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Abstract
Lymph node metastasis examined by the resected lymph nodes is considered one of the most important prognostic factors for 
colorectal cancer (CRC). However, it requires careful and comprehensive inspection by expert pathologists. To relieve the 
pathologists’ burden and speed up the diagnostic process, in this paper, we develop a deep learning system with the binary 
positive/negative labels of the lymph nodes to solve the CRC lymph node classification task. The multi-instance learning 
(MIL) framework is adopted in our method to handle the whole slide images (WSIs) of gigapixels in size at once and get 
rid of the labor-intensive and time-consuming detailed annotations. First, a transformer-based MIL model, DT-DSMIL, is 
proposed in this paper based on the deformable transformer backbone and the dual-stream MIL (DSMIL) framework. The 
local-level image features are extracted and aggregated with the deformable transformer, and the global-level image features 
are obtained with the DSMIL aggregator. The final classification decision is made based on both the local and the global-level 
features. After the effectiveness of our proposed DT-DSMIL model is demonstrated by comparing its performance with its 
predecessors, a diagnostic system is developed to detect, crop, and finally identify the single lymph nodes within the slides 
based on the DT-DSMIL and the Faster R-CNN model. The developed diagnostic model is trained and tested on a clinically 
collected CRC lymph node metastasis dataset composed of 843 slides (864 metastasis lymph nodes and 1415 non-metastatic 
lymph nodes), achieving the accuracy of 95.3% and the area under the receiver operating characteristic curve (AUC) of 0.9762 
(95% confidence interval [CI]: 0.9607–0.9891) for the single lymph node classification. As for the lymph nodes with micro-
metastasis and macro-metastasis, our diagnostic system achieves the AUC of 0.9816 (95% CI: 0.9659–0.9935) and 0.9902 
(95% CI: 0.9787–0.9983), respectively. Moreover, the system shows reliable diagnostic region localizing performance: the 
model can always identify the most likely metastases, no matter the model’s predictions or manual labels, showing great 
potential in avoiding false negatives and discovering incorrectly labeled slides in actual clinical use.

Keywords Colorectal cancer · Lymph node metastasis · Whole slide image · Multi-instance learning · Vision transformer · 
Deep learning · Computer-aided diagnosing

1 Introduction

Colorectal cancer (CRC) accounts for approximately 10% 
of all cancer cases diagnosed and cancer-related deaths 
worldwide. CRC is also the third most common cancer in 
males and the second most common cancer in females [1]. 
The number of new CRC cases worldwide is estimated to 
increase to 2.5 million by 2035 [2]. Surgical resection of 
the tumor and associated regional lymph nodes remains the 
most effective treatment for CRC. Lymph node metastasis 
examined by the removed lymph nodes is considered one of 
the most important prognostic factors for the disease, which 
requires careful and comprehensive inspection by expert 
pathologists. The 7th and 8th editions of the American Joint 

Luxin Tan, Huan Li and Jinze Yu contributed equally to this work.

 * Zhiyong Niu 
 niuzhiyong@blothealth.com

 * Jianxin Li 
 lijx@act.buaa.edu.cn

 * Zhongwu Li 
 zhwuli@hotmail.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11517-023-02799-x&domain=pdf
http://orcid.org/0000-0003-3440-9077


1566 Medical & Biological Engineering & Computing (2023) 61:1565–1580

1 3

Committee on Cancer have recommended the examination 
of at least 12 lymph nodes during surgical resection for CRC 
[3], which poses a significant challenge to the intensity and 
accuracy of the work for pathologists together with the 
increasing number of slides produced clinically.

Automated cancer detection in whole slide images (WSIs) 
has been a long-standing research area for decades since the 
traditional manual annotating procedure is time-consuming 
and error-prone. The application of deep learning to analyze 
WSIs is becoming increasingly important. Recent promising 
results in cancer diagnosis and detection, tumor micro-envi-
ronment phenotype classification, and prognosis prediction 
reveal the great potential of WSI diagnostic methods based on 
deep learning [4–6]. These achievements can be attributed to 
the advances in computer vision and medical image analysis 
algorithms. However, these methods are still restricted by the 
high demand for a large-scale, thoroughly annotated dataset.

The typical paradigm of processing WSIs is the patch-
wise processing method, which crops the gigapixel slide 
images into thousands of image patches with smaller dimen-
sions, e.g., 224 × 224 pixels [7]. The patches are examined 
by a patch-wise classification network, e.g., a convolutional 
neural network (CNN), to obtain positive probability or 
to segment diagnostic regions within each patch, includ-
ing tumor areas, stroma or smooth muscle, necrosis, and 
fibrosis [8]. The patch-wise results are further aggregated 
by simple aggregation methods like max or average pooling 
for slide-level tasks to obtain final global prediction results. 
The aforementioned patch-wise classification and global 
slide-wise aggregation procedure rely on patch-wise or even 
pixel-wise annotations, which are costly, time-consuming, 
and problematic due to the severely imbalanced data distri-
bution between negative and positive patches and common 
and cancerous cells.

To address the issues mentioned above in patch-based 
fully supervised learning methods, some recent methods 
have studied WSI classification and segmentation systems 
in a weakly supervised manner that exploits slide-level diag-
nostic labels, which are readily available in the standard clin-
ical systems or lymph-node level labels that can be collected 
relatively painlessly and achieved promising results [9, 10]. 
A typical solution for the weakly supervised WSI classifica-
tion task in which only slide-level labels are available is the 
multi-instance learning (MIL) framework. In the MIL prob-
lem setting, if at least one patch with tumor cells is contained 
in the slide, the slide is labeled as positive. Some early works 
following the problem setting still exhibit the patch-wise 
classification manner but cast the slide-level labels to the 
patches with the highest probabilities instead of relying on 
the patch-wise labels [11, 12]. However, they still rely on 
the patch-level classifier to get the patch probabilities, and 
the final slide scores are acquired by simply averaging the 
patch scores with the same weights. Some other works train 

a small model to predict a weight for each patch score in the 
weighted averaging procedure or make the final decision on 
the patch predicted classes [13, 14].

Instead of averaging the patch scores to get the final slide 
predictions, some more recent works generate a feature vec-
tor for each patch and obtain a final global feature vector 
for the entire slide by aggregating the patch-level features. 
The global classification prediction is obtained by a classi-
fier with the global-level feature instead of combining the 
patch-level prediction scores. Such works aggregate the 
patch-level scores with untrainable methods like concat-
enate [15, 16] and trainable methods like RNNs [17, 18], 
graphs [19, 20], and attention-based models [21–24]. The 
MIL-RNN model [17] casts the slide labels to the patches 
with the highest probability in the patch-level prediction and 
proposes to aggregate patch features with the highest prob-
abilities with an RNN model. The DSMIL model [24] pro-
poses to aggregate all patch features with the MIL attention 
mechanism. The CLAM model [25] aggregates the patch 
features with attention scores predicted for the patches, and 
an additional auxiliary clustering task is performed on the 
patches based on the ranking of the attention scores. And 
the most recent works directly apply the vision transform-
ers, which are composed of procedures the same as the MIL 
framework like patching, feature extraction, feature aggre-
gation, and decision-making to the WSI classification task 
[23]. With the MIL framework, only a label for the entire 
slide is required in the training phase, thus alleviating the 
heavy burden brought by the detailed annotations.

In addition to the benign and malignant classification as 
well as the genotyping of the entire slide as a whole [22, 26, 
27], some previous works focus on other tasks like detect-
ing DNA damage or mitotic figures with object detection 
methods, segmenting nuclei, glands, and different kinds 
of tissues with semantic segmentation methods and active 
learning [28–32].

In this study, we first develop a weakly supervised WSI 
classification model, DT-DSMIL, to identify metastasis in 
CRC lymph nodes with a transformer-based MIL model. 
In the DT-DSMIL model, the slides are first cropped into 
smaller patches, and their features are extracted by an Ima-
geNet-pretrained ResNet-50 model. And then, the patch fea-
ture tokens are further processed and aggregated with each 
other with an encoder-only version of the deformable trans-
former model and the deformable attention mechanism. At 
the end of the model, a dual-stream MIL aggregator [24] is 
adopted to discover the critical patches within the slide and 
generate a global-level feature vector for the entire slide. The 
final slide-level classification results are made by a global-
level classifier with the extracted global-level slide feature. 
DT-DSMIL is trained with slide-level labels only, while it 
is able to discover and illustrate the diagnostic regions and 
components with visualization maps.
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Furthermore, based on the proposed DT-DSMIL model 
and the Faster R-CNN model, we developed a two-stage 
diagnostic system for the single lymph node classification 
task. The lymph nodes within the slides are detected and 
then cropped with the Faster R-CNN model in the first stage 
and then classified as negative or positive with the proposed 
DT-DSMIL model in the second. The lymph nodes within 
the slide are annotated with bounding boxes and correspond-
ing binary positive/negative labels. The developed diagnostic 
system is trained with the annotations, and its performance 
for both tasks is evaluated. Furthermore, an extensive evalu-
ation is performed on different subsets of the test dataset, 
including lymph nodes with or without neoadjuvant chemo-
therapy, lymph nodes with different histologic subtypes, and 
lymph nodes with different metastatic foci sizes. Visualized 
heatmaps are generated in the inference stage to interpret the 
prediction results and localize the tumor regions.

The main contributions of this paper can be summarized 
as follows:

1. We propose a novel and effective transformer-based MIL 
model, DT-DSMIL, for the CRC LN metastasis classifi-
cation task. The DT-DSMIL can be trained with only the 
slide-level binary labels already available in the clinical 
medical record database to identify the WSIs and further 
localize the diagnostic regions. The performance of the 
proposed DT-DSMIL model is evaluated and compared 
with its predecessors.

2. Based on the proposed DT-DSMIL model, we develop 
a diagnostic system to detect, crop, and identify every 
single lymph node in the WSIs. Extensive artificial eval-
uations of the performance in identifying the majority 
types of metastases and localizing the diagnostic and 
tumor areas are carried out by expert pathologists on 
different subsets of the data.

3. We collected a clinical CRC LN metastasis dataset of 843 
WSIs from 357 patients from 2019 to 2021. The dataset 
is annotated with slide-level binary positive/negative 
labels, bounding boxes, and binary labels for the lymph 
nodes in the slides. The test set is further annotated with 
dot annotations on the tumor areas and re-checked by 
two qualified pathologists blindly and independently. The 
proposed model and the developed diagnostic system are 
trained and evaluated with the dataset.

2  Materials and methods

2.1  Data collection

This study enrolled 843 digital slide images from 357 
patients who underwent radical resection of primary CRC 

in Peking University Cancer Hospital between January 
2019 and January 2021. Hematoxylin and eosin (H&E) 
stained sections are scanned with the Aperio AT2 digital 
pathology scanner (Leica Biosystems) with 40 × magnifica-
tion and visualized with the Aperio ImageScope software. 
The corresponding complete clinical data and histopathol-
ogy reports are collected for all slides. Slides with histo-
logical artifacts such as over fixation, poor staining, and 
bubbles are excluded, while slides with pen markers are 
adopted.

Among these 843 slides, 556 with positive lymph 
nodes are labeled positive, while the remaining 287 are 
labeled negative. For the slides labeled as positive, at least 
one positive lymph node (with metastasis) is contained, 
while for the slides labeled as negative, all the contained 
lymph nodes are negative and with no metastasis. Besides 
the binary labels, bounding boxes for lymph nodes and 
other isolated separatable tissues, such as tumor depos-
its, vessels, and fat within the slides, are collected for 
the single lymph node detection and classification task. 
Irregular structureless collections of lymphoid tissue with 
no fibrous capsule located in the fibro-adipose connective 
tissues are not counted as lymph nodes. Acellular mucin 
pools found in lymph nodes after neoadjuvant therapy 
are considered negative lymph nodes. Examples of the 
collected slides and their annotations, to be detailedly 
introduced later, are shown in Fig. 1.

For lymph node-level data composition, a total num-
ber of 2279 nodes are included. Eight hundred sixty-four 
(approximately 2/5) nodes are positive, and the remaining 
1415 lymph nodes are negative. Irregular structureless 
collections of lymphoid tissue with no fibrous capsule 
located in the fibro adipose connective tissue are not 
counted as lymph nodes. Acellular mucin pools found 
in lymph nodes after neoadjuvant therapy are considered 
negative lymph nodes. The ground truth slide-level labels 
are determined by the slides’ clinical reports.

2.2  Software and hardware requirements

All experiments are conducted on a high-performance 
computing cluster in the Beijing Advanced Innovation 
Centre for Big Data and Brain Computing. In particular, 
the experiments are conducted with one NVIDIA Tesla 
A100 PCI-E 40 GB GPU with the support of CUDA 11.3 
and cuDNN 8.2 for GPU acceleration. PyTorch 1.11 is 
employed for model building and training, OpenSlide 
Python 1.12 for WSI file loading, and Python 3.8 for cod-
ing. Annotating for validating and testing is performed 
with the Automated Slide Analysis Platform (ASAP) with 
version 1.9.
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2.3  MIL‑based slide classification with DT‑DSMIL 
model

The overall framework of the proposed DT-DSMIL 
model is illustrated in Fig. 2, which is composed of four 
components: a patch-wise feature extractor, a trans-
former-based local-level feature aggregator, a dual-
stream MIL-based global-level feature aggregator to 
find out the most decisive patch within the entire slide 
and generate the global-level slide feature, and the final 
classifier to make the decision for each slide based on 
the feature for the critical patch and the feature for the 
entire slide.

In the preprocessing and the feature extraction phase, for 
each slide, the tissue regions are segmented by threshold-
ing the saturation channel, and the regions are cropped into 
smaller patches with the same size as the ImageNet dataset 
( 256 × 256 pixels) at the magnification of 10× and with no 
overlapping. A 2048-d feature vector is generated for each 
patch with the patch-wise feature extractor implemented by 
an ImageNet pre-trained ResNet-50 model. The final clas-
sification layer of the model is removed, and thus the output 
of the modified ResNet-50 model is a feature vector with a 
length of 2048. Position embeddings are added to the patch 
features before the local-level feature aggregator. The simple 
sinusoidal absolute position embedding is adopted in our 
model. The position embedding vectors are the same length 
as the patch features (that is, 2048-d in our model). For the 
idx-th patch at position (xidx, yidx) , its 2048-d position embed-
ding is divided into two 1024-d vectors, for the x-axis and 
the y-axis separately. For each 1024-d vector at the position 
pos in either axis, its value at the dimension of 2i or 2i + 1 is:

PE(pos,2i) = sin
(

pos∕100002i∕dmodel
)

PE(pos,2i+1) = cos
(

pos∕100002i∕dmodel
)

The two 1024-d position embeddings for the x or y 
dimension are concatenated, and a final 2048-d position 
embedding for both dimensions is acquired. A dimension-
wise addition is performed between the position embed-
dings and the features.

The transformer-based local-level feature aggregator is 
implemented with an encoder-only version of the deform-
able transformer. The position-embedded local-level patch 
feature tokens are given to the transformer model as input, 
and the encoder of the transformer, which is composed 
of several stacked transformer blocks with multi-head 
deformable self-attention, feed-forward network, layer 
normalization, and GeLU activation function, aggregates 
the input feature tokens with each other based on their 
correlations. The output of the transformer encoder is the 
context-aggregated local-level patch feature tokens.

Then, instead of the decoder part of the original trans-
former model, the dual-stream MIL aggregator is adopted 
to generate global-level slide features based on the most 
decisive patch within each slide. The most decisive patch 
is discovered with a local-level instance classifier ginst 
which predicts a score cidx = ginst

(

fidx
)

 for the idx-th patch 
feature token, and the token feature fmax with maximum 
prediction score cmax is chosen as the most decisive patch 
feature token. Then the token fmax is aggregated with all 
the tokens by the MIL attention mechanism, which can be 
viewed as a simplified version of the original self-attention 
as shown in Fig. 3: only the attention scores between the 
selected token fmax and other tokens are computed, result-
ing one context aggregated global-level token fslide . Then a 
global-level classifier gslide is applied to obtain a prediction 
score cslide for fslide . Then the final prediction score c for 
the entire slide is obtained by averaging the global-level 
prediction score and the local-level prediction score:

c =
1

2

(

cmax + cslide
)

Fig. 1  Examples of the col-
lected slides in our dataset and 
their annotations
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2.4  Metastases location with patch intensity 
and attention maps

Our developed diagnostic system is capable of locating 
diagnose-related decisive components within each slide 
with patch probability maps derived from the instance-
level classifier and attention maps derived from the DSMIL 
aggregator.

The patch probability maps and the attention maps 
describe the prediction process from two aspects: the 
patch probability maps obtained by the instance-level 
classifier reveal the probability of each patch being posi-
tive in the local-level patch classification task. The patch 
within each image with the highest probability score is 
of the most importance and with the highest probability 
of containing tumor cells. However, the final loss value 
computation involves only one patch with the highest 
probability. Thus, the local-level prediction task train-
ing and its supervision signal are rather noisy. Therefore, 
the localization performance of the patch probability 
maps is unreliable, as shown in the artificial visualiza-
tion result analysis. As the patch probability maps can-
not sufficiently represent the entire slides, we introduce 
the attention scores generated by the global-level DSMIL 
aggregator, which represents the correlation between all 
other patches and the most decisive patch of each slide. 
The attention scores are extracted and visualized, result-
ing in an attention map for each slide. The higher atten-
tion weights mean that the corresponding patches are of 
higher importance in the global-level slide prediction. 
The attention maps describe the patches from a global 

view of a higher level. The attention scores for the patches 
reveal a higher connection with the tumor areas than the 
probability scores in the manual analysis. Furthermore, 
the visualized maps can serve as practical tools to avoid 
undetected positive and false negatives in actual clinical 
use, given the patch intensity and attention maps. The 
pathologists can easily double-check the model’s predic-
tions by only reviewing the regions of the highest impor-
tance in the two maps.

Fig. 2  Diagram for the DT-DSMIL model, composed of a deformable transformer encoder and a dual-stream MIL attention head

Fig. 3  Diagram of the MIL 
attention mechanism in the 
DSMIL attention head, which 
can be viewed as a simplified 
version of the multi-head self-
attention mechanism
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2.5  Diagnostic system for single lymph node 
detection, cropping, and classification

After proposing and evaluating the novel DT-DSMIL 
model, a diagnostic system for detecting, cropping, and 
classifying the single lymph nodes in the slides is devel-
oped based on the DT-DSMIL model and the Faster R-CNN 
model. The developed diagnostic system comprises two 
stages: one for distinguishing and localizing the lymph 
nodes against other tissues in the WSIs and another for 
classifying these lymph nodes as positive or negative. The 
overall architecture of the developed diagnostic system is 
illustrated in Fig. 4.

The first stage is accomplished with a lymph node 
detector based on Faster R-CNN [12]. Tissues within the 

WSIs are localized and classified as lymph nodes or other 
isolated tissues such as tumor deposits, vessels, and fat. 
Single lymph node images are cropped from the entire 
WSIs according to the model’s prediction. This stage is 
performed on WSIs at 5× magnification to improve effi-
ciency and reduce the computational cost, which is ade-
quate for the pathologists to distinguish different tissue 
types.

The second stage is performed on the single-node 
images acquired in the first stage, where the output of the 
first stage, i.e., the lymph nodes, are further classified as 
positive or negative by applying the proposed DT-DSMIL 
model. The training and inference procedure is the same 
as for the entire slides, except that the input data is the 
cropped single lymph node images instead of the complete 

Fig. 4  Diagram for the overall structure of the developed diagnostic 
system for single lymph node detection and classification, composed 
of data preprocessing, lymph node detection with a Faster R-CNN 

model, and classification of benign and malignant lymph nodes with a 
DT-DSMIL model
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slides, and the image patching and feature extraction are 
conducted at the magnification of 20× for higher accuracy. 
To make the diagnostic system more applicable in actual 
clinical use, the ResNet-50 patch feature aggregator is fur-
ther pretrained by the SimCLR framework with the data 
in the training set after loading the ImageNet-pretrained 
weights to help the model get more information about the 
real-clinical data.

With the diagnostic system, not only the number of the 
lymph nodes within the slides but the benign and malig-
nant of each lymph node can be obtained, which is con-
sistent with the practice of clinically histopathological 
diagnosis.

2.6  Statistics

The performance of the proposed WSI classification model 
is measured by accuracy, area under the receiver oper-
ating characteristic curve (AUROC, or AUC), precision, 
recall, and the F1 score. The 95% confidence intervals 
for AUC values are calculated with DeLong’s method. In 
our DT-DSMIL model, the final binary classifier predicts 
a probability score for each slide ranging from 0 to 1, 
which means the likelihood of the slide being positive, and 
the discriminative threshold is calculated and set accord-
ing to the performance on the validation set. Probability 
scores higher than the above threshold are classified as 
positive, and scores lower than the threshold are classified 
as negative.

3  Results

3.1  Experimental settings

To evaluate the performance of our proposed DT-DSMIL 
model, experiments are conducted using the collected 
WSIs introduced in the Data Collection chapter. The WSIs 
are randomly split into training, validation, and testing 
sets with a ratio of 70:10:20, keeping the positive/negative 
class distribution and regardless of the patient’s informa-
tion, resulting in 590, 84, and 169 slides in each dataset. 
The number of lymph nodes contained in the images in 
each dataset is 1598, 231, and 450, separately. After the 
dataset splitting phase, slides in the testing set are further 
verified, re-checked, and more detailed annotated with dots 
on the diagnostic regions for each positive lymph node 
by two qualified pathologists blindly and independently. 
As the testing set is treated separately and annotated in 
more detail, and an additional manual analysis procedure 
is conducted on the testing set introduced below, the cross-
validation method is not used.

First, for the proposed DT-DSMIL model, the whole 
slide image classification task is performed: patch fea-
tures are extracted for the entire slides, and the classifi-
cation results for the whole of the slides are calculated. 
The performance metrics are obtained with the trained 
model, and a comparison is conducted between the DT-
DSMIL model and its predecessors to demonstrate its 
effectiveness.

Then, for the proposed diagnostic system, the single 
lymph node detection and classification task is per-
formed: the lymph nodes within the slides are detected 
first, and then, the classification result for each single 
lymph node is obtained in a similar way to the above. 
The performance metrics for the LN detection conducted 
by a Faster R-CNN model and the LN classification con-
ducted by a proposed DT-DSMIL task are calculated 
and reported. Furthermore, more detailed performance 
analyses are performed. Specifically, we compare the 
DT-DSMIL model performance concerning the follow-
ing aspects: performance with or without neoadjuvant 
chemotherapy; performance in different subtypes, includ-
ing adenocarcinoma, mucinous carcinoma, and signet ring 
carcinoma; performance with different metastatic foci 
sizes. Moreover, the tumor morphologies relevant to the 
model’s decision-making are discovered with visualized 
probability maps and attention maps. Finally, artificial 
examination progress is conducted for the failure cases, 
especially the false negative ones. In such progress, we 
found out that our model is capable of localizing diag-
nostic regions even though the final prediction made by 
the model is false. Our model can help to reduce omitted 
positive nodes in manual annotations.

3.2  Evaluation of the DT‑DSMIL model

As introduced above, the DSMIL model and its predecessors 
(the DSMIL and the DT-MIL model) are trained and evalu-
ated with the entire slides in the dataset, and performance 
metrics, including AUC, accuracy, precision, recall, and F1 
score, are calculated. Results are shown in Table 1. The table 
shows that our proposed DT-DSMIL model outperforms its 
predecessors.

Table 1  Performance of our proposed DT-DSMIL and its predeces-
sors. The highest value in each metric is marked in bold

Model AUC F1 Precision Recall Accuracy

DSMIL 0.9369 87.27 79.29 97.04 86.98
DTMIL 0.9743 93.58 89.35 98.22 91.24
DT-DSMIL (ours) 0.9769 94.37 93.49 95.27 93.50
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3.3  Evaluation of the diagnostic system

3.3.1  Numerical metrics of lymph node detection 
and classification

To meet clinical requirements, a diagnostic system is devel-
oped to detect and further classify lymph nodes in the slides, 
and the system’s performance is evaluated on the testing 
set. The diagnostic system’s first stage, the Faster R-CNN 
model, is trained and evaluated with the entire slides. Its 
accuracy achieves 96.02%, obtained through manual analysis 
by experts of the test detection results. The trained Faster 
R-CNN model infers on the entire dataset, including the 
training, validation, and testing set. The obtained inference 
results, single lymph node images, are taken as the input of 
the diagnostic system’s second stage, which is a DT-DSMIL 
model. Detected lymph nodes are labeled as malignant or 
benign depending on whether they contain tumor cells, and 
non-lymph-node tissues misdetected as lymph nodes are 
labeled as benign. Performance metrics, including AUC, 
accuracy, precision, recall, and F1 score for the second-stage 
DT-DSMIL model, are obtained by training and evaluating 
using the single lymph node images. The model performs 
well for metastatic foci in lymph nodes, with an AUC of 
0.9762 (95% confidence interval [CI]: 0.9607–0.9891) and 
an accuracy of 95.33%, and the ROC curve is shown in 
Fig. 5. The precision of the single lymph node classification 
is 0.9411, the recall is 0.9231, and the F1 score is 0.9320.

3.3.2  Model performance on cases 
with or without neoadjuvant chemotherapy

Among the 450 lymph nodes in the test set, 44 are from 
32 patients with neoadjuvant chemotherapy (NACT). These 
lymph nodes produce a post-treatment response, such as 

metastatic tumor shrinkage, mucin pools, fibrosis, or foamy 
histiocytes, but the residual tumor can still be seen in all of 
them. The ROC curves of our model on cases with or with-
out NACT are shown in Fig. 6. The model performs well 
in both, with an AUC of 0.9814 (95% CI: 0.9660–0.9943) 
and 0.9741 (95% CI: 0.9546–0.9889), respectively. And 
the accuracy of cases with or without NACT is 91.9% and 
93.2%.

3.3.3  Model performance in different histologic subtypes

The positive lymph nodes in the test set are divided into 
three groups, the adenocarcinoma, the mucinous carci-
noma, and the signet ring carcinoma, according to differ-
ent histological subtypes of the metastatic lesions, and the 
ROC curves of each group are shown in Fig. 7. Our DT-
DSMIL model performs well on the adenocarcinoma and the 
mucinous carcinoma group, with the AUC of 0.9835 (95% 
CI: 0.9717–0.9937) and 0.9872 (95% CI: 0.9732–0.9969) 
and the accuracy of 96.0% and 100%, respectively. In 
contrast, the performance is relatively poor in the signet 
ring carcinoma group, with an AUC of 0.9068 ((95% CI: 
0.8068–0.9787) and an accuracy of 60.0%. In addition, there 
are four lymph nodes with micropapillary adenocarcinoma, 
three correctly identified, while the remaining one with a 
maximum diameter of less than 0.2 mm is omitted.

3.3.4  Model performance regarding metastatic foci size

According to the CAP Cancer Reporting Protocols (Colon 
and Rectum, Resection, version 4.2.0.1) [33], isolated tumor 
cells (ITCs) are defined as single tumor cells or small clus-
ters of tumor cells measuring less than 0.2 mm. Metastatic 
deposits with the size of 0.2–2.0 mm are called micro-metas-
tasis, and deposits larger than 2.0 mm are called macro-
metastasis. The ROC curves of our model in identifying 
lesions of different sizes are shown in Fig. 8. Our model 
performs well for micro-metastasis and macro-metastasis, 
with the AUC of 0.9816 (95% CI: 0.9659–0.9935) and 
0.9902 (95% CI: 0.9787–0.9983) and the accuracy of 92.6% 
and 98.3%, respectively. In contrast, the performance is 
relatively poor in ITCs, with an AUC of 0.8120 (95% CI: 
0.6930–0.9030) and an accuracy of 27.3%.

3.4  Diagnostic morphology in lymph node 
classification

Our model is able to interpret its classification result with 
the visualization heatmaps, including the patch-wise classi-
fication probability maps and the attention maps. As shown 
in Fig. 9, the tumor morphologies related to the prediction 
are highlighted. Both maps are assessed by the pathologists, 
and we find out that the attention maps, which reveal the Fig. 5  The ROC curve of our model in lymph node classification
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connection and the importance of each patch in the global-
level feature extraction and decision-making, are more 
closely associated with the location of the lesions and thus 
are more vital. In the attention maps, tumor cells are par-
ticularly distinguishable. In identifying adenocarcinoma, 

our model is more sensitive to glandular, cribriform, and 
papillary structures. Even in lymph nodes with ITCs, tumors 
with typical glandular structures can be clearly identified 
(Fig. 9a–c). In identifying mucinous and signet ring car-
cinoma, our model is relatively poor at identifying tumors 

Fig. 6  The ROC curve of our model on cases with or without neoadjuvant chemotherapy

Fig. 7  The ROC curve of our model in different histologic subtypes
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with scattered or solid structures. Only if tumor cells form 
a cord or papillary shape can be identified by our model 
(Fig. 9d–f). As for the probability maps, fibers are more 
evident than tumors, especially in lymph nodes after NACT 
(Fig. 9g–i). The poor performance of the probability maps 
generated by the local-level patch-wise classification might 
be caused by the noisy supervision signals in the training 
scheme. Therefore, attention maps should be chosen as the 
significant visualization tool in our model.

3.5  Error case analysis

Among the 450 single-lymph node images in the test set, 
twelve are predicted to be false-negative, and nine are false-
positive. Among the false-negative lymph nodes predicted, 
eight are ITCs with adenocarcinoma and signet ring carci-
noma, two are micro-metastasis with signet ring carcinoma 
and micropapillary adenocarcinoma, and the remaining two 
are signet ring carcinoma macro-metastasis. Among the 
false-positive lymph nodes predicted, four delineated lymph 
nodes have tumor deposits outside, two are identified as the 

fibrous capsule of the lymph nodes by the pathologists, one 
is a deformed lymphocyte mass, and the last one is a lym-
phatic sinus.

In our artificial failure case evaluation and verification 
progress, we found that a positive lymph node with adeno-
carcinoma micro-metastasis is mislabeled as negative, and 
the model is able to identify it correctly. The metastatic site 
of this lymph node has a typical glandular structure, but the 
tumor cells are slightly deformed due to the production.

4  Discussion

The presence of metastasis in lymph nodes is a critical 
prognostic indicator for patients with CRC and an essential 
determinant of clinical decision-making [34]. To meet the 
accuracy requirement in the histopathologic diagnosis of 
tumors and reduce the increasing burden on the pathologist, 
the application of machine learning, particularly deep learn-
ing, has been seen as a milestone for the healthcare sector in 
the next decade [35].

Fig. 8  The ROC curve of our model regarding metastatic foci size
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In this paper, we propose a new MIL-based WSI diagnostic 
model, DT-DSMIL, for CRC lymph node metastasis classi-
fication and develop a two-stage diagnostic system to distin-
guish different single lymph nodes in the WSIs. Our model 
only requires the positive/negative labels for entire slides or 
single lymph nodes while able to identify the critical and diag-
nostic regions and thus substantially reduces the requirement 
of detailed annotations and reduces experts’ heavy burden of 
careful patch-wise or even pixel-wise annotation compared with 
previous computational histopathology diagnostic systems.

Our model performs well in classification tasks on 
all tumor subtypes except for the identification of ITCs. 
Although previous works have proposed different algorithms 
with different advantages, identifying ITCs in lymph nodes 
is still one of the most challenging points in developing 
computer-aided methods for identifying lymph node metas-
tases. In the study of Chuang et al., their model’s perfor-
mance of detecting ITCs in lymph nodes of CRC achieves 
an AUC of 0.7844 in a single-lymph-node-level test set 
with five samples [36]. However, the predictive accuracy 
of micro-metastasis and macro-metastasis may be more 
clinically significant than that of ITCs. In clinical practice, 

ITCs are recorded as N0, and the number of lymph nodes is 
presented separately in the pathology reports [37, 38]. The 
nodes indeed considered eroded by cancer are those eroded 
by micro-metastasis and macro-metastasis [39].

The misclassified positive lymph nodes, or the false 
negatives, can be divided into two categories through 
artificial analysis of the incorrect predictions: small clus-
ters of adenocarcinoma metastasis without clear glan-
dular structure and signet ring carcinoma metastasis. 
What they have in common is that they have no appar-
ent morphological features, which are not the charac-
teristics of tumor cells but a feature of how the tumor 
cells cluster. Our model is more sensitive to glandular, 
cribriform, and papillary structures but not scattered or 
diffuse distribution. This pattern has been found in other 
previous studies as well. For example, in the study of 
Hu et al., the false-negative rate in signet ring cells is 
6.67%, and in poorly differentiated adenocarcinoma is 
15.11% [40]. The sensitivity of our system to adenocarci-
noma structures is also reflected in tumor deposits [41]. 
In the absence of lymph node metastasis, tumor depos-
its are recorded as N1c. In our model, four of the nine 

Fig. 9  Examples of visualiza-
tion images for lymph node 
classification task. In each 
row, the first figure is a color-
processed lymph node image 
(a, d, and g), the second (b, e, 
and h), and the third (c, f, and 
i) is an attention map and a 
probability map corresponding 
to the lymph node image. a–c 
An example of ITCs shows that 
tumors with typical glandular 
structures could be identified. 
d–f An example of mucinous 
carcinoma with signet ring 
carcinoma shows that our model 
is poor at identifying tumors 
with scattered or solid structures 
in the attention maps. g–i An 
example of a post-treatment 
lymph node shows that fibers 
are more evident than tumors in 
the probability maps
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false-positive lymph nodes are due to the identification 
of tumor deposits.

In addition to classifying the lymph nodes, our model 
can effectively identify tumor-related diagnostic compo-
nents in the positive lymph nodes with the DSMIL atten-
tion head. Two visualization maps, including the prob-
ability map generated by the patch-level classifier and the 
attention map generated by the global-level feature aggre-
gator, are developed to explain the model’s predictions and 
to realize local-level patch predictions. And as previously 
described, the attention maps are more informative and of 
higher importance. However, from the visualization maps, 
we can find out that the final predictions are determined 
by patches with metastasis and patches with fibrosis. The 
probability map always highlights part of fibrosis in addi-
tion to the tumor cells. This may explain why our model 
performs better in cases with NACT than without NACT.

5  Limitations and future work

Though our proposed DT-DSMIL significantly outper-
forms its predecessors in most performance metrics by a 
large margin, its recall deteriorates, and recall is a more 
concerned score in pathological diagnosis. To compen-
sate for this, we choose a higher magnification, 20× for 
the single lymph node classification task, instead of the 
magnification of 10× for the whole slide classification. 
However, the backbone of our DT-DSMIL model, the 
deformable transformer, keeps the spatial dimensions 
in the input, which results in memory inefficiency, 
especially when faced with sparse slides, and limits the 
choice of maximum magnification. For example, in cases 
where multiple lymph nodes are placed on the same slide 
but far apart, the blanks must be kept in the input feature 
map. Thus, one possible direction is dealing with the 
input slides’ sparsity.

Besides, though our model only requires the binary 
labels for the slides to accomplish slide-level classifica-
tion, the bounding boxes and binary labels for each lymph 
node are still needed in developing the diagnostic system 
for detecting and classifying single lymph nodes. Having 
witnessed the recent progress in weakly supervised object 
detection in natural images, we believe it is possible to 
accomplish such single lymph node-level tasks with a total 
number of all lymph nodes and malignant lymph nodes 
among them. And recent progress in semi-supervised 
learning and domain adaptive learning can help introduce 
more data from different data sources to improve the mod-
el’s performance [42]. Therefore, they are also the direc-
tions of our follow-up research.

Furthermore, it is acceptable in clinical practice to 
achieve nearly 100% accuracy and accurate localization 

performance with a small number of detailed annotations, 
such as the dot annotations collected in our study but only 
used in the manual result analysis stage, not the model 
development. Thus, weakly supervised methods that can 
achieve higher performance with few annotations and 
methods like human-in-the-loop and active learning mod-
els that can progressively collect annotations for the most 
critical and informative samples can be of great potential.

6  Conclusion

In this paper, we first developed a weakly supervised WSI 
classification model, DT-DSMIL, based on the transformer 
model and the multi-instance learning framework to iden-
tify metastasis in CRC lymph nodes with merely slide-level 
diagnostic labels instead of detailed annotations. Then, a 
diagnostic system for detecting and further classifying each 
single lymph node in the slides is developed with a Faster 
R-CNN object detector and the proposed DT-DSMIL model. 
Though such coarse-grained annotations do not provide spa-
tial information on the metastasis within lymph nodes, our 
model can still find the most diagnose-related components. 
The proposed model and the developed system are able to 
solve actual problems in clinical practice, and future work can 
be done to improve performance further.
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