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Key Points

• AKT prevents the
metabolic shutdown of
multiple myeloma cells
by restricting FOXO.

• FOXO-dependent
repression of metabolic
genes is associated
with favorable
prognosis in MM.
Metabolic alterations are important cancer-associated features that allow cancer cell

transformation and survival under stress conditions. Multiple myeloma (MM) plasma cells

show increased glycolysis and oxidative phosphorylation (OXPHOS), which are

characteristics associated with recurrent genetic aberrations that drive the proliferation

and survival of MM cells. The protein kinase B/AKT acts as a central node in cellular

metabolism and is constitutively active in MM cells. Despite the known role of AKT in

modulating cellular metabolism, little is known about the downstream factors of AKT that

control the metabolic adaptability of MM cells. Here, we demonstrate that negative

regulation of the forkhead box O (FOXO) transcription factors (TFs) by AKT is crucial to

prevent the metabolic shutdown in MM cells, thus contributing to their metabolic

adaptability. Our results demonstrate that the expression of several key metabolic genes

involved in glycolysis, the tricarboxylic acid (TCA) cycle, and OXPHOS are repressed by

FOXO TFs. Moreover, the FOXO-dependent repression of glycolysis- and TCA-associated

genes correlates with a favorable prognosis in a large cohort of patients with MM. Our data

suggest that repression of FOXO by AKT is essential to sustain glycolysis and the TCA cycle

activity in MM cells and, as such, predicts patient survival.
Introduction

Multiple myeloma (MM) is a malignancy characterized by the clonal expansion of plasma cells in the
bone marrow. Although novel treatment strategies have improved the prognosis and outcome of MM,
most patients eventually relapse and become refractory to further treatment.1 Cancer cells are char-
acterized by metabolic alterations, which are driven by oncogenes. These alterations may result in
metabolic dependencies that can be exploited for therapeutic purposes. Similar to other cancer types,
MM cells predominantly fulfill their energetic demands via glycolysis,2,3 a phenomenon known as the
Warburg effect.4 In agreement, it was shown that the glycolysis rate-limiting enzyme, hexokinase II
(HK2), is highly expressed in MM and is associated with poor prognosis.2,5,6

The increased reliance of cancer cells on glycolysis is often associated with decreased mitochondrial
respiration, suggesting that aerobic glycolysis occurs at the expense of oxidative phosphorylation
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(OXPHOS).4 However, many tumors exhibit increased glycolysis and
OXPHOS.7-9. In accordance, despite their high rate of glycolysis, it
was shown that MM cells also use OXPHOS because a combined
treatment with the mitochondrial respiratory complex I inhibitor, met-
formin, and the glucose uptake inhibitor, ritonavir, synergized to
induce death in MM cells.10 The rewiring of metabolic pathways and
the flexibility to utilize different substrates are closely linked to recur-
rent genetic aberrations that characterizeMM.11 In addition to fulfilling
increased energy demands, several reports described changes in
metabolism that lead to drug resistance in refractory MM.11,12 How-
ever, the key molecular factors that determine dynamic metabolic
changes in MM cells have not been studied in detail.

Previous works by us and others have shown that AKT plays a
pivotal role in the survival and growth of MM cells.13-18 We recently
showed that AKT restrains the tumor-suppressive functions of
forkhead box O (FOXO) transcription factors (TFs) in MM.18

Importantly, AKT is a central node in the phosphatidylinositol
3-kinase (PI3K)/AKT/mechanistic target of rapamycin pathway that
connects proliferation, survival, and cellular metabolism and drives
glycolysis.19,20 Activation of AKT is common in cancer, either by
activating mutations or by growth factors provided by the tumor
microenvironment. In MM, AKT activation is primarily caused by
growth factors in the bone marrow and the sporadic loss of
phosphatase and tensin homolog expression.17,21

Here, we show that human MM cell lines (HMCLs) rely on glycol-
ysis for proliferation and survival. When no longer able to generate
sufficient ATP from glycolysis, OXPHOS is increased, although not
sufficiently to maintain a similar proliferation rate and viability.
Furthermore, we provide evidence that AKT sustains glycolysis and
OXPHOS in MM by restricting FOXO. We demonstrate that active
FOXO diminished glycolysis and mitochondrial respiration in MM
cell lines, and that the expression of glycolysis- and TCA cycle–
related genes in patients with MM negatively correlates with the
transcriptional activity of FOXO. Moreover, we show that the
FOXO-dependent repression of metabolic genes predicts superior
overall survival (OS) in a large cohort of patients with MM.
Materials and methods

Cell culture and reagents

Cell lines, cell culture conditions, and details on reagents are
provided in the supplemental Materials and Methods.

Patient samples

Primary plasma cells from newly diagnosed patients with MM
(n = 2) and with a plasmacytosis of mononuclear cells being >80%
were isolated as detailed in the supplemental Materials and
Methods and as described previously.18 Primary MM cells were
cultured overnight in supplemented Iscove modified Dulbecco
medium with 10% fetal calf serum and 1 ng/mL interleukin-6 before
experiments. Patient material was obtained according to the ethical
standards of our institutional medical ethical committee, as well as
in agreement with the 1975 declaration of Helsinki, as revised
in 1983.

Metabolic profiling

Seahorse extracellular flux (XF) metabolic profiling experiments
were performed according to the manufacturer’s protocols.
1698 BLOEDJES et al
Experimental details are provided in the supplemental Materials and
Methods.

Immunoblotting

Immunoblotting was performed as previously described.18 The
antibodies used in this study are listed in the supplemental
Materials and Methods.

GEP analysis

Gene expression profile (GEP) dataset E-TABM-113822 was
obtained from the ArrayExpress archive, and datasets GSE6477,23

GSE2658,24,25 and GSE12094118 were obtained from the NCBI
Gene Expression Omnibus database. The R2 genomics analysis
and visualization platform (http://r2.amc.nl) was used for k-means
clustering based on the GEP data and survival analysis using the
Kaplan-Meier method. The gene set enrichment analysis (GSEA)
software (http://www.broad.mit.edu/gsea)26 and the Molecular
Signature Database were used for GSEAs and leading edge (LE)
analyses.

Flow cytometry

Cell numbers and specific cell death were determined by 7-
aminoactinomycin D staining (BioLegend, San Diego, CA) and
calculated as published previously.18 Experimental details for the
glucose uptake assay are provided in the supplemental Materials
and Methods. All flow cytometry data were obtained using a
FACSCanto or LSR Fortessa (BD Biosciences, Franklin Lakes, NJ)
and analyzed using FlowJo software (FlowJo, Ashland, OR).

Statistics

The GraphPad Prism software package was used for statistical
analyses (GraphPad Software, La Jolla, CA).
Results

Characterizing the metabolic adaptability of MM cells

To determine the functional metabolic features of HMCLs in com-
parison with other mature malignant B-cell lines (BCLs), normal
activated human peripheral blood mononuclear cells (PBMNCs),
and activated purified B cells, glycolysis and mitochondrial stress
tests were performed. No striking differences in the extracellular
acidification rates (ECARs) or basal oxygen consumption rates
(OCRs) were observed, indicating similar basal glycolysis and
OXPHOS activity (Figure 1A, supplemental Figure 1A). This sug-
gests that HMCLs, BCLs, activated PBMNCs, and normal B cells
have comparable energetic demands under basal conditions.
Similarly, the normalized spare respiratory capacity of HMCLs was
similar to that of other BCLs, demonstrating that HMCLs and BCLs
do not differ with regard to mitochondrial adaptability.27 However,
both HMCLs and Burkitt lymphoma cell lines (BLCLs) showed very
limited normalized glycolytic reserve (Figure 1A). This indicates that
in HMCLs and BLCLs, the glycolytic function is at its maximum and
suggests that MM and BL are particularly reliant on glycolysis for
proliferation and survival and have limited capacity to utilize glycol-
ysis in response to increased energetic demands.

To test this, the effects of the hexokinase inhibitor 2-deoxy-D-
glucose (2-DG) on the survival of BCLs were determined. A
heterogeneous response to 2-DG (half maximal effective
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Figure 1. MM cells show restricted glycolytic reserve and heterogeneous metabolic flexibility. (A) Seahorse XF real-time metabolic profiling of HMCLs (red symbols)

and BCLs (blue, green, yellow, and light blue symbols), CpG-activated PBMNCs and purified human peripheral blood B cells (pink symbols). Mean values for basal glycolysis

and normalized glycolytic reserve (percentage of basal glycolysis) based on ECAR and mean values for basal respiration and normalized spare respiratory capacity (percentage of

basal respiration) based on OCR are depicted (one-way ANOVA with Bonferroni multiple comparisons test; HMCLs vs BCLs, n = 5 measurements. (PBMNCs and purified

B cells were obtained from 3 healthy donors). (B) Half maximal effective concentrations (EC50) of 2-DG for cell death in HMCLs and BCLs after 3 days of treatment. Mean values
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concentrations [EC50s] ranging from 0.9 mM to >100 mM) was
observed, which did not differ significantly between the BCL sub-
types, although it is noteworthy that MM1.S (an HMCL) and
Namalwa (a BLCL) showed a marked resistance (EC50 >100 mM)
(Figure 1B & supplemental Figure 1B). Notably, there was no
correlation between 2-DG sensitivity and metabolic function in the
cell lines tested (Figure 1C and supplemental Figure 1C), sug-
gesting that 2-DG–dependent cell death involves a different
mechanism, such as the induction of endoplasmic reticulum stress
through the inhibition of N-glycosylation, as previously described.28

To determine the metabolic adaptability, HMCLs were treated with
dichloroacetate (DCA), which increases the activity of the pyruvate
dehydrogenase complex and leads to to decreased production of
lactate and increased decarboxylation of pyruvate to acetyl coenzyme
A (acetyl-CoA), resulting in a shift of pyruvate toward mitochondrial
metabolism.3,29 Phosphorylation of pyruvate dehydrogenase
was reduced upon DCA treatment, verifying on-target activity
(supplemental Figure 1D). As expected, ECAR decreased upon DCA
treatment, confirming reduced lactate production, whereas basal
respiration was generally not increased in HMCLs. Interestingly, the
spare respiratory capacity and the maximum respiration increased in
the majority of the HMCLs (5 out of 6) (Figure 1D). These results
indicate that increased pyruvate conversion does not directly boost
the TCA cycle and OXPHOS but may improve the mitochondrial
fitness in most HMCLs.

To further assess metabolic adaptability, HMCLs were cultured for
4 days in a medium in which glucose was replaced with galactose.
The oxidation of galactose to pyruvate by glycolysis yields no
net ATP, forcing cells to rely on mitochondrial respiration for
ATP generation, which is characterized by an increased OCR
(Figure 1D).30,31 Galactose caused a significant decrease in the
ECAR/OCR ratio in all HMCLs tested, indicating that HMCLs can
switch to OXPHOS when forced to do so (Figure 1E). However,
when glucose is present, glycolysis remains the major source of
ATP production for HMCLs, as is evident from their limited glyco-
lytic reserve. Replacing glucose with galactose resulted in a sig-
nificant increase in cell death in several HMCLs (LME-1, XG-3, and
RPMI-8226), suggesting that these cell lines are unable to
generate sufficient ATP from OXPHOS, thus indicating defective
mitochondrial respiration and limited metabolic adaptability. More-
over, proliferation was decreased in all HMCLs tested
(supplemental Figure 1E), indicating that insufficient ATP is
generated through mitochondrial respiration.

AKT signaling is an important driver of metabolism, either directly
through the phosphorylation of key metabolic enzymes, or indirectly
by controlling the expression of metabolic genes.20 The latter
mainly involves the regulation of members of the FOXO TFs.
Figure 1 (continued) of 3 individual experiments are depicted. (C) Linear regression ana

HMCLs and BCLs. (D) Fold change of ECAR, basal respiration, maximum respiration, and

HMCLs treated with DCA (25 mM for 20 hours) or cultured for 4 days in a galactose-con

and values are normalized to the untreated control condition and depicted as a dotted line (

containing medium or in a galactose-containing, glucose-free medium. Means ± SEM are

phosphorylated (Ser473) AKT, total and phosphorylated (Thr24) FOXO1, and total and pho

20 hours with or without 25 mM DCA or in a galactose-containing, glucose-free medium.

comparisons test *P < .05, **P < .01; One-sample t test *P < .05, **P < .01; paired t test, *

mean.
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Phosphorylation of AKT at Ser473, which marks its activation,
slightly increased upon treatment with DCA in 2 out of 3 galactose-
adapted HMCLs. In agreement, the phosphorylation of FOXO1
(Thr24) and FOXO3 (Thr32), which mark their inactivation, fol-
lowed a similar pattern (Figure 1F). These results suggest that AKT
signaling might be a determinant of metabolic adaptability in MM
cells.

AKT activity sustains glycolysis and OXPHOS in

HMCLs

To further investigate the role of AKT signaling in the metabolic
features of MM cells, HMCLs were treated with the allosteric AKT
inhibitor MK2206. Protein expression of the glycolysis rate-limiting
enzyme HK2 was decreased upon MK2206 treatment, whereas
the effects on pyruvate kinase M2 (PKM2) were modest
(Figure 2A). Functionally, AKT inhibition resulted in a significant
decrease in ECAR in most HMCLs (6 out of 8) and in primary MM
cells from 2 newly diagnosed patients (Figure 2B and supplemental
Figure 2A-B). We have previously shown that AKT regulates the
stability of the antiapoptotic Myeloid-cell leukemia 1 (MCL-1) pro-
tein, which is essential for the survival of MM cells.18 Consequently,
HMCLs overexpressing MCL-1 were resistant to AKT inhibitor–
induced cell death.18 However, MCL-1 overexpression did not
prevent reduced glycolysis induced by MK2206 treatment, indi-
cating that the effects of AKT inhibition on glycolysis were not
related to the induction of apoptosis (supplemental Figure 2C).
Moreover, glucose uptake did not decrease upon AKT inhibition, as
shown by the 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-
deoxyglucose uptake assay. Rather, a subpopulation of cells dis-
played an increased glucose uptake, perhaps because of feedback
regulation (supplemental Figure 2D).

In addition, AKT kinase activity regulated mitochondrial respiration
in MM (Figure 2C, supplemental Figure 2E-F). During aerobic
glycolysis, glucose is converted to pyruvate and subsequently to
acetyl-CoA to fuel the TCA cycle and OXPHOS. To exclude the
possibility that a perturbed AKT signaling indirectly affected mito-
chondrial respiration because of its effect on glycolysis, the OCR
was determined in LME-1 and MM1.S, with either glucose, pyru-
vate, or glutamine present in the Seahorse medium as a single
carbon source. OCR decreased upon AKT inhibition in the pres-
ence of pyruvate as the sole carbon source, indicating that AKT
directly regulates mitochondrial respiration. This experiment further
indicated that glutamine can be used by HMCLs to fuel OXPHOS,
which requires AKT activity. LME-1 cells showed low OCR when
only glucose was present, in contrast to MM1.S (supplemental
Figure 2G). The effects of AKT inhibition on the OCRs were
similar in MCL-1 overexpressing MM cells and the control cells,
lysis of the glycolytic reserve values (x-axis) vs the EC50 values for 2-DG (y-axis) in

spare respiratory capacity (OCR) from a Seahorse XF mitochondrial stress test in

taining medium (11.1 mM, no glucose). Means of 3 to 6 measurements are shown,

one-sample t test). (E) OCR/ECAR ratios of HMCLs cultured for 4 days in a glucose-

shown (paired t test, n = 3-5 measurements). (F) Immunoblot analysis of total and

sphorylated (Thr32) FOXO3 in the HMCLs LME-1, LP-1, and XG-1 cells cultured for

β-actin served as a loading control. One-way ANOVA with Bonferroni multiple

*P < .05; ANOVA, analysis of variance; ns, not significant; SEM, standard error of the
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Figure 2. AKT inhibition suppresses glycolysis and OXPHOS in MM cells. (A) Immunoblot analysis of HK2 and PKM2 in LME-1, MM1.S, and LP-1 HMCLs treated

overnight with 2.5 μM MK2206 AKT inhibitor or left untreated. β-actin served as a loading control. (B) Basal glycolysis in HMCLs and MMPCs (n = 2 patients) treated with 2.5 μM
MK2206 (blue bars) for 20 hours or untreated (red bars). Basal ECAR values from the Seahorse XF glycolysis stress test are depicted, and means ± SEM are shown (t test, n = 5-

6 measurements). (C) Basal respiration and spare respiratory capacity in HMCLs and MMPCs (n = 2 patients) treated with 2.5 μM MK2206 (blue bars) or untreated (red bars) for

20 hours. OCR values from the Seahorse XF mitochondrial stress test are depicted, and means ± SEM are shown (t-test, n = 5-6 measurements).t test, *P < .05; MMPC, primary

MM plasma cells.
indicating that survival and mitochondrial respiration are indepen-
dently regulated by AKT (supplemental Figure 2H).

FOXO suppresses genes involved in glycolysis, the

TCA cycle, and OXPHOS

AKT was shown to regulate the expression of metabolic genes,
primarily by controlling FOXO TFs.20,32 Previously, we defined a
gene set that became repressed by FOXO upon AKT inhibition
in MM cells (shared FOXO–repressed).18 GSEA indicated that
the expression of these genes was enriched in MM cells (n =
75) in comparison with healthy donor plasma cells (n = 15),23

suggesting that FOXO is less active in MM cells (Figure 3A).
To investigate the effects of FOXO activation on the expression
of genes involved in metabolism, gene expression data obtained
from FOXO1- (LME-1) or FOXO3- (MM1.S and XG-3) deficient
9 MAY 2023 • VOLUME 7, NUMBER 9
clones treated with MK2206 were investigated. Glycolysis, TCA
cycle, and OXPHOS gene sets significantly depleted in
MK2206-treated control clones in comparison with FOXO-
deficient and untreated clones (Figure 3B, supplemental
Figure 3A-C). Most genes involved in glycolysis and the TCA
cycle significantly downregulated in a FOXO-dependent manner
after AKT inhibition (Figure 3C). Notably, the expression of
glucose-6-phosphate isomerase, aldolase (ALDOA, ALDOB,
and ALDOC), and PKM reduced most prominently (>1.5-fold)
in all 3 tested HMCLs, whereas the majority of the other genes
involved in glycolysis were significantly downregulated in at
least 1 of the HMCLs studied (Figure 3D). Similarly, the
expression of genes associated with most steps of the TCA
cycle were downregulated (>1.2-fold) in a FOXO-dependent
fashion upon AKT inhibition in at least 2 HMCLs, whereas
the expression of ATP citrate lyase decreased in all 3 HMCLs
FOXO RESTRICTS TUMOR METABOLISM IN MM 1701
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Figure 3. FOXO represses the expression of metabolic genes in MM cells. (A) GSEA in MMPCs from newly diagnosed patients with MM (n = 75) vs bone marrow plasma

cells obtained from healthy donors (n = 15) showing that the shared FOXO–repressed gene set is enriched in MMPCs, indicating lower FOXO activity in these cells. FDR, ES,

NES, and P-value are shown in the plots. (B) GSEA in Cas9-CTRL HMCL clones treated overnight with 2.5 μM MK2206 (‘CTRL+MK’) vs the combination of untreated CTRL

clones and FOXO KO clones, either treated overnight with 2.5 μM MK2206 or left untreated (‘REST’). Datasets from the HMCLs LME-1, MM1.S, and XG-3 were combined for

GSEA. Enrichment plots for Reactome glycolysis, KEGG TCA cycle, and GSEA Hallmark_oxidative_phosphorylation gene sets are shown. FDR, ES, NES, and P-values are shown

in the plots. (C) Heatmaps showing (z-score transformed) expression of Reactome glycolysis genes (upper panels) and KEGG_TCA cycle genes (lower panels) in LME-1 CTRL

clones and LME-1 FOXO1-knockout (FOXO1-/-) clones (left panels), MM1.S CTRL clones and FOXO3-KO (FOXO3-/-) (middle panels), and XG-3 CTRL clones and FOXO3-KO

clones (right panels) that were treated overnight with 2.5 μM MK2206 or left untreated. Z-score values are depicted, ranging from −3 (blue) indicating low expression to 3 (red)

indicating high expression. (D) Schematic representation of the glycolysis metabolic pathway and the TCA cycle. Enzymes (purple boxes), metabolites, and conversions
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LME-1, MM1.S, and XG-3, respectively. For the TCA cycle a >1.2-fold (FOXO-dependent) decrease in gene expression is indicated. (E) Schematic overview of k-means clustering

approach (10 rounds) to define 2 groups of patients with MM (n = 542) based on the expression of the experimentally defined shared FOXO–repressed gene set identified in the

LME-1, MM1.S, and XG-3 HMCLs, as previously described by us.19 Groups of patients with MM defined by k-means clustering were labeled as ‘FOXO high’ (n = 387) and ’FOXO

low’ (n = 155). GSEA enrichment plots are shown, interrogating Reactome for glycolysis, KEGG for TCA cycle, and GSEA for Hallmark_oxidative_phosphorylation gene sets.

CTRL, control; ES, enrichment score; FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes; KO, knockout; NES, normalized enrichment score.
(Figure 3D). These results indicate that AKT signaling is
required to restrain the FOXO-dependent suppression of many
key metabolic enzymes in MM cells.

To explore whether these findings also apply to patients with MM,
a large GEP dataset comprising 542 patients with MM was
partitioned into 2 groups representing either high (n = 387) or
low (n = 155) FOXO activity, based on the expression of the
shared FOXO–repressed gene set.18 GSEA showed that
patients with MM with low FOXO activity were significantly
enriched (FDR <0.25) for glycolysis, TCA cycle, and OXPHOS-
associated gene sets in comparison with those with high
FOXO activity. These results confirm that FOXO suppresses the
expression of genes involved in metabolic pathways in patients
with MM (Figure 3E).

AKT signaling regulates glycolysis and OXPHOS

activity of MM cells in a FOXO-dependent manner

The role of FOXO downstream of AKT in MM cells was further
substantiated by the FOXO-dependent decrease of HK2 protein
expression and a modest decrease in PKM2 expression
(Figure 4A). Furthermore, AKT inhibition significantly decreased
glycolysis, which required functional FOXO expression (Figure 4B).
In LME-1, FOXO1 was required, whereas in MM1.S and XG-3,
FOXO3 was required, in line with our previous findings in these
HMCLs.18 In addition, AKT inhibition almost completely abolished
OXPHOS in the control clones, but not in the FOXO-deficient
clones (Figure 4C). Together, these results show that AKT
crucially regulates the metabolic functioning of MM cells by con-
trolling the activity of FOXO.
1704 BLOEDJES et al
Expression of FOXO-regulated metabolic genes

predicts survival of patients with MM

To assess whether the expression of FOXO-regulated metabolic
genes is of prognostic importance for patients with MM, we
investigated an extended GEP dataset obtained from patients with
MM (n = 776), which includes survival data.22,25,33 First, the
metabolic genes most strongly regulated by FOXO in MM were
identified by performing an LE analysis on the GSEA data, in which
AKT inhibitor–treated control HMCL clones were compared with
FOXO-deficient clones (Figure 3A and supplemental Figure 3A-C).
LE analysis provided the genes that contributed most prominently
to the core enrichment of multiple gene sets associated with
glycolysis, the TCA cycle, and OXPHOS (supplemental Table 1).
Second, these LE gene sets were used to partition patients with
MM into 2 groups using k-means clustering, representing high or
low expression of LE FOXO–repressed genes from glycolysis-, the
TCA cycle– or OXPHOS-associated gene sets. GEP data were
obtained using samples from patients with MM who were at
baseline and were undergoing total therapy 2 (TT2) or TT3 pro-
tocols.22 The clinical course for the patients showing high
expression of these FOXO-repressed metabolic genes was char-
acterized by a highly inferior OS (P < .0001). The 5.5-year survival
rate was 54% in the LE glycolysis high group (n = 137) vs 71% in
the LE glycolysis low group (n = 639). For the LE TCA and LE
OXPHOS high groups (n = 178 and n = 170, respectively), the
5.5-year survival rate was 57% vs for the LE TCA and LE OXPHOS
low groups, it was 71% (n = 598 and n = 606, respectively)
(Figure 5A). In addition, we show that the LE glycolysis, LE TCA,
and LE OXPHOS gene sets are significantly enriched in MMPCs
from newly diagnosed patients (Figure 5B) and patients with
9 MAY 2023 • VOLUME 7, NUMBER 9
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refractory/relapsed MM in comparison with those having healthy
donor plasma cells, but not in those with monoclonal gammopathy
of undetermined significance. Whereas in patients with smoldering
MM, only the LE OXPHOS gene set was significantly enriched
(supplemental Figure 4A-C). From this we conclude that AKT-
mediated negative regulation of FOXO licenses the expression of
glycolysis- and TCA-associated genes in MM but not in premalig-
nant plasma cell disorders, most likely reflecting higher energetic
demands due to the increased proliferation of MM cells.

Univariate analysis showed that LE glycolysis (high), LE TCA (high),
and LE OXPHOS (high) represent adverse features for OS (hazard
ratios 1.6-1.7) in conjunction with other well-known adverse factors
(Figure 6A). In the multivariate stepwise Cox regression analysis,
the LE TCA (high)–defined high-risk status remained an adverse
variable that predicted inferior OS, along with age (>65 years),
increased LDH levels (≥190 U/L), GEP70 score,33 GEP-derived
delTP53,34 and gain of chromosome 1q (Figure 6B).

Our results suggest that the expression of a subset of metabolic
genes is an important output parameter of AKT signaling, which
crucially impacts the malignant behavior of MM cells and repre-
sents an independent adverse feature.

Discussion

Activation of PI3K/AKT signaling is an established oncogenic
feature of MM cells, sustaining several antiapoptotic and prolifer-
ative pathways. We have previously shown that prosurvival AKT
signaling in MM critically depends on the inhibition of FOXO TFs,
resulting in the stabilization of the antiapoptotic MCL-1 protein.18

Here, we show that the expression of key metabolic genes in
MM is also regulated by AKT signaling that restrains FOXO-
dependent gene repression. Furthermore, we show that MM cells
perform glycolysis almost at their maximum rates and have a con-
strained metabolic adaptability. This implies that most glucose is
converted into lactate and cannot be used for the TCA cycle,
suggesting that other carbon sources fuel OXPHOS in MM.

MM cells are characterized by the high expression of lactate
dehydrogenase,35-37 which catalyzes the conversion of pyruvate
into lactate instead of into acetyl-CoA. However, our results sug-
gest that acetyl-CoA is not limiting for OXPHOS in MM cells
because an increased acetyl-CoA formation caused by DCA
treatment did not boost basal mitochondrial respiration. Nonethe-
less, DCA increased the maximum respiration rate in MM cells,
indicating an increased influx of pyruvate into the mitochondria and
improved usage of mitochondrial respiration. Similar effects of
DCA treatment were observed in other cancer types, such as non-
small cell lung cancer cells38 and breast cancer cells.39 Our results
indicate that the reliance of MM cells on glycolysis for proliferation
Figure 4. AKT regulates glycolysis and OXPHOS in a FOXO-dependent fashion in

and XG-3 Cas9-CTRL clones CTRL and FOXO KO clones (FOXO1 for LME-1, and FOX

β-actin served as a loading control. (B) Seahorse XF glycolysis stress test profiles of CTRL
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and survival is not related to an intrinsic inability to perform
OXPHOS because MM cells are able to switch to OXPHOS when
cultured in the presence of galactose instead of glucose. However,
this resulted in reduced proliferation and cell death in several
HMCLs, suggesting that the ATP generated from mitochondrial
respiration is not sufficient to meet the metabolic demands of MM
cells. Of note, galactose is oxidized to pyruvate, yielding all
glycolysis intermediates, thus indicating that it is unlikely that cell
death is caused by the lack of glycolysis-derived metabolites
required for anabolic processes.30

The increased glycolytic rate seems counterintuitive because
glycolysis yields far less ATP per glucose molecule than that in
mitochondrial respiration. However, at high glucose uptake rates,
the activation of glycolysis and decreased mitochondrial respiration
results in more ATP production due to a more efficient cytoplasmic
solvent capacity.40 Rapidly proliferating cells are characterized by a
high glucose uptake capacity,41 which may explain the glycolytic
phenotype of HMCLs. In agreement, the glycolytic rate of primary
MM cells was lower than that of HMCLs, perhaps explained by the
low in vitro proliferative capacity of primary cells. Nevertheless, the
glycolytic reserve of the primary MM cells was limited and similar to
that observed in the HMCLs. Also, basal respiration and spare
respiratory capacity were similar in the primary MM cells and
HMCLs.

Most HMCLs show an increased expression of the MYC proto-
oncogene because of chromosomal rearrangements and/or
mutations.42 An aberrantMYC expression is a major determinant of
the metabolic phenotype of MM cells,35 and may drive glycolysis
because it directly activates the expression of almost all glycolysis
genes.43 Correspondingly, the glycolytic reserve was comparably
low in BLCLs that represent archetypal MYC-driven lymphomas.
Nonetheless, the aberrantly activated MYC-dependent gene
expression is still subject to auxiliary regulation, in which PI3K/AKT
signaling plays a pivotal role.44,45 However, the expression of MYC
was significantly different in patients with MM classified as FOXO
high (low AKT activity) vs those classified as FOXO low (high AKT
activity) (supplemental Figure 5). Moreover, AKT kinase is a major
driver of glycolysis, stimulating the switch from mitochondrial
respiration to aerobic glycolysis.46

Our results show that metabolic modulation by DCA and galactose
adaptation resulted in the activation of AKT in MM cells and a
concomitant FOXO inactivation, suggesting that altered metabolic
demands are relayed into the PI3K/AKT signaling pathway, likely
representing feedback regulation. Furthermore, we demonstrated
that AKT signaling is of crucial importance for glycolysis and
mitochondrial respiration in MM cells. It was shown previously that
AKT has a direct effect on metabolism by phosphorylating several
MM cells. (A) Immunoblot analysis of HK2 and PKM2 expression in LME-1, MM1.S,

O3 for MM1.S and XG-3) treated overnight with 2.5 μM MK2206 or left untreated.

clones (left panels, n = 2), and FOXO knockout clones (middle panels, n = 2) treated

f ECAR values are depicted (n = 5 measurements for each clone) and Seahorse XF

) depict basal glycolysis values, means ± SEM are shown (one-way ANOVA, with

CTRL clones (left panels, n = 2), and FOXO KO clones (middle panels, n = 2) treated

of OCR values are depicted (n = 5 measurements for each clone) and Seahorse XF

phs (right panels) depict basal respiration values, and means ± SEM are shown (one-

.01, *P < .05; ns = not significant.
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Figure 6. Univariate and multivariate Cox regression analysis of OS in the TT2 and TT3 cohort of patients with MM. (A) Univariate analysis of subgroups (n = 776

patients; alternative numbers of patients indicated in case values/data were missing) for OS. P-values were determined with Wald χ2 test in Cox regression analysis. All univariate

P values were reported regardless of significance. (B) Multivariate analysis of subgroups (n = 525) for OS. HR (diamond symbols) and 95% CI (lines) are indicated. CI, confidence

interval; B2M, beta2-microglobulin; Hb, hemoglobin; HR, hazard ratio; ISS, International Staging System; LDH, lactate dehydrogenase.
metabolic enzymes, such as HK2,47 ACLY,48 and phosphofructo-
kinase.49 Although this may also occur in MM cells, our results
suggest that this is not the major mode of action by which AKT
regulates the metabolic features of MM cells. We demonstrated
that FOXO was an absolute requirement for the effects of AKT
inhibition, suggesting that AKT regulates metabolism in MM, pre-
dominantly at the transcriptional level. This is further substantiated
by our GEP results showing that AKT inhibition resulted in the
Figure 5. Expression of FOXO-repressed metabolic genes predicts poor surviva

clustering–defined groups of patients with MM (776 patients in total). Patients were cluste

OXPHOS, which were derived by combining the LE genes from GSEAs performed for sever

defined as ‘high’ (red lines) or ‘low’ (blue lines) expressing groups. Numbers of patients at

regulated LE glycolysis, LE TCA cycle, and LE OXPHOS gene sets (supplemental Table 1)

plasma cells from healthy donors (n = 15). FDR, ES, NES, and P-value are depicted in th

1708 BLOEDJES et al
FOXO-dependent decreased expression of metabolic genes and
gene sets. These effects appear to be cell/tissue context–specific
because several studies report the opposite, showing that FOXO
expression is actually required for glucose metabolism and the TCA
cycle in neural and intestinal stem cells.50,51 In agreement with our
data, it was shown that FOXO3a antagonized MYC and repressed
genes involved in the mitochondrial respiration in colon cancer
cells52 and in glycolysis in melanoma cells.53
l in patients with MM. (A) Kaplan-Meier univariate analysis for the OS of k-means

red based on the FOXO-regulated LE gene sets; LE glycolysis, LE TCA cycle, or LE

al glycolysis, TCA cycle, or OXPHOS gene sets (Supplemental Table 1). Groups were

risk are tabulated below. (B) GSEA enrichment plots show enrichment of the FOXO-

in MM plasma cells from newly diagnosed patients (MMPCs, n = 75) compared with

e plots.
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Figure 6 (continued)
Importantly, our results suggest that the effects of AKT inhibi-
tion on metabolism are uncoupled from its effect on MM sur-
vival, as overexpression of the full length (40 kDa) antiapoptotic
protein MCL-1 prevented AKT inhibitor–induced cell death but
did not rescue glycolysis or OXPHOS activity. This result is
surprising because it was previously shown that a shorter (36
kDa) MCL-1 isoform is required for normal mitochondrial bio-
energetics in mouse embryonic fibroblasts.54 However, it is
unlikely that the overexpression of the shorter MCL-1 isoform
would rescue mitochondrial respiration because we found many
OXPHOS-associated genes decreased in a FOXO-dependent
fashion upon AKT inhibition. Moreover, our results suggest
that AKT signaling sustains OXPHOS independently of its
effects on glycolysis because AKT inhibition still decreased
mitochondrial respiration when pyruvate was present as the
sole carbon source, thereby obviating the need for pyruvate
provided by glycolysis. This suggests that AKT is the pivotal
kinase that crucially regulates both glycolysis and mitochondrial
respiration in MM.
9 MAY 2023 • VOLUME 7, NUMBER 9
Interestingly, our findings could be extended to patients withMMand
have important prognostic implications. Classification of patients
with MM according to several metabolism-associated gene sets
revealed that the FOXO-dependent repression of these genes
confers a favorable prognosis. These results suggest that AKT
kinase activity exerts its oncogenic function in MM by driving
glycolysis and the TCA cycle, which is associated with aggressive
disease. In agreement, we found that the FOXO-mediated repres-
sion of key metabolic genes is lost in MM plasma cells in comparison
with plasma cells from healthy donors, patients with monoclonal
gammopathy of undetermined significance, and patients with smol-
dering MM, suggesting that the progressive loss of FOXO-
dependent gene regulation accompanies the malignant trans-
formation of plasma cells. This notion, in combination with our finding
that MM cells display limitedmetabolic adaptability suggests that the
FOXO-dependent regulation ofmetabolic featuresmay represent an
attractive therapeutic Achilles’ heel. However, the therapeutic tar-
geting of metabolic enzymes may not be straightforward, given the
many redundancies within and betweenmetabolic pathways and the
FOXO RESTRICTS TUMOR METABOLISM IN MM 1709



lack of truly specific inhibitors/therapeutic agents. In line with this, we
showed that treatment with the purported glycolysis inhibitor 2-DG
resulted in the variable induction of cell death in HMCLs and
BCLs, which was not related to their glycolytic or respiratory
capacity. In that respect, (combinatorial) targeting of signaling
pathways that regulate metabolic plasticity may be a preferred
approach, placing the AKT kinase in the limelight again, where the
prevention of feedback regulation and/or activation of salvage
pathways will be key for a successful therapeutic modality.

The overall conclusion here, and of our previous work,18 is that
metabolism, proliferation, and survival of MM cells critically
converge on the tumor-suppressive function of FOXO, which is
actively restrained by AKT signaling. As a prospect, the therapeutic
exploitation of these aspects of FOXO may guide the development
of novel treatments for MM.
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