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Abstract

Purpose: Resistance to endocrine therapy is the primary cause of treatment failure and death 

in patients with ER-positive (ER+)/luminal breast cancer. Expression and activation of the RET 

receptor tyrosine kinase may be driving poor outcomes. We aim to identify high-risk patients and 

druggable pathways for biomarker-based clinical trials.

Methods: We obtained batch-normalized mRNA expression data from Breast Invasive 

Carcinoma - The Cancer Genome Atlas, PanCancer Atlas (BRCA-TCGA). To determine clinically 

significant cutoffs for RET expression, patients were grouped at different thresholds for Kaplan-

Meier plotting. Differential gene expression (DGE) analysis and enrichment for gene sets 

was performed. transcriptomic dataset of antiestrogen-treated ER+ tumors stratified by clinical 

response was then analyzed.

Results: High RET expression was associated with worse outcomes in patients with ER+ 

tumors, and stratification was enhanced by incorporating GDNF expression. High RET/GDNF 

patients had significantly lower overall survival (HR=2.04, p=0.012), progression-free survival 

(HR=2.87, p<0.001), disease-free survival (HR=2.67, p<0.001), and disease-specific survival 

(HR=3.53, p<0.001) than all other ER+ patients. High RET/GDNF tumors were enriched for 

estrogen-independent signaling and targetable pathways including NTRK, PI3K, and KRAS. 

Tumors with adaptive resistance to endocrine therapy were enriched for gene expression signatures 

of high RET/GDNF primary tumors.

Conclusion: Expression and activation of the RET receptor tyrosine kinase may be driving poor 

outcomes in some patients with ER+ breast cancer. ER+ patients above the 75th percentile may 

benefit from clinical trials with tyrosine kinase inhibitors.
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INTRODUCTION

Breast cancer is the most prevalent cancer and the second leading cause of cancer-related 

death in women globally[1,2]. Molecular subtypes have been identified with distinct 

transcriptomic profiles, treatment responses, and outcomes[3]. Approximately 80% of 

breast tumors are categorized within the luminal subtypes characterized by expression 

of the estrogen (ER) and progesterone receptors (PR)[3,4]. ER+/Luminal tumors have a 

relatively favorable prognosis compared to other subtypes[3,4]. However, roughly 30% 

of patients with ER+ tumors are innately resistant or develop resistance to endocrine 

therapy[5]. Endocrine resistance is a significant challenge in the treatment of ER+ breast 

cancer and various studies have been conducted to understand underlying mechanisms 

of resistance[4,6,7]. Multiple signaling pathways and modulators have been identified 

contributing to resistance including gain of function mutations in ESR1 encoding the 

estrogen receptor, dysregulation of MAPK signaling, and upregulation of receptor tyrosine 

kinases (RTKs)[1,6,8]. Nevertheless, specific drivers of endocrine resistance remain 

unidentified for the majority of ER+ breast cancer patients[6].

Several previous studies have established a connection between the RET RTK and response 

to endocrine therapy. RET activity results in downstream phosphorylation of ER when 

stimulated by its ligand glial cell derived neurotrophic factor (GDNF)[8,9] which leads to 

estrogen independent activation of estrogen response elements. Additionally, our prior work 

has demonstrated that RET is a significant modulator of ERK/MAPK activation and that 

genetic or pharmacologic inhibition of RET can enhance sensitivity to tamoxifen in ER+ 

breast cancer cell lines[9,10]. We hypothesize that a high expression of RET in human ER+ 

tumors is associated with poor outcomes and that RET activity may differentiate a distinct 

biological subset of ER+ tumors with specific gene expression patterns. Unique features of 

RET active tumors will identify biomarkers of patients at high risk for recurrence for future 

RET inhibitor trials.

METHODS

cBioPortal was used to access Breast Invasive Carcinoma The Cancer Genome Atlas, 

PanCancer Atlas (BRCA-TCGA) clinical and genomic data[11,12]. Gene expression data 

was obtained using batch-normalized mRNA expression RSEM data. Clinical and sample 

information was compiled from the clinical attributes and sample attributes files. Tumors 

were assigned PAM50 intrinsic subtype using a normalized centroid predictor[13]. 1,081 

breast cancer patients with RSEM and clinical data were identified from BRCA-TCGA. 

Statistical analysis was performed using RStudio.

To analyze the distribution of gene expression across PAM50 subtypes and ER status, 

boxplots were generated using ggplot2, ggbreak, ggpubr, and scales R packages, and 

statistical significance was determined by student’s t-tests between groups as well as log2 
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fold changes (LogFC) in specific gene expression between groups of interest. Patients with 

missing data or indeterminate ER status were omitted from the analysis. GDNF expression 

was identified using established aliases[14,15].

To determine clinically significant cutoffs for differential gene expression analysis (DGE), 

patients were grouped and Kaplan-Meier (KM) plots were plotted for overall survival (OS), 

progression-free survival (PFS), disease-free survival (DFS) and disease-specific survival 

(DSS) using the survival[16] and survminer[17] packages. We systematically investigated 

various thresholds to determine an optimal RET expression threshold for high or low-

expression groups.

For DGE, genes with less than 10 counts across all patients were omitted before analysis 

of RSEM data using the DESeq2[18] R package. Significant differentially expressed genes 

were grouped by regulation status using a LogFC cutoff of 1 for upregulation and −1 for 

downregulation, along with a false discovery rate (FDR) < 0.05. Genes with FDR < 0.05 

but not meeting the upregulation or downregulation cutoff were indicated as increased or 

reduced in expression. Volcano plots of all genes were plotted using the EnhancedVolcano 

package and a heatmap plotted using the ComplexHeatmap[19] package. Enrichment 

of gene sets was then investigated through hypergeometric analysis of upregulated or 

downregulated elements using clusterProfiler[20]. Enrichment analysis was then performed 

using MSigDB[21] sets and gene ratios were computed as the number of genes enriched 

relative to the total number of genes from the specified set. Enriched sets were grouped by 

categories of interest and plotted using ggplot2[22]. Specific genes from enriched gene sets 

were then investigated through a heatmap using the ggplot2[22] package. Notable, enriched 

pathways were then analyzed through networks to map LogFC values of interacting genes 

using Cytoscape[23].

To determine changes in RET and associated gene expression with endocrine resistance, 

we obtained gene expression data from Xia et al.[7]. In that study, mRNA sequencing 

was performed from tumor samples while patients were taking endocrine therapy and 

annotated with clinical response to therapy (i.e. sensitivity and resistance). Gene counts 

were normalized to the upper quartile using NOISeq[24] and counts were log2 transformed. 

Scores for gene sets of interest were computed across each sample using singscore[25]. 

Boxplots were generated for RET and GDNF expression and gene set scores from TCGA 

analyses across resistant and sensitive samples. Scatter plots of RET and GDNF expression 

levels and bar plots of response type by RET and GDNF co-expression status were also 

generated using ggplot2[22].

AVAILABILITY OF DATA AND MATERIALS

The datasets and codes supporting the conclusions of this article are available in the GitHub 

repository, www.github.com/rashatk/HighRETGDNF.
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RESULTS

RET Expression Across the Landscape of Human Breast Cancer

We used the TCGA transcriptional data to investigate expression of RET across intrinsic 

(PAM50) subtypes to determine how RET expression is associated with phenotypes RET 
expression was enriched in luminal and HER2-enriched subtypes compared to basal, 

claudin-low, and normal-like (p<0.001) (Figure 1a). Luminal B tumors had the highest 

median RET expression, (LumB vs Basal LogFC=4.20, p<0.001). Expression of RET in 

Luminal A tumors was significantly lower than Luminal B (LumA vs LumB LogFC=−0.44, 

p= 0.005) (Figure 1a). RET expression strongly correlated with clinical ER status, with 

the 794 ER+ patients having significantly higher RET expression compared to ER- 

(LogFC=2.90, p<0.001) (Figure 1b).

RET Expression and Outcomes in ER+ Breast Tumors

ER positivity is widely clinically available and used for treatment decisions, so we 

analyzed the impact of RET expression on cancer outcomes in patients with ER+ breast 

cancer. We employed a systematic analysis based on the 10th, 25th, 50th, 75th and 90th 

percentiles to determine a biologically relevant threshold of RET expression that could 

function as a biomarker of worse outcome. RET expression above the 75th percentile 

(high RET) demonstrated the most robust stratification of outcomes. Kaplan-Meier (KM) 

plots demonstrated significantly lower progression-free survival (PFS) (HR=1.66, p=0.018), 

disease-free survival (DSS) (HR=1.77, p=0.049), and disease-specific survival (DSS) 

(HR=2.13, p=0.006) for high RET patients (Figure 2a). There was additionally a trend 

towards worse overall survival (OS) in high RET patients, (HR=1.38, p=0.13) (Figure 2a).

Impact of RET-GDNF Co-expression on Survival in ER+ Patients

Because RET expression may not be sufficient for activity of the RET receptor and 

downstream signaling pathways, we investigated co-expression of RET with its activating 

ligand GDNF. We utilized the previously identified 75th percentile threshold for RET 

expression and stratified tumors based on both RET and GDNF expression above the 75th 

percentile (high RET/GDNF) compared to all other ER+ tumors. Fifty-six of 739 ER+ 

tumors (7.6%) were in the high RET/GDNF group. KM plots demonstrated that high RET/

GDNF patients had significantly lower OS (HR=2.04, p=0.012), PFS (HR=2.87, p<0.001), 

DFS (HR=2.67, p<0.001), and DSS (HR=3.53, p<0.001) than all other ER+ patients (Figure 

2b). Co-expression of GDNF and RET demonstrated more robust stratification of outcomes 

compared to RET expression alone.

We compared features of patients with high RET/GDNF to all other ER+ patients (Table 1). 

High RET/GDNF tumors were more common among white women (p=0.019) and tumors 

with ductal histology (p<0.001). Notably, there were no significant differences in age, stage, 

or PAM50 subtype, which imply that unique biology, rather than previously identified 

prognostic factors are driving poor outcomes.
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Gene Expression Patterns of High RET & GDNF ER+ Breast Tumors

Differential gene expression (DGE) analysis comparing high RET/GDNF tumors to the 

remaining ER+ tumors revealed 195 significantly upregulated and 945 downregulated genes 

(Figure 3a). The top 40 upregulated and top 40 downregulated genes were visualized using a 

heatmap (Figure 3b).

Multiple genes with known roles in estrogen signaling were altered in high RET/GDNF 

tumors. These include FGF10 (LogFC=2.124, FDR<0.001), an FGFR2 ligand associated 

with reduced estrogen dependence, resistance to endocrine therapy, and poor prognosis 

in ER+ breast cancer.[26]. KCNK5 which promotes estrogen-dependent proliferation, is 

reduced (LogFC=−0.978, FDR<0.001)[27,28]. CCND1, an indirect transcriptional target of 

ER driving proliferation and tumor aggression, is increased (LogFC=0.559, FDR=0.004) in 

high RET/GDNF tumors[29].

We then examined genes associated with endocrine resistance. MUC2 has been implicated in 

poor outcomes with aromatase inhibitor therapy and is upregulated (LogFC=3.331, p<0.001)

[30]. We also investigated genes established by Wang et al to have a role in tamoxifen 

resistance including MAPK1, ESR1 and RANBP2, which is implicated in JNK/c-JUN 

signaling[31]. Among high RET/GDNF patients, expression of MAPK1 (LogFC=0.377, 

p<0.001), ESR1 (LogFC=0.642, p=0.001), and RANBP2 (LogFC=0.46, p<0.001) was 

increased.

Transcription factors including NF-κB and JAK/STAT were also altered. NF-κB inhibitors 

such as IKBKB are implicated in anti-apoptotic signaling; IKBKB expression is increased 

(LogFC=0.304, FDR=0.012) and NF-κB levels are reduced (LFC=−0.626, FDR<0.001), 

suggestive of reduced NF-κB signaling[32]. Further, MUC16 is implicated in JAK/STAT 

signaling that leads to c-JUN overexpression[32]. MUC16 downregulation (LogFC=−2.054, 

FDR<0.001) and subsequent increase in c-JUN expression (LogFC=−0.532, FDR=0.001) 

also suggest reduced signaling. Downregulated NPY5R (LogFC=−1.171, FDR=0.020), 

which induces breast tumor apoptosis and reduces STAT3 activation, may indicate 

uncontrolled proliferation mediated by overactivation of STAT3 signaling[33]. SPHK1 
expression is induced by TNFA and has been implicated in breast cancer proliferation and 

metastasis[34]. Reduced SPHK1 expression may thus result from reduced TNFA signaling.

Enriched Signaling Pathways Among ER+ Breast Tumors with High RET & GDNF

To define biologic differences in high RET/GDNF tumors, we analyzed enrichment of 

key pathway gene sets[21,35]. Gene sets consistent with increased ER signaling were 

enriched in high RET/GDNF tumors (Figure 4a), as were genes sets of reduced response 

to estrogen (Figure 4b) and increased antiestrogen resistance (Figure 4c). We compiled 

a heat plot of notable and significantly altered genes within these sets (Figure 4d), 

which identified several important genes. FOXC1 has been shown to repress expression 

of ESR1; and downregulation of FOXC1 (LogFC=−1.161, FDR<0.001) was seen in 

high RET/GDNF tumors[36]. HSD17B1 promotes conversion of estrone into estrogen 

in the final step of estrogen synthesis[37], so downregulated HSD17B1 (LogFC=−1.117, 

FDR<0.001) may indicate divergence towards estrogen-independent ER activity. Similarly, 
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LEP is implicated in estrogen production and is thus implicated in estrogen-dependent 

breast cancer growth[38]. Downregulated LEP (LogFC=−1.974, FDR<0.001) suggests low 

estrogen synthesis and estrogen independence. Further, TRIM29 is a tumor suppressor in 

ER+ breast cancer that interacts with ESR1 to reduce binding to estrogen response elements 

(ERE) that typically results in ER-dependent gene expression[39]. TRIM29 downregulation 

(LogFC=−1.469, FDR<0.001) in high RET/GDNF tumors may indicate increased ESR1 

binding to ERE. Additionally, MYC is an established direct target of ER and is associated 

with poor survival, tumor stemness, and aggressive phenotype[40], was enriched (Figure 4e).

Because RET is upstream of ERK/MAPK signaling, we defined expression of genes 

associated with these pathways in high RET/GDNF ER+ tumors. KRAS and MAPK10 

signaling genes were enriched (Figure 4f). DUSP proteins dephosphorylates MAPK 

proteins leading to reduced MAPK signaling activity[41–43]. Increased expression of 

DUSP7 (LogFC=−0.245, p=0.003) and DUSP4 (LogFC=0.964, FDR<0.001) in high RET/

GDNF tumors may activate MAPK. Increased DCLK1 (LogFC=0.922, FDR<0.001) and 

EFR3B (LogFC=0.816, FDR<0.001) may contribute to increased RAS/ERK activity[44,45]. 

Expression of PDPK1 which activates AKT is increased (LogFC=0.441, FDR<0.001)[32]. 

Upstream targets of MAPK and PI3K/AKT signaling were also enriched, including ERBB2 

pathway. TAOK1 (LogFC=1.360, FDR<0.001) and ERBB4 (LogFC=0.629, FXR=0.004) 

which activate MAPK were enriched[46,47]. Expression of AREG, an EGFR ligand, 

is significantly downregulated (LogFC=−1.254, FDR<0.001)[48]. Further, expression of 

VEGF and VEGFR, which are also upstream regulators of MAPK and AKT signaling, are 

downregulated[49]. These findings further indicate RET as the driver of KRAS, MAPK and 

PI3K/AKT signaling in these tumors.

ER and MAPK Networks in High RET/GDNF ER+ Tumors

We used Cytoscape[23] to define interactions in key pathways, including RAS. In this 

pathway, GAB1 PTPN11 and RAB5A expression was increased in high RET/GDNF tumors. 

NTRK2 expression was significantly upregulated (LogFC=1.447, FDR<0.001). NTRK2 has 

been associated with poor prognosis of invasive breast cancer and represents a druggable 

target with histology agnostic FDA approval[50–52]. Within PI3K/AKT signaling,, VTN 
(LogFC=2.197, FDR<0.001) was upregulated in high RET/GDNF tumors[53]. Genes 

downstream of the classical estrogen-dependent ER transcriptional activity, such as TP53, 
FGF2, and E2F1, and the nonclassical estrogen-dependent ER transcriptional activity 

mediated by transcription factors including SP1 and c-JUN such as BCL2, IGF1, and 

MMP1, are not significantly altered (Figure 5)[54,55]. However, genes downstream of 

estrogen-independent ER transcriptional activity are significantly altered, with RBBP4, 

PTPRF, and RAB14 increased in expression[56].

RET Expression in Endocrine Therapy Resistant ER+ Breast Cancer

Because RET reduces sensitivity to endocrine therapy in vitro, we hypothesized that RET 

expression would be enriched in ER+ tumors that are resistant to endocrine therapy. To 

test this hypothesis, we obtained a transcriptomic dataset from patients with unresectable or 

metastatic ER+ breast cancer treated with endocrine therapy. Serial biopsies were obtained 

for whole transcriptome profiling with clinical sensitivity annotation[7].
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We compared RET and GDNF gene expression stratified by endocrine therapy sensitivity. 

Although GDNF levels did not significantly differ among endocrine-resistant tumors 

relative to sensitive tumors, RET gene expression was significantly higher (LogFC=1.025, 

FDR=0.01) (Figure 6a). RET expression was also significantly higher in adaptive resistance 

samples relative to all sensitive samples (LogFC=1.113, FDR=0.014) (Figure 6b). To 

directly assess if RET and GDNF are overexpressed in response to endocrine therapy 

with emerging resistance, we compared adaptive resistance samples to patient-matched 

sensitive samples (i.e. sensitive tumors that developed adaptive resistance), which were 

labeled “patient-matched pre-resistant” (PMP). No differences were observed in RET or 

GDNF expression between matched specimens (Figure 6c). Resistant samples demonstrated 

higher RET expression (Figure 6d). Samples were then divided into high RET/GDNF (75th 

percentile or non-high RET/GDNF. Most sensitive samples were non-high RET/GDNF, 

whereas the high RET/GDNF samples were enriched for PMP and adaptive resistance 

samples (Figure 6e).

Gene signatures can be more representative of underlying biology than individual genes, 

so we characterized the enrichment and depletion of high RET/GDNF gene expression 

signatures derived from the TCGA analysis. The top 40 upregulated genes and 40 

downregulated genes were compiled into gene sets. The upregulated high RET/GDNF 

signature was not enriched in resistant tumors, but resistant samples were depleted for 

the downregulated signature (LogFC=−0.037, FDR=0.020) (Figure 6f). Adaptive resistance 

samples, however, were enriched for the upregulated signature compared to both sensitive 

(LogFC=0.024, FDR=0.003) and intrinsic resistance (LogFC=0.029, FDR=0.015) samples, 

as well as significantly lower gene expression for the downregulated gene set relative 

to sensitive samples (LogFC=−0.035, FDR=0.048) (Figure 6g). Further patient-matched 

comparison demonstrated significantly higher expression scores of upregulated genes in 

adaptive resistant samples relative to PMP samples (LogFC=0.032, FDR=0.002), and 

lower expression of downregulated genes (LogFC=−0.058, FDR=0.002) (Figure 6h). These 

findings suggest that the development of resistance to endocrine therapy may involve an 

adaptive response resulting in a gene expression profile characteristic of high RET/GDNF 

tumors.

DISCUSSION

In this study, we demonstrate a distinct, high-risk subpopulation of ER+ breast cancer 

characterized by high expression of genes encoding the RET receptor and its activating 

ligand GDNF with poor survival. High RET/GDNF ER+ tumors have a distinct 

transcriptional profile that underlies important biologic distinctions with other ER+ breast 

tumors, and could inform treatment strategies for these patients.

We have previously shown that RET inhibition reduces proliferation in ER+ breast cancer 

cell lines and xenografts[10,57]. However, clinical trials of tyrosine kinase inhibitors in 

non-HER2 amplified breast cancer have had disappointing results[58–61] which may be 

due to lack of biomarkers of patients likely to respond. Supporting this, two recent trials 

of TKI with anti-RET activity were positive by objective response rate in ER+/HER2-

patients[62,63]. Biomarker-based selection of patients will be key to identifying patients 
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most likely to benefit in future clinical trials. The data in this manuscript support the 

selection of patients above the 75th percentile of both RET and GDNF expression which 

identifies patients with poor outcomes and with biological evidence of downstream kinase 

and estrogen signaling pathways, making this an ideal group for future TKI investigation.

We also identify several key enriched features of high RET/GDNF tumors that highlight 

differences in tumor biology and suggest actionable targets in these high-risk patients. 

High RET/GDNF drives downstream upregulation of both estrogen-dependent and estrogen-

independent ER activity. Interestingly, this appears to be driven by a shift towards estrogen 

independent ER activity which is associated with increased proliferation, invasion, and 

metastasis. Because high RET/GDNF tumors have a shift in ER activity towards estrogen-

independent ER activity, ER degraders such as fulvestrant may be preferred over agents 

such as tamoxifen or aromatase inhibitors that act on estrogen-dependent activation of ER. 

We have identified multiple druggable targets, including NTRK2 and TAOK1 which may 

demonstrate potential through further investigation to improve outcomes in this population 

through TKI treatment.

The shift towards ER-independent ER activity may be due to the activation of MAPK 

pathways downstream of RET. MAPK activation has been shown to drive estrogen-

independent activation of estrogen response elements in breast cancer cell lines[64], and 

activating mutations in MPAK pathway can drive endocrine resistance[6,65]. We found 

enrichment of MAPK activity signatures in high RET/GDNF ER+ tumors, demonstrating 

that these pathways are maintained in human breast tumors and may enhance estrogen-

independent ER activity (Figure 7). Supporting this, our preoperative window trial using a 

short treatment of the tyrosine kinase inhibitor vandetanib in primary ER+ tumors results in 

a reduction in ERK activity[66]. Several inhibitors of ERK/MAPK are currently in clinical 

trials for breast cancer, and patients with high RET/GDNF ER+ tumors may be the patient 

population most likely to benefit from these therapies. Further study is needed to determine 

the biological mechanisms of RET and GDNF dependent reprogramming kinase signaling 

pathways, estrogen response elements, and effects on emerging endocrine resistance.

CONCLUSION

A sub-population of ER+ breast tumors with high RET/GDNF expression confers poor 

survival which is associated with MAPK activation and estrogen-independent ER activation. 

Our analysis identifies the top quartile of GDNF and RET co-expression as a candidate 

biomarker for trials of anti-RET therapeutics. Additionally, we identify several targetable 

pathways including NTRK, PI3K, and KRAS that could improve outcomes for these high-

risk patients. Further study is needed to understand how RET is driving oncogenic pathways 

in human ER+ tumors and treatment strategies to improve outcomes for patients with 

RET-driven tumors.
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Fig. 1. 
Distribution of RET gene counts in TCGA human breast tumors stratified by (A) PAM50 

subtypes and (B) ER status (NS: Not significant, * p< 0.001).
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Fig. 2. 
Kaplan-Meier survival plots comparing ER+ patients (A) above the upper quartile of RET 

expression (high RET) relative to those below (low RET) or (B) above the upper quartile 

of both RET and GDNF expression (high RET/GDNF) relative to all others (non-high RET/

GDNF) by overall survival, progression-free survival, disease-free survival, and disease-

specific survival.
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Fig. 3. 
Differential expression analysis of ER+ patients above the 75th percentile of RET and 

GDNF expression (high RET/GDNF) relative to all other ER+ patients demonstrated by 

a (A) volcano plot of all genes with significantly upregulated and downregulated genes 

having L2FC > 1 and < −1 respectively along with FDR < 0.05 and (B) heatmap of top 

40 significant upregulated and downregulated differentially expressed genes defining high 

RET/GDNF ER+ tumors.
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Fig. 4. 
Enriched gene sets among high RET/GDNF tumors relative to non-high RET/GDNF tumors 

across (A) ESR1, (B) estrogen, and (C) antiestrogen (AE) signaling sets. (D) Heat plot of 

notable and significantly regulated genes across enriched estrogen, ESR1 and antiestrogen 

(AE) signaling sets. Enriched gene sets among high RET/GDNF tumors across (E) MYC 

and (F) MAPK, ERBB2, and KRAS signaling sets.
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Fig. 5. 
Graphical representation using Cytoscape of RET activation by GDNF driving activation of 

MAPK pathway and enriching estrogen-independent ER activity.
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Fig. 6. 
Expression of RET, GDNF, and signatures of high RET/GDNF profile in a gene expression 

dataset of endocrine therapy-resistant tumors[7]. (A) RET expression is increased in 

endocrine therapy-resistant tumors compared to sensitive ones with no change in GDNF 

expression. (B) Adaptive-resistance samples have increased RET expression compared to 

sensitive samples, with no statistically significant difference between intrinsic resistant 

and sensitive specimens. (C) No change in RET or GDNF expression is seen in adaptive-

resistance samples and patient-matched resistant (PMP) samples. (D) Scatter plot of RET 

and GDNF expression across all samples by the response to endocrine therapy with cutoffs 

at the 75th percentile of gene expression. (E) Bar plot of response type distribution 

for samples with high RET/GDNF compared to non-high RET/GDNF samples across 

all samples. Distribution of enrichment scores for TCGA-derived top 40 upregulated or 

downregulated gene sets in high RET/GDNF tumors by (F) tumor response to endocrine 

therapy and (G) adaptive or intrinsic resistance. (H) a comparison between adaptive resistant 

samples and patient-matched resistant samples demonstrates significant enrichment of 

upregulated genes and depletion of downregulated genes associated with high RET/GDNF 

tumors. (NS: Not significant, * p < 0.001).
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Fig. 7. 
Summary schematic of key receptors, pathways, and interactions in high RET/GDNF 

tumors.
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Table 1.

Demographic and clinical features across ER+ patients with high RET/GDNF relative to all other ER+ 

patients.

Characteristic Overall ER+

N = 794
1

High RET/GDNF

N = 56
1

Non-high RET/GDNF

N = 738
1 p-value

2

Age 59.29 (13.28) 60.32 (14.17) 59.21 (13.22) 0.574

Age Group 0.8

 <30 7 (0.9%) 1 (1.8%) 6 (0.8%)

 30–39 43 (5.4%) 3 (5.4%) 40 (5.4%)

 40–49 148 (19%) 8 (14%) 140 (19%)

 50–59 201 (25%) 13 (23%) 188 (25%)

 60–69 215 (27%) 16 (29%) 199 (27%)

 Missing 180 (23%) 15 (27%) 165 (22%)

Sex >0.9

 Female 782 (98%) 56 (100%) 726 (98%)

 Male 12 (1.5%) 0 (0%) 12 (1.6%)

Race 0.019*

 Asian 37 (4.7%) 2 (3.6%) 35 (4.7%)

 Black or African American 109 (14%) 1 (1.8%) 108 (15%)

 White 569 (72%) 48 (86%) 521 (71%)

 Missing 79 (9.9%) 5 (8.9%) 74 (10%)

Ethnicity 0.5

 Hispanic or Latino 29 (3.7%) 2 (3.6%) 27 (3.7%)

 Not Hispanic Or Latino 621 (78%) 47 (84%) 574 (78%)

 Missing 144 (18%) 7 (12%) 137 (19%)

Histology <0.001*

 Infiltrating ductal carcinoma 526 (66%) 42 (75%) 484 (66%)

 Infiltrating ductal carcinoma mixed with other types 39 (4.9%) 6 (11%) 33 (4.5%)

 Lobular carcinoma 184 (23%) 3 (5.4%) 181 (25%)

 Mucinous adenocarcinoma 15 (1.9%) 4 (7.1%) 11 (1.5%)

 Other 18 (2.3%) 1 (1.8%) 17 (2.3%)

 Missing 12 (1.5%) 0 (0%) 12 (1.6%)

T Stage 0.093

 T1 209 (26%) 10 (18%) 199 (27%)

 T2 447 (56%) 32 (57%) 415 (56%)

 T3 111 (14%) 9 (16%) 102 (14%)

 T4 25 (3.1%) 5 (8.9%) 20 (2.7%)

 Missing 2 (0.3%) 0 (0%) 2 (0.3%)

N Stage 0.2
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Characteristic Overall ER+

N = 794
1

High RET/GDNF

N = 56
1

Non-high RET/GDNF

N = 738
1 p-value

2

 N0 351 (44%) 18 (32%) 333 (45%)

 N1 277 (35%) 28 (50%) 249 (34%)

 N2 89 (11%) 6 (11%) 83 (11%)

 N3 59 (7.4%) 3 (5.4%) 56 (7.6%)

 Missing 18 (2.3%) 1 (1.8%) 17 (2.3%)

M Stage 0.3

 M0 643 (81%) 50 (89%) 593 (80%)

 M1 15 (1.9%) 0 (0%) 15 (2.0%)

 Missing 136 (17%) 6 (11%) 130 (18%)

AJCC Pathological Stage 0.6

 Stage I 139 (18%) 7 (12%) 132 (18%)

 Stage II 431 (54%) 30 (54%) 401 (54%)

 Stage III 191 (24%) 18 (32%) 173 (23%)

 Stage IV 14 (1.8%) 0 (0%) 14 (1.9%)

 Missing 19 (2.4%) 1 (1.8%) 18 (2.4%)

PR Status 0.2

 Positive 668 (84%) 48 (86%) 620 (84%)

 Negative 122 (15%) 7 (12%) 115 (16%)

 Indeterminate 3 (0.4%) 1 (1.8%) 2 (0.3%)

 Missing 1 0 1

HER2 Status 0.4

 Positive 120 (15%) 9 (16%) 111 (15%)

 Negative 659 (83%) 45 (80%) 614 (83%)

 Indeterminate 14 (1.8%) 2 (3.6%) 12 (1.6%)

 Missing 1 0 1

PAM50 Subtype 0.3

 Luminal A 525 (66%) 34 (61%) 491 (67%)

 Luminal B 196 (25%) 20 (36%) 176 (24%)

 HER2-Enriched 29 (3.7%) 2 (3.6%) 27 (3.7%)

 Basal 20 (2.5%) 0 (0%) 20 (2.7%)

 Claudin-Low 1 (0.1%) 0 (0%) 1 (0.1%)

 Normal-Like 23 (2.9%) 0 (0%) 23 (3.1%)

1
n (%), mean (sd)

2
Fisher’s exact test; Pearson’s Chi-squared test

*
Statistically significant
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