
Fig. 8c). While TI-2 and TI-3 showed the expected lineage marker 
preferences, TI-1 samples showed weak expression of both markers. 
Decreased expression of lung lineage markers has previously been 
described in a subtype of poorly differentiated adenocarcinomas in 
which markers for adjacent gut lineages (neighboring endodermal 
territories during development) can become activated44. Indeed, a 
comparison of these subtypes to immunohistochemical markers of 
various endodermal lineages revealed enrichment in these gut-specific 
marker genes in TI-1 samples, such as TFF1, FGA and CPS1 (Fig. 4c). 
TI-1 samples were also notable for an elevated TMB relative to the 
well-differentiated TI-2 adenocarcinoma subtype and the TI-3 squa-
mous subtype (Extended Data Fig. 8d).

Having established a reference collection of TI expression 
signatures, we applied these signatures to RNA-seq data from the 
SU2C-MARK cohort and assessed their association with response to 
checkpoint inhibitors. Notably, the dedifferentiated TI-1 cluster was 
most closely associated with response (Fig. 5a), consistent with the 
elevated mutational burden in this subtype as well as its stronger asso-
ciation with the M-2 ‘immune-activated’ subtype (Fig. 5b and Extended 
Data Fig. 8e). Indeed, patients with both immune-activated (M-2) and 
dedifferentiation (TI-1) signatures had the highest response rates to 
checkpoint blockade (67% ORR; Fig. 5c). Thus, TI states and immune 
M signaling may independently and additively govern responses  
in NSCLC.

Integrative cohort analysis
Having evaluated a broad set of clinical, genomic and transcriptomic 
features relevant to checkpoint blockade response in NSCLC, we set 
out to better understand the relationships between these predictors. 
Combining the top predictive features from each analysis, we generated 
a cross-correlation matrix to better understand how they relate to each 
other as well as to previously published signatures relevant to tumor 
biology and immune response (Fig. 6 and Methods)35,45–50. Notably, 
three strong correlation blocks could be observed, with consistent 
response associations within each subset. The first correlation block 
(C1) appeared to reflect a canonical ‘wound healing’ microenvironment, 
including immunosuppressive myeloid and stromal signatures. The 
second correlation block (C2) reflected the more classic cytokine and 
immune milieu associated with ‘immune activation/exhaustion,’ includ-
ing both infiltrating immune signatures and proteasome subunits. The 

third correlation block (C3) consisted of features related to mutational 
burden, presumably all proxies for neoantigen abundance and conse-
quent enhanced immune recognition.

The remaining nine features were somewhat loosely correlated as 
a fourth cluster (C4) enriched for single-gene alterations with poten-
tially distinct immunobiologies. Notably, this cluster included EGFR 
mutations, which interestingly showed minimal association with the 
immune signatures but a moderate anticorrelation with mutational 
burden features, suggesting the intrinsic resistance of this subtype 
may predominantly be driven by insufficient neoantigens15 (Fig. 6 and 
Extended Data Fig. 9a).

To evaluate whether the additional genomic predictors identified 
in this study could augment existing biomarker-defined subsets of 
NSCLC, we selected the top two significant predictors from each clus-
ter and evaluated their potential to further stratify progression-free 
survival (PFS) in three clinically relevant subgroups: TMB > 10 mut/
MB (favorable; n = 27), PD-L1 TPS ≥ 50% (favorable; n = 34) and PD-L1 
TPS ≤ 1% (unfavorable; n = 18). Following FDR correction, we identified 
multiple near-significant and significant associations (q < 0.25 and 
0.1, respectively; Extended Data Fig. 9b,c and Methods), particularly 
when evaluating features from the immune activation/exhaustion and 
wound healing clusters (dedifferentiated TI-1 in PD-L1 TPS ≤ 1% q = 0.23; 
immune-activated M-2 in PD-L1 TPS ≤ 1% q = 0.16; macrophage/mono-
cytes in PD-L1 TPS ≥ 50% q = 0.06; hMono3 in PD-L1 TPS ≥ 50% q = 0.11). 
Therefore, the presence of these factors may augment prediction based 
on standard clinical variables.

Feature analysis in single-cell data
Given that the predictors identified in this study were derived from bulk 
specimens, they likely reflect contributions from multiple distinct cell 
types within the tumor microenvironment. To gain additional insight 
into the specific cellular components that may be driving response 
and resistance, we explored these predictors in the context of pub-
lished single-cell sequencing data from NSCLC within mixed tumor 
environments that may be contributing to these signals in bulk data51. 
Evaluation of the marker expression from the 13 cancer-related clusters 
revealed a straightforward mapping to several TI subtypes described 
earlier, including one cluster (cluster 12) which mapped to our dedif-
ferentiated TI-1 subtype (Fig. 7a and Extended Data Fig. 10a; Methods).

Deconvolution of the unfavorable wound healing (C1) predic-
tors suggested that the EMT and TGF-β signatures predominantly 
reflected fibroblasts and endothelial cells as opposed to a mesenchymal 
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epigenetic state per se within the tumor cells; conversely, some of 
the dominant single-gene transcriptional predictors such as AUTS2 
and TCF7L1 demonstrated substantial tumor intrinsic expression  
(Fig. 7b and Extended Data Fig. 10b). Similarly, analysis of the favorable 
predictors in the immune activation/exhaustion cluster (C2) revealed 
that while immunoproteasome subunits are expressed in most cell 
types, CXCL9 may be predominantly expressed by myeloid sources, 

and CXCL11 may be primarily derived from endothelial cells (Fig. 7b 
and Extended Data Fig. 10b). Finally, our favorable dedifferentiated 
(TI-1) and immune-activated (M-2) predictors, while correlated at the 
bulk level, did appear to identify distinct subpopulations (cancer cells 
and T-cells, respectively) at the single-cell level, consistent with our 
labeling of these signatures as tumor intrinsic versus microenviron-
mental (Fig. 7b). Taken together, these findings suggest the presence 
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resistance-associated features in the SU2C-MARK cohort along with a selection of 
signatures previously described as relevant to tumor and immune biology35,45–50. 
The three strongest correlation blocks are outlined and roughly correspond to 

wound healing (C1), immune activation/exhaustion (C2) and neoantigens (C3). 
Of note, the direction of association (that is, positive or negative) with immune 
checkpoint blockade response was consistent for predictors within each of these 
highlighted correlation blocks.
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of rich, interacting ecosystems that may broadly underlie response and 
resistance to checkpoint blockade and provide a collection of specific 
signaling pathways and cell types that may be promising targets for 
future intervention.

Discussion
Comprehensive identification of predictors of checkpoint blockade 
response in patients with NSCLC has been limited by the availability 
of large, well-annotated patient cohorts with matched genomic data, 
particularly within individual cancer types. Here we present a joint 
analysis of the SU2C-MARK cohort, a collection of nearly 400 patients 
with NSCLC, enabling the identification of diverse molecular predictors 
of immunotherapy response.

Among the top genomic features identified were ATM mutation 
and TERT amplification. Given emerging literature associating ATM 
loss with the release of cytosolic DNA and activation of the cGAS/
STING pathway in other cancer types52–54, it is conceivable that a similar 
mechanism underlies the association observed in our cohort between 
ATM loss and response. Although less well characterized in the context 
of immunotherapy, TERT amplification may serve a protective function 
against telomere crisis, thereby forestalling a parallel mechanism, 
which has been linked to cGAS/STING activation and subsequent sen-
sitization to checkpoint blockade in mouse models55.

Transcriptomic analysis in the SU2C-MARK cohort was notable 
for the identification of immunoproteasome subunit genes as key 
predictors of response, with greater enrichment than general IFN-γ 
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targets or proteasome subunits. These findings are consistent with 
those described in melanoma, where a supervised signature consisting 
specifically of PSMB8 and PSMB9 was found to be predictive of immune 
checkpoint blockade response56. We speculate that enhanced peptide 
supply to MHC-1 via increased expression of the PA28ɑβ complex and 
immunoproteasome may result in superior CD8+ T-cell responses. In 
addition, the altered cleavage specificity of the immunoproteasome 
relative to the constitutive proteasome—particularly in terms of pref-
erences for branched-chain amino acids and chymotrypsin-like target 
sites29— may confer increased antigen quality in addition to quantity 
in immunoresponsive tumors.

Higher level organization of the strongest genes associated 
with response and resistance identified microenvironmental signa-
tures previously associated with relevant immune states such as the 
immune-activated (M-2) signature and immune desert (M-3) signa-
ture. The wound healing (M-1) signature, although less well described 
in the context of lung cancer, does match the TGF-β transcriptional 
signature thought to drive T-cell exclusion in bladder cancer35. While 
the immune desert (M-3) signature was somewhat more enigmatic, the 
top-weighted genes appear to be largely tumor intrinsic, suggesting 
they may directly reflect a tumor state unfavorable to immune inva-
sion. Consistent with this notion, one of the top-weighted genes in the 
signature, DSC3, is a component of intercellular desmosome junctions 
that can act as barriers to immune infiltration57.

In addition to features such as these global immune states that 
may have pan-cancer relevance, we also describe a dedifferentiated 
(TI-1) NSCLC-specific subtype identified independently in both bulk 
and single-cell data using unsupervised approaches. A similar subtype 
has been described in mouse lung cancer models featuring a decreased 
expression of classic lung lineage markers as well as enhanced expres-
sion of developmentally adjacent endodermal lineages44. The correla-
tion between this tumor intrinsic state and our immune-activated (M-2) 
signature could represent an underlying differentiation state more 
susceptible to immune recognition (for example, via the presentation 
of oncofetal antigens)58, or conversely, a cell state change in response 
to an inflammatory cytokine milieu59. Establishing the direction of 
causality between these signatures may have important implications 
for further therapeutic intervention.

Finally, integrative analysis of our genomic features along with 
previously reported signatures relevant to immune and tumor biol-
ogy supported the notion of a complex interplay between distinct 
signaling pathways (for example, CXCL9 versus TGF-β signaling) and 
distinct cell types (for example, myeloid cells versus fibroblasts), 
shedding light on some of the multifaceted interactions underlying 
checkpoint blockade responsiveness. Particularly noteworthy in this 
respect is the recognition that a number of features identified here 
may be truly tumor intrinsic predictors, which aside from a handful of 
specific driver events15,16 or defects in antigen presentation26 have been 
somewhat elusive in NSCLC. It is our hope that the SU2C-MARK cohort 
continues to serve as a rich resource for further unraveling the complex 
architecture of relevant genomic predictors, and for generating deeper 
insights into the biology of antitumor immunity.

Online content
Any methods, additional references, Nature Portfolio reporting 
summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41588-023-01355-5.
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Methods
Clinical cohort and assessment
All patients in the SU2C-MARK cohort consented through umbrella 
sequencing protocols approved under local institutional review 
board protocols at their respective cancer centers (Dana-Farber 
Cancer Institute 02-180, Massachusetts General Hospital 13-416, MD 
Anderson PA13-0589, Memorial Sloan Kettering 12-245, Columbia Uni-
versity IRB-AAA05706, University of California Davis LCRP-001, Yale 
1411014879, Johns Hopkins IRB00100653). All samples in this study 
were from patients treated with anti-PD(L)1 therapy either as a single 
agent or in combination with other agents between 2009 and 2019. 
Although this cohort predominantly corresponds to standard-of-care 
therapy, a subset of patients from MSKCC treated with dual checkpoint 
blockade was derived from sequencing of specimens collected during 
the course of Checkmate 012 (NCT01454102; ref. 64).

Samples collected typically correspond to the first standard-of- 
care confirmation of metastatic disease, and therefore reflect a time-
point before receipt of any advanced therapy. Response data were 
assessed using RECIST v1.1 criteria through a dedicated radiologist 
review of standard-of-care clinical restaging studies (or in a subset 
of cases, imaging obtained while on a trial protocol). Confirmed BOR 
was determined using radiographic data following the first line of 
therapy involving a PD(L)1-based agent. PFS and overall survival were 
defined from the date of treatment start with a PD(L)1 agent until the 
first evidence of radiographic/clinical progression or date of death, 
respectively, and censoring was based on the date of last follow-up. To 
facilitate further analyses, WES and RNA-seq specimens were divided 
into two cohorts with cohort 1 corresponding to roughly the first 
80% of available samples. Of note, a subset of these samples has been 
described previously in institution-specific collections65,66.

Informed consent was obtained under the institutional protocols 
listed above. Patients were not compensated for their participation. 
In all, the cohort consisted of 393 patients undergoing checkpoint 
blockade therapy. Patients in the cohort ranged in age from 29 to 90 
years. In total 182 patients were male and 207 patients were female. 
Additional details on the cohort distribution are described in Extended 
Data Fig. 1a.

WES
WES of DNA was performed at the Genomics Platform of the Broad 
Institute of Harvard and MIT as described previously67,68, with the 
exception of samples previously sequenced at Johns Hopkins65 and Yale 
University69. In brief, DNA was extracted from FFPE tumor specimens 
and either matched normal whole blood, or in cases where this was 
unavailable, from adjacent normal FFPE specimens. Extraction was 
performed using the Qiagen AllPrep DNA/RNA Mini Kit (80204). A 
single aliquot of 150–500 ng input DNA in 100 μl TE buffer was used for 
library generation. Library preparation was performed using the Kapa 
HyperPrep kit, and quantification was performed using PicoGreen. 
Adapter ligation was performed using the TruSeq DNA exome kit from 
Illumina per manufacturer’s instructions. Sequencing of pooled librar-
ies was performed using a HiSeq2500 with 76 bp paired-end reads. The 
mean target coverages for tumor and normal samples were 150× and 
80×, respectively.

Somatic analysis of WES
Initial alignment of all samples to the hg19 genome was performed 
using the Broad Picard pipeline (v2.4.1), specifically with bwa 0.5.9 
(ref. 70). The Broad Cancer Genome Analysis group somatic mutation 
pipeline was run in the cloud platform Firecloud/Terra. Specifically, the 
first-pass quality control was performed by assessing sample contami-
nation using ContEst71 and identifying potential sample swaps using the 
Picard CrossCheckFingerprints tool (using software versions from the 
GATK 4.0.5.1 release). Somatic single nucleotide variants (SNVs) and 
indels were called using a combination of MuTect72, MuTect2 (ref. 73)  

and Strelka74. Recovery of somatic variants filtered due to tumor contam-
ination in the matched normal was performed using DeTiN v1.7 (ref. 75)  
followed by annotation with Oncotator v1.9 (refs. 75,76). Adjacent SNV 
events were merged to di-nucleotide variants (DNVs), and filtering 
was performed using OxoG and FFPE Orientation Bias filters as well as 
removal of events observed in a panel of normals composed of TCGA 
and Illumina Capture Exome normals77. Finally, a BLAT realignment 
filter was implemented to eliminate potentially spurious variants 
resulting from mismapped reads78. To meet quality control criteria for 
inclusion in the exome cohort, samples were required to have mean and 
median target coverage >50×, contamination <5% and tumor purity 
>10% as assessed by ABSOLUTE (v1.5)79. Comparison of MutSig2CV80 
driver analysis from the SU2C-MARK cohort agreed well with previ-
ously published results for TCGA lung adenocarcinoma (LUAD) and 
lung squamous cell carcinoma (LUSC) cohorts (Extended Data Fig. 2a).

TMB and mutation signature analysis
TMB was calculated as the natural log of nonsynonymous SNVs, DNVs 
and indels in a sample divided by the size of the Illumina exome cap-
ture territory in megabases. Signatures for the SU2C-MARK cohort 
were determined using the SignatureAnalyzer Bayesian NMF (v1.2) 
method81–83. In brief, we pooled TCGA LUAD21, TCGA LUSC20 and 
SU2C-MARK cohort samples to improve our power for detection 
of rare signatures and performed unsupervised signature extrac-
tion using 20 random initializations. Thirteen runs converged to a 
seven-signature solution, so the k = 7 solution with maximum poste-
rior probability was selected for downstream analysis. Assessment 
of cosine similarity between the seven signatures identified and the 
previously described COSMIC signatures84 was used to assign labels 
to each, with the three dominant signatures representing aging, 
APOBEC and smoking. Signature attributable mutation burden was 
calculated as the relative projection strength for each signature in a 
given sample. Dominant signatures identified across the cohort are 
shown in Extended Data Fig. 4. Log values of the mutation, signature 
and clonal/subclonal burdens were calculated using a pseudocount 
of one event per MB.

Neoantigen analysis
Potential neoantigens were identified by first running POLYSOLVER 
(v1.0)61 to identify MHC Class I alleles from matched normal WES data. 
Predicted binding affinity for all possible 9mer and 10mer peptide 
sequences overlapping single and di-nucleotide somatic variants was 
assessed using NetMHCPan-4.0 (refs. 60,85,86). Neoantigens with 
percentile ranks of two or less for any Class I allele in the same patient 
were counted as predicted binders.

Somatic copy number alteration analysis and GISTIC 
evaluation
Somatic copy number alterations were assessed from WES using the 
GATK4 CNV pipeline on Firecloud/Terra (corresponding to GATK 
v4.0.8.0). A copy number panel of normals (n = 820 samples) was 
generated from a collection of FFPE as well as fresh frozen samples 
filtered to have less than 1% of tumor in normal contamination. GATK 
CNV bin length was set to zero, and read counts were processed using 
the hg19 Illumina Capture Exome (ICE) targets with padding of 250 
bases. Intervals were filtered for having less than 1% of samples with 
zero coverage by setting—maximum-zeros-in-interval-percentage to 1.  
The minimum total allele count for informative heterozygous SNPs 
was set to 10. GISTIC2.0 was used to process the allelic somatic copy 
number data to identify recurrent copy number altered regions across 
the cohort87. The continuous copy number output values (rather than 
binned value) for focal and gene-specific events from GISTIC were used 
as inputs for downstream analysis. Comparison of significant recurrent 
alterations showed good consistency between the SU2C-MARK cohort 
and prior TCGA publications (Extended Data Fig. 3).
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ABSOLUTE analysis
Tumor purity and ploidy were estimated using ABSOLUTE (v1.5)79,88. 
Specifically, somatic mutation and copy number data were used 
as inputs, and purity/ploidy solutions were evaluated manually. In 
general, solutions were selected with a preference for describing the 
observed data well at modeled integer copy numbers, being parsimoni-
ous (for example, diploid as opposed to genome doubled), appropri-
ately fitting full deletions and having an alpha/2 line centered within 
the highest somatic SNV allelic fraction peak (where alpha represents 
the model purity). A gene-specific integer copy number and LOH were 
inferred from integer copy number segmented output from total or 
allele-specific copy number analysis, respectively. Samples with less 
than 10% purity were excluded as a filtering step during WES quality 
control as above.

Subclone evaluation using PhylogicNDT
The subclonal architecture was inferred from ABSOLUTE input using 
PhylogicNDT (v1.0)62. Mutation clonality across single samples was 
modeled using a Dirichlet process, enabling the assignment of muta-
tions to discrete subclones with imputed cancer cell fractions (CCFs). 
Variants assigned to clusters with CCF over 0.85 were classified as 
clonal, while the remainder were deemed subclonal. Subclone count 
was based on the total number of unique subclones identified by 1D 
Phylogic analysis.

T-cell and B-cell infiltrate analysis
Rearranged reads corresponding to T- and B-cell receptors were identi-
fied from WES data using MiXCR v3.0 (ref. 27). Primary BAM files were 
processed with the ‘analyze shotgun’ pipeline, and reads correspond-
ing to TCR or Ig clonotypes with productive rearrangements (that 
is, those leading to in-frame rearrangements without stop codons) 
were summed to give a total TCR or Ig read count per sample. To infer 
relative T- or B-cell abundance, these read counts were normalized by 
calculating T-cell and B-cell burden89, defined as (rearranged receptor 
count reads + 1)/(aligned reads/106). Natural log of this burden metric 
was used during the significance assessment.

Response association testing
In total, 106 features derived from whole exome and transcriptome 
analysis were evaluated (Supplementary Table 30). Features reflect-
ing mutation burden (for example, TMB, Neoantigens, etc.) were 
log-transformed before evaluation. Mutation and copy number fea-
tures were filtered to include only those present in at least 5% of the 
cohort. Each feature was assessed in a univariate logistic regression 
model of BOR, binned as responders (PR/CR) versus nonresponders 
(SD/PD). FDR calculation was performed using the Benjamini–Hoch-
berg method, with features categorized as significant (FDR < 0.1) or 
near-significant (FDR < 0.25).

Whole transcriptome sequencing
RNA-seq data were processed using the GTEx RNA-seq pipeline90 with 
the use of the GENCODE v19 reference transcriptome, followed by 
quality control evaluation using the RNA-SeQC2 (v1.0) pipeline90,91, 
generating both expression data as transcripts per million (TPM) as 
well as quality metrics. Specifically, this pipeline uses STAR (v1.0) 
alignment with the following settings: alignIntronMax = 1,000,000, 
alignIntronMin = 20, alignMatesGapMax = 1,000,000, alignSJDBover-
hangMin = 1, alignSoftClipAtReferenceEnds = True, chimJunctionOver-
hangMin = 15, chimMainSegmentMultNmax = 1, chimSegmentMin = 15. 
Alignment is then followed by: (1) omission of reads that are unmapped, 
have secondary alignments (0 × 100 flag) or have the quality control 
fail flag (0 × 200), and (2) filtering for high-quality exonic reads that 
uniquely map as pairs (0 × 2 flag) and have fewer than six mismatches 
to ultimately generate gene-level expression data as well as associated 
quality metrics. Using the median exon TPM (CV), the number of genes 

detected, and other measures, we selected the highest quality samples 
(n = 152) for subsequent analysis.

RNA-seq differential expression analysis
To analyze differentially expressed genes, we restricted our search to 
protein-coding transcripts, and those minimally expressed at a log2TPM 
of 0.5 or higher in at least 30% of our samples. Using the BOR groupings 
of responders (PR/CR) versus nonresponders (SD/PD), we then used 
the R package limma voom to identify genes differentially expressed 
with respect to response.

Gene set enrichment analysis
Using the signed, log-transformed P values from the differential expres-
sion results, we performed enrichment analyses using the ‘fgsea’ pack-
age (v3.16)92 and the Hallmark Gene Sets from the Molecular Signatures 
Database (MSigDB)33.

RNA-seq supervised signature analysis
Using existing literature, we derived metagenes for clinically important 
features. Starting with groups of genes associated with a certain feature 
(for example, genes expressed according to B-cell abundance), we took 
the mean of the log2-transformed TPMs in our cohort, then compared 
samples to each other by z-scoring those averages. These analyses 
include metagenes for different groups of leukocytes93, which we use 
as a proxy for the level of immune infiltration indicated by RNA-seq. 
Additionally, we used previously published markers of developmental 
lineage44,94 and NSCLC subtypes95 to better understand the develop-
mental identity of each sample. We also defined an additional gene set 
for neuroendocrine identity using markers from a published characteri-
zation of large-cell neuroendocrine lung cancer63. For cell type-specific 
characterization, we used metagenes from single-cell studies of lung 
cancer developmental subtypes and immune infiltrate37,40.

Non-negative matrix factorization-based expression 
subtyping
We applied the B-NMF algorithm81,89,96,97 to organize the significantly 
differentially expressed gene set from cohort 1 of our RNA-seq data 
(n = 123) into three distinct clusters, that is, our M subtypes. We first 
filtered our log2(TPM + 1) gene expression matrix to keep only genes 
with differential expression P value < 0.05 and absolute log-fold 
change > 0.5, thus limiting our analysis to genes potentially involved 
in response. We further filtered out genes with sparse or low expression, 
that is more than 10% NA or zero values, or in the bottom 10% of mean 
expression. We transformed the values to fold changes by subtracting 
the median for each gene, then obtained the Spearman correlation 
matrix of these fold changes, and performed hierarchical clustering 
while varying the number of clusters (K) from 2 to 10 and repeating 500 
iterations for each K value. We then obtained consensus matrices for 
each K (calculating the number of times samples clustered together in 
the 500 iterations), summed these matrices across all K values, and nor-
malized the resulting matrix by the number of iterations. Using B-NMF 
with a half-normal prior, this matrix was used to decide on the optimal 
number of clusters. Using this empirically determined value of K, we 
then applied the B-NMF algorithm to the original log2TPM gene expres-
sion matrix. In this case, the gene expression matrix is approximated by 
W*H, where H is the cluster membership matrix and W is the gene weight 
matrix. We used the W matrix to narrow down the genes most closely 
associated with each cluster, keeping only genes in the top 50% of nor-
malized weights for each cluster, as well as those with the largest differ-
ence between within-cluster versus outside-cluster expression. Using 
this reduced marker gene list, we classified the remaining samples in 
cohort 2 into our three-cluster scheme. Of note, given re-annotation 
of the RNA sample from patient SU2CLC-DFC-DF0732 as having been 
post-treatment, this specimen was removed from our analysis (Supple-
mentary Note and Supplementary Fig. 1). We used this same procedure 
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to define the TI subtypes, with the exception of initially filtering to keep 
high-variance genes (instead of keeping genes of interest from the dif-
ferential expression analysis, as in the M subtypes). We similarly used 
TI marker genes to classify additional samples.

Integrative predictor clustering
A collection of the top clinical, genomic and transcriptomic predic-
tors identified in the SU2C-MARK cohort or published previously as 
relevant to antitumor immunity were first compared across samples 
in the SU2C-MARK cohort. Unsupervised hierarchical clustering was 
performed on this set, identifying four broad clusters that were ulti-
mately designated wound healing, immune activation/exhaustion, 
neoantigens and others. As validation of these predictor classes, recal-
culation of these features was performed in TCGA data by combining 
publicly available mutation calling and RNA-seq data for the TCGA 
LUAD21 and TCGA LUSC20 cohorts (combined n = 1018). Unsupervised 
hierarchical clustering was again performed, and feature membership 
was compared to assignments made earlier from analysis within the 
SU2C-MARK dataset. As with other sections described here, integrative 
analysis was performed with Python (v3.7) and R (v3.4).

Single-cell analysis of predictor clusters
Using single-cell data from a previously published NSCLC cohort51, we 
performed preprocessing, integration and Leiden clustering in Scanpy 
(v1.9.1)98 to identify distinct cell types. For preprocessing, we filtered 
counts to cells with at least 200 genes, and then filtered out genes that 
were observed in fewer than 50 cells. Further filtering was performed 
on cells with between 1,000 and 8,000 genes, total counts between 
3,000 and 100,000, percent of mitochondrial counts less than 15%, 
and percent of ribosome counts less than 20%. Cell cycle effects were 
regressed out using Scanpy, and samples were then integrated using 
Harmony (harmony2019)99. The cell type of the Leiden clusters was 
annotated based on gene markers described in Wu et al.51 as well as 
canonical IHC cancer subtype markers. Clusters were assigned one of 
the cell types alveolar, B cell, cancer, endothelial, epithelial, fibroblasts, 
myeloid or T cell based on these expression markers. Metagene expres-
sion level was calculated as the mean expression of the gene markers 
that comprised the metagene. For signatures M-2 and TI-1, the top ten 
genes by weight were selected. Of note, in some cases, single genes 
or individual genes in a signature did not pass filtering or were not 
detected, and therefore were not plotted/included in a given metagene.

Survival analysis
Single-feature survival analysis was performed using progression-free 
and overall survival data with censoring as described above. For the 
MSK impact cohort, patients with alterations in ATM found on panel 
sequencing who also had received checkpoint blockade therapy were 
included in the cohort. For integrative analysis across the feature 
list, the top two genomic features from each correlation cluster were 
selected for PFS analysis as follows: the monocyte/macrophage score, 
the hMono3 score, dedifferentiated signature TI-1, immune-activated 
signature M-2, TMB, TMB indel, ATM Mutation and TERT amplifica-
tion. Participants were binned into high and low categories for each 
feature (using 0 as a cut point for z-score features, cluster identity for 
signatures, median for mutation burden features and the presence or 
absence of alteration/copy gain for single-gene features). FDR values 
were subsequently computed from the nominal P values obtained via 
the log-rank test using the Benjamini–Hochberg method. A complete 
list of the log-rank test results including median PFS for each subgroup 
is provided in Supplementary Table 31.

Statistics and reproducibility
This study was designed as a retrospective immunogenomic analysis 
of biospecimens from NSCLC patients receiving checkpoint blockade 
in the advanced setting. As such, no statistical method was used to 

predetermine the sample size. Patients who did not have at least one 
pretreatment whole exome or RNA-seq sample that passed QC follow-
ing library construction or alignment were excluded from the analysis 
(as described above). There was no randomization or stratification per-
formed during described analyses, and investigators were not blinded 
to participant outcomes during primary data analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequencing data for WES and RNA-seq specimens in the 
SU2C-MARK cohort are available in dbGaP (phs002822.v1.p1), except 
for samples from Cleveland Clinic and UC Davis, as these sites did not 
explicitly include language around deposition of identifiable data in a 
controlled access repository. Further information about these collec-
tions can be obtained from the respective IRB teams (irb@ccf.org and 
hs-irbeducation@ucdavis.edu) and/or the PIs at each institution (UC 
Davis; PI: Riess – jwriess@ucdavis.edu; Cleveland Clinic; PI: Pennell – 
penneln@ccf.org). Data use restrictions specific to each site are also 
enumerated in the dbGaP accession and include Disease-Specific use 
(Dana-Farber Cancer Institute), Health/Medical/Biomedical use (MDA 
Anderson, Memorial Sloan Kettering), and General Research Use (Mas-
sachusetts General Hospital). Data from institution-specific cohorts 
is currently available in dbGaP under accession codes phs001618.
v1.p1 (ref. 66) and phs001940.v2.p1 (ref. 65) as well as European 
Genome-phenome Archive EGAS00001003892 (ref. 65).

Code availability
Code generated for this study has been deposited in the linked Zenodo 
repository: https://doi.org/10.5281/zenodo.7625517 (ref. 100).
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Extended Data Fig. 1 | Extended SU2C-MARK cohort characterization and 
genomic predictor evaluation. (a) Distributions of clinical characteristics 
in the Stand Up To Cancer - Mark Foundation (SU2C-MARK) cohort. (b) Best 
overall response (BOR) distribution by PDL1 tumor proportion score (PDL1 TPS) 
category (significance assessed by two-sided Fisher’s exact test). CR = Complete 
Response, PR = Partial Response, SD = Stable Disease, PD = Progressive Disease, 

NE = Not Evaluable. (c,d) Kaplan-Meier curves for Progression-Free Survival (PFS) 
in EGFR mutated vs. unmutated patients (c) and KRAS/STK11 comutated patients 
vs. KRAS mutant STK11 umutated patients (d). Both EGFR mutated patients and 
KRAS/STK11 comutated patients demonstrated decreased progression-free 
survival relative to their counterparts (p = 0.03 and p = 0.001, respectively, 
logrank test).

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01355-5

b

0 12 24 36 48 60
0

25

50

75

100

ATM

Months

ov
er

al
l s

ur
vi

va
l

Mutant
Wildtype

p = 0.03

a

Extended Data Fig. 2 | Extended analysis of mutated genes in the SU2C-MARK 
cohort and comparison to external cohorts. (a) Significant drivers identified 
independently in the SU2C-MARK cohort (left) as compared to TCGA Lung 
Adenocarcinoma (LUAD; right upper) and TCGA Lung Squamous Cell Carcinoma 
(LUSC; right lower). Of note, the SU2C-MARK cohort includes a mixture of 
frequent drivers observed in LUAD and LUSC, consistent with it representing  

pan-NSCLC histologies. (b) Kaplan-Meier curves comparing checkpoint blockade 
treated ATM mutant patients and ATM wildtype patients in the Memorial Sloan 
Kettering Cancer Center (MSKCC) Impact cohort. ATM mutated patients 
demonstrated improved survival compared to unmutated patients (p = 0.03, 
logrank test).
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Extended Data Fig. 3 | Extended analysis of somatic copy number alterations 
within the SU2C-MARK Cohort. (a) Somatic copy number alterations were 
analyzed using GISTIC2.0 (ref. 87) to identify significantly recurrent focal 
amplifications and deletions. Strong overlap between the events identified in the 
SU2C-MARK cohort and those previously described in TCGA LUAD and LUSC was 
observed. A subset of validated lung cancer drivers within regions of focal copy 
number alteration are annotated. (b) Volcano plot of logistic regression results 

for focal amplifications. Focal amplification of cytoband 5p15.33 (which contains 
TERT) is associated with resistance to checkpoint blockade. CR = Complete 
Response, PR = Partial Response, SD = Stable Disease, PD = Progressive Disease. 
(c) Kaplan-Meier curves comparing checkpoint blockade treated patients with 
and without TERT amplifications (AMP) in the Memorial Sloan Kettering Cancer 
Center (MSKCC) Impact cohort (p = 0.7, logrank test).
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Extended Data Fig. 4 | Mutation signature analysis in the SU2C-MARK and 
TCGA-LCNE cohorts. (a) Unsupervised mutational signature identification 
was performed using automatic relevance determination non-negative matrix 
factorization (ARD-NMF) on the combined SU2C-MARK and TCGA-LCNE cohorts. 
The TCGA-LCNE cohort comprises TCGA lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC), and published large cell neuroendocrine 
(LCNE)63 cohorts. Of the 7 signatures identified, the predominant signatures 

corresponded to COSMIC signatures for Aging (SBS5), Smoking (SBS4), and 
APOBEC (SBS13). Plots display mutational signatures identified in each sample 
based on mutation counts (left) as well as fraction of signature attributable 
mutations (right) with a shared color key for both plots. (b) Barplot of signature 
profiles demonstrating relative contribution from each 96-base context. 
Signatures were subsequently assigned to previously described COSMIC 
signatures based on cosine similarity84.
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Extended Data Fig. 5 | Extended response and resistance associated genes 
and signatures in the SU2C-MARK Cohort. (a) Expression of top 10 significant 
protein-coding transcripts associated with response (PR/CR, left; N = 52 
RNA samples) and nonresponse (SD/PD, right; N = 84 RNA samples). Boxplot 
overlay depicts 25th percentile (minima), 50th percentile (center), and 75th 
percentile (maxima) of distribution with whiskers bounding points within 1.5 
X interquartile range (Q3–Q1) from each minimum and maximum. PR = Partial 

Response, CR = Complete Response, SD = Stable Disease, PD = Progressive 
Disease, TPM = transcripts per million (b) Volcano plot for Limma results for 
cohort wide analysis subsetted to Interferon Targets, Proteasome Subunits, 
and Immunoproteasome Subunits. (c) Scatterplots comparing 5 inducible 
components of the immunoproteasome against each other as well as IFNG. 
Regression line and bootstrapped 95% confidence interval are displayed.
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Extended Data Fig. 6 | Significance testing of single cell profiling derived 
myeloid subsets and checkpoint blockade response in the SU2C-MARK 
Cohort. Logistic regression significance values for myeloid cell signatures 
derived from single cell profiling40 (Benjamini–Hochberg q-value). hMono3 

and hN3 were classified as near-significant (q < 0.25) in their association with 
nonresponse. PR = Partial Response, CR = Complete Response, SD = Stable 
Disease, PD = Progressive Disease.
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Extended Data Fig. 7 | Comparison of single-cell profiling derived myeloid subsets with Microenvironment (M) subtypes in the SU2C-MARK Cohort. Swarmplot 
of myeloid cell signatures derived from single cell profiling40 across Microenvironmental subtypes. Significance of association was assessed by Kruskal–Wallis test  
(* p < 0.05, ** p < 0.01, *** p < 0.001).
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Extended Data Fig. 8 | Extended analysis of Tumor-Intrinsic (TI) subtypes. 
(a) Alluvial plot of Tumor Intrinsic (TI) subtype downsampling analysis ranging 
from full TCGA-LCNE cohort (N = 1082) to under 50% downsample (N = 500). 
The TCGA-LCNE cohort comprises TCGA lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC), and published large cell neuroendocrine 
(LCNE)63 cohorts. Both overall distribution and individual sample membership 
were well preserved across downsamples. (b) Confusion matrix of TCGA-LCNE 
cohort comparing TI subtype assignment with study source. The novel de-
differentiated (TI-1) subtype included predominantly TCGA LUAD samples, with 
a smaller contribution from TCGA LUSC. (c) Expression scatterplot of canonical 
adenocarcinoma and squamous cell carcinoma markers, NAPSA (Napsin A) and 

TP63 (encoding both p40 and p63), respectively, across the TCGA-LCNE Cohort. 
Samples are colored by TI cluster assignment, with neither de-differentiated 
(TI-1) nor LCNE (TI-4) samples showing strong canonical lineage marker 
expression. TPM = transcripts per million. (d) Tumor mutation burden (TMB) 
for Tumor Intrinsic subtypes TI-1 (N = 81 patients), TI-2 (N = 433 patients), TI-3 
(N = 447 patients), and TI-4 (N = 55 patients) in the TCGA-LCNE Cohort. The 
De-differentiated (TI-1) subtype had an increased mutation burden compared 
to the Adeno (TI-2) and Squamous (TI-3) subtypes (p = 9 ×10−6 and p = 0.002, 
respectively, two-sided Mann–Whitney U test). (e) Violinplots of Tumor Intrinsic 
signatures by membership in Microenvironment clusters M-1 (N = 52 RNA 
samples), M-2 (N = 56 RNA samples), and M-3 (N = 44 RNA samples).

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01355-5

ba

PDL1 High (TPS ≥ 50%) PDL1 Low (TPS ≤ 1%)

q = 0.06
q = 0.16

N
eo

an
tig

en
s

(C
3)

W
ou

nd
 H

ea
lin

g
(C

1)

Im
m

un
e

A
ct

iv
at

io
n/

Ex
ha

us
tio

n
(C

2)

Correlation Cluster
Wound Healing (C1)
Immune Activation/Exhaustion (C2)
Neoantigens (C3)
Other (C4)

c

Correlation Cluster
Wound Healing (C1)
Immune Activation/Exhaustion (C2)
Neoantigens (C3)
Other (C4)

25%
 FD

R

10%
 FD

R

25%
 FD

R

10%
 FD

R

25%
 FD

R

10%
 FD

R

Extended Data Fig. 9 | Evaluation of correlation in TCGA data between 
top SU2C-MARK predictors and assessment of their ability to further 
stratify clinically relevant subgroups of the SU2C-MARK cohort. (a) Cross-
correlation heatmap of the top response and resistance associated features in 
the SU2C-MARK cohort as assessed in TCGA LUAD and LUSC combined datasets 
(N = 1018)35,45–50. Correlation cluster and response association colorbars based on 
designations in the SU2C-MARK cohort are plotted. Unsupervised hierarchical 
clustering re-identifies the previously recognized feature clusters corresponding 
to Wound Healing (C1), Immune Activation/Exhaustion (C2), and Neoantigens 
(C3). Nearly all features retain their original cluster designations (the relocation 
of the De-Differentiated TI-1 signature may relate to its association with high 
mutation burden as described earlier). (b) Contribution of SU2C-MARK 

predictors to clinically relevant biomarker subsets. The addition of features 
from the Wound Healing (C1) and Immune Activation/Exhaustion (C2) clusters 
meaningfully stratify traditionally favorable (for example, PDL1 high) and 
unfavorable (for example, PDL1 low) clinical subgroups (q = 0.06 and q = 0.16, 
respectively, Benjamini–Hochberg adjusted logrank test). TMB = Tumor 
Mutation Burden. (c) Association of top genomic predictors from SU2C-MARK 
cohort with Progression-Free Survival (PFS) for clinically relevant subgroups 
of NSCLC, namely high TMB ( > 10 mut/MB, top; favorable), high PD-L1 tumor 
proportion score (PDL1 TPS) corresponding to PDL1 TPS ≥ 50% (middle; 
favorable), and low PD-L1 expression (PDL1 TPS ≤ 1%, bottom; unfavorable). 
Signed FDR q-values based on Benjamini–Hochberg adjustment of logrank 
p-values are plotted for each feature (Methods).
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Extended Data Fig. 10 | Cell type identification and feature analysis from 
previously published single cell RNA-Seq data in NSCLC. (a) Analysis of top 
immunohistochemistry (IHC) markers for Tumor Intrinsic (TI) subtypes in single 
cell non-small cell lung cancer (NSCLC) data51. Leiden cluster 12 demonstrated 
moderate expression of all 3 IHC markers for the De-Differentiated TI-1 subtype 
identified from bulk RNA-Seq. Other cluster demonstrated Adeno, Squamous, 
or mixed Adeno/Squamous markers, with no predominantly Large Cell clusters. 

(b) Dotplots of the top 10 favorable (left) and unfavorable (right) single genes 
identified in limma voom analysis of the SU2C-MARK cohort, as expressed in 
single cell NSCLC data. As observed for features in the larger correlation blocks 
earlier (Fig. 7b), individual predictors with uncorrelated single cell profiles could 
be found within each category (for example, CXCL9 vs. CXCL11 among favorable 
predictors, and SIPA1L2 and PDLIM3 within unfavorable predictors).
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