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Abstract

Heterochromatin is defined as chromosomal domains harboring repressive H3K9me2/3 or 

H3K27me3 histone modifications and relevant factors that physically compact the chromatin. 

Heterochromatin can restrict where transcription factors bind, providing a barrier to gene 

activation and cell identity changes. While heterochromatin thus helps maintain cell 

differentiation, it presents a barrier to overcome during efforts to reprogram cells for biomedical 

purposes. Recent findings reveal complexity in the composition and regulation of heterochromatin 

and that transiently disrupting the heterochromatin machinery can enhance reprogramming. Here, 

we discuss how heterochromatin is established and maintained in development and how our 

growing understanding of the mechanisms regulating H3K9me3-heterochromatin can be leveraged 

to improve our ability to direct changes in cell identity.
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Heterochromatin: Restricting Access to the Genome

Despite all cells containing the same genetic information, each cell type in multicellular 

organisms expresses a subset of genes corresponding to its distinct cellular function. The 

expression of cell type specific genes relies upon transcription factors acting in the context 

of chromatin. During development, the progressive expression of sets of transcription 

factors drives changes in cell identity and lineage commitment. Reprogramming involves 

the activation of a new cell identity, typically by the ectopic expression of a cocktail 

of transcription factors that activate alternative lineage genes. The ability to reprogram 

cells was originally discovered with the observation that nuclear transfer can change cell 
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identity [1]. Reprogramming through the direct expression of transcription factors was first 

demonstrated by the ability of MyoD to convert fibroblasts to myoblasts [2] and later shown 

by reprogramming of B cells into macrophages through expression C/EBPα and C/EBPβ 
[3]. Finally, fibroblasts were converted to pluripotent stem cells following expression of the 

Oct4, Sox2, Klf4 and c-Myc (OSKM) transcription factors [4]. Reprogramming from one 

somatic cell lineage to another somatic cell lineage, also referred to as trans-differentiation, 

has been used to generate many cell types including hepatocytes [5], cardiomyocytes [6] and 

neurons [7].

Transcription factors can be restricted from binding to heterochromatic regions of the 

genome that are compact, inaccessible, and hence transcriptionally silent. By contrast, 

euchromatin is more open, accessible, and generally transcriptionally active. Transcription 

factors vary in their abilities to bind to free DNA, euchromatin, and silent, unmarked 

chromatin regions, but are largely blocked from activating target genes in heterochromatin 

regions during reprogramming [8,9]. Thus, learning how to overcome heterochromatin 

repression to enable transcription factor binding helps improve our ability to reprogram 

cells for basic science and therapeutic applications [10–12].

Here we review studies revealing an emerging view that heterochromatin is complex 

in composition. After reviewing such complexity, we will focus on the H3K9me3-

heterochromatin subtype in mammalian cells, including how it is established and rearranged 

during early development, how it resists activation during reprogramming, and how it can be 

disrupted to enhance reprogramming (Figure 1). It appears that H3K9me3-heterochromatin 

achieves gene silencing through diverse mechanisms, resulting in structures and biochemical 

parameters that may interact differently with specific classes or families of transcription 

factors. Unraveling such specificity is a major goal for the future.

Diverse Types of Heterochromatin

Functionally, heterochromatin silences alternative lineage genes during development [13–

16], maintains repression of repeat elements, and promotes genome stability by suppressing 

recombination among different repeats across the genome [17]. The repressive function 

of heterochromatin is driven by its structure, biochemical modifications, and chromatin 

associated proteins and RNAs.

Our understanding of the structure of heterochromatin has undergone a dramatic shift, 

thanks to new insights provided by novel imaging, genomics, and biochemical advances. 

Compared to the uniform nucleosome compaction observed in vitro, recent experiments in 
vivo revealed a more complex picture of heterochromatin structures, with heterochromatin 

assuming multiple nucleosome configurations [18,19] and forming various higher-order 

structures [20]. Integrating how chromatin structural configurations correspond to specific 

histone modifications, protein and genomic compositions and their impact on transcription 

factor binding will provide key insights into heterochromatin regulation and function in 

development and reprogramming.
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Heterochromatin is often characterized by the associated biochemical modifications 

that decorate the DNA and histones. The first heterochromatic mark discovered was 

DNA methylation, which is generally associated with transcriptional repression when 

occurring at CpG islands of gene promoters, but its function depends upon genomic 

context [21]. Covalent modification of the histone tails, including di- and tri-methylation 

of histone 3 lysine 9 (H3K9me2/3) [22], and tri-methylation of histone 3 lysine 27 

(H3K27me3), are the most extensively studied histone modifications associated with 

heterochromatin. H3K27me3, catalyzed by Polycomb Repressive complex 2, has been 

associated with heterochromatin at developmental genes, including Hox clusters, which 

are dynamically regulated during development [23,24]. H3K9me2, catalyzed by the histone 

methyltransferases (HMTs) G9a/GLP, and H3K9me3, catalyzed by the HMTs SETDB1 

and SUV39H1/H2 respectively [22] have long been known to repress repetitive elements. 

H3K9me2 and H3K9me3 are differentially distributed in the nucleus, with H3K9me2 

signals mainly detected at the nuclear periphery and interacting with nuclear lamins through 

adaptor proteins [25,26], and H3K9me3 detected at both nuclear periphery and other more 

centrally located heterochromatin compartments, such as peri-nucleolar and pericentric 

heterochromatin [27]. Upon loss of H3K9me3 in C. elegans, H3K9me2 can maintain 

repression at some previously H3K9me3 repressed genes and repeats, but not all, indicating 

overlapping but not redundant repressive function [15]. Growing evidence has shown that 

H3K9me2/3 is dynamically regulated at genes and enhancers during development to enable 

lineage specifications and restrict alternative lineages [13,22,28,29]; H3K9me3 will be the 

major focus of this review. Additional repressive marks including H4K20me3 [30,31], 

H3K64me3, H2AK119ub1 [24,32], and histone variants [33], together contribute to the 

complex organization and regulation of heterochromatin.

H3K9me3-heterochromatin can be further decorated by associated proteins and RNAs, to 

enforce repression. Linker histone H1 associates with the “linker” DNA region between 

nucleosomes throughout most of the chromatin, i.e., both euchromatic and heterochromatin, 

but a higher density of H1 in heterochromatin domains contributes to chromatin compaction 

[34,35]. So-called histone modification-reader proteins include the heterochromatin 

binding proteins HP1α, HP1β, and HP1γ, which bind methylated lysines through their 

chromodomain and recruit SUV39H1/H2 and SETDB1 to spread H3K9me3 marks to 

neighboring nucleosomes, compacting the chromatin, and reinforce repression through 

the cell cycle [36]. Chromatin associated non-coding RNAs also play important roles in 

establishing and maintaining heterochromatin, such as the Xist RNA in X chromosome 

inactivation [37], satellite RNAs in the recruitment of SUV39H1 and SUV39H2 [38,39], 

pseudogene lncRNAs in the recruitment of SUV39H1 [40], and endogenous siRNAs which 

recruit HMTs through nuclear Argonaute [41]. Specific protein compositions of different 

heterochromatin compartments [8,37,42] may explain how heterochromatin can be uniquely 

deposited and rearranged in development and reprogramming.
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Heterochromatin remodeling enables zygotic genome activation and 

totipotency

Mammalian embryos undergo extensive epigenetic reprogramming during pre-implantation 

development, erasing epigenetic information from the past generation and establishing 

new epigenetic programs to enable developmental progression [43]. Therefore, early 

development offers an important model to investigate molecular mechanisms of 

heterochromatin initiation, establishment, and maintenance, and its impact on cell potential 

(Figure 2).

In the zygote, the paternal genome in sperm is largely packaged with protamines, while 

the remaining canonical histones are largely devoid of H3K9me3 [28,44]. The zygotic 

maternal genome possesses canonical H3K9me3-, H3K40me3-, and H3K64me3-marked 

heterochromatin at centromeric, pericentromeric, and telomeric regions [44,45]. De novo 

H3K9me3 on paternal genomes by SUV39H2 starts as early as the late zygote stage [46], 

although the association of the SUV39H2 RNA-binding domain with the pericentromeric 

RNA transcribed from the paternal genome limits its methyltransferase activities [46,47]. 

SUV39H1 lacks RNA binding domains [39] and overexpression of SUV39H1 induces 

precocious H3K9me3 heterochromatin in zygotes, causing a developmental arrest at the 

2-cell stage and reducing nuclear transfer efficiency by the oocyte [46,48]. Similarly, 

depleting KDM4a in oocyte, the major H3K9me3 demethylase expressed in mouse and 

human oocytes, leads to invasion of H3K9me3 domains into euchromatin and disrupts 

zygotic gene activation [49]. We can conclude that precisely coordinated heterochromatin 

resetting is crucial for establishing a permissive chromatin environment for zygotic genome 

activation and establishing totipotency (Figure 2).

Heterochromatin re-establishment in early embryo drives the transition 

from totipotency to pluripotency

Heterochromatin maintains genome integrity by preventing the recombination between 

repeat sequences and silencing transcription from repetitive elements to prevent the 

formation of RNA:DNA hybrids (reviewed in [17]). However, the newly established 

heterochromatin domains before the 8-cell stage lack HP1α [30,50] and most of the 

linker histone H1 variants [51], which normally are molecular hallmarks of compact 

heterochromatin domains [34], consistent with the notion that heterochromatin domains 

prior to the 8 cell stage harbor a noncanonical, non-repressive structure [52]. Consequently, 

the resetting of H3K9me3, along with erasure of other heterochromatin marks, H3K64me3 

and H4K20me3, and DNA methylation (reviewed in [53]) from the 2-cell to blastocyst 

stage leads to transient activation of satellite repeats and many retrotransposons and during 

pre-implantation development [54].

Interestingly, a pulse of major satellite RNA transcribed from the paternal genome during 

the zygote stage recruits SUV39H2 to pericentromeric regions [39] and the transcription 

from both strands may lead to dsRNA formation, reminiscent of RNAi mechanisms in S. 
pombe and C.elegans (reviewed in [22]). Retrotransposons constitute a large proportion 
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of the mammalian genome, and mounting evidence suggests that RNAs transcribed from 

diverse classes of retrotransposons can direct different heterochromatin machineries to 

silence the repetitive DNA and target genes [55–58] (Figure 2B). The retrotransposons 

and can be broadly divided into non-LTR elements, including LINE and SINE elements, 

and LTR elements, including ERV1, ERV2, ERV3 and MaLR (reviewed in [59]). LINE 

elements constitutes 10%−30% of eutherian genomes [60] and its transcripts, abundant in 

2-cell embryos, recruit Nucleolin and KAP1 (TRIM28) to repress Dux, master regulator of 

2-cell totipotency genes, and therefore drive the exit from totipotency [56].

In addition, the HUSH complex recognizes L1 (LINE) RNAs and recruits SETDB1 

to silence L1 retrotransposons, although direct evidence for a function of the HUSH 

complex in early development is still lacking. LTR elements represent around 25% of 

retrotransposons in the mammalian genome, and their transcripts are detected from zygote 

to morula stages, some of which show remarkable stage-specificities (reviewed in [60]). 

ERV2 families, including IAP and ERVK are among the most abundant ERV elements 

in the mouse genome [59,61]. RNA m6A modifications by Mttl3/4 on IAPs RNAs can 

mark the RNAs for degradation [58] and recruit YTHDC1, which further recruits Setdb1 

to initiate heterochromatin formation at IAP elements [55]. It is currently unknown if the 

RNA-directed mechanism also plays a role in silencing other LTR families.

It is possible that RNA transcribed at heterochromatin domains may directly recruit HP1 

proteins through interactions with the HP1 hinge domains [62]. Taken together, the extant 

studies indicate that RNA is at the core of heterochromatin initiation and maintenance 

and provides targeting specificity for heterochromatin machineries to silence diverse repeat 

families. Recently, of 172 proteins found to be associated with H3K9me3-heterochromatin 

in human fibroblast cells, many are strongly enriched for RGG RNA-binding motif [8], 

hinting that the RNA binding is a common mechanism for heterochromatin formation and 

maintenance.

In addition to the RNA-directed heterochromatin initiation mechanisms mentioned above, 

many transcription factors directly interact with SUV39H1/H2, SETDB1, and HP1 to 

recruit heterochromatin machinery to repress diverse retrotransposon families and lineage 

specific genes (Figure 2D) [63–65]. KRAB-ZFP proteins represent a repertoire of constantly 

evolving transcription factors that recruit SETDB1 through the bridging factor KAP1 to 

silence invading retrotransposons (reviewed in [66]). Some zinc-finger proteins, including 

ZFP809 [67], KLF4, KLF17 [68], and ZFP93 [69], are highly expressed in early 

embryos and bind to specific families of retrotransposons, indicating that ZFPs can recruit 

H3K9me3 machineries to establish H3K9me3 heterochromatin at specific retrotransposons 

in early development. Interestingly, the maturation of heterochromatin domains requires 

additional heterochromatin associated proteins, including CAF-1, linker histone H1 and 

SUMOylation pathway (Figure 2C) [46,56,70]. Depleting SETDB1 and the aforementioned 

heterochromatin associated proteins in early embryos causes a developmental arrest at the 

2-cell stage and de-represses totipotent genes Dux and Zscan4 in pluripotent ES cells, 

causing reversion to 2 cell-like totipotent state. Therefore, the re-establishment of H3K9me3 

heterochromatin directed by RNA and TFs plays important roles in repressing the 2C 

totipotency program and driving the transition to pluripotency at the blastocyst stage.
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Dynamic heterochromatin changes enable lineage specification in 

development

In addition to repressing retrotransposons, H3K9me3-marked heterochromatin plays 

important roles in delineating lineage specification during and after gastrulation (Figure 

2D–E) [13]. Mapping H3K9me3 changes at protein-coding genes, from the germ-layer stage 

to endoderm progenitors, and then to differentiated hepatic and pancreatic cells, reveals 

that, in addition to the expected acquisition of H3K9me3 at genes that become silent in 

terminal differentiation, surprisingly many genes are marked by H3K9me3 heterochromatin 

at the germ layer stage and gradually lose the mark during lineage progression (Figure 

2E). Further genetic studies with Suv39h1/Suv39h2 and Setdb1 triple KO or Setdb1 

knockdown show that H3K9me3 heterochromatin functions to restrict late developmental 

genes and repress alternative lineages [13,28] (comprehensively reviewed in [22]). Thus, 

H3K9me3 dynamics at protein coding genes are critical for embryologic differentiation 

to progress properly. Interestingly, in addition to the roles of ZFPs in heterochromatin 

initiation mentioned above, some of the KRAB-ZNF proteins also show lineage specific 

expression and functions, such as ZNF417/ZNF587 in human neurons [71], ZNF558 in 

human neural progenitors [72], ZNF589 in human hematopoietic system [73], and ZNF808 

in human pancreatic development [74]. Thus, that KRAB-ZNF proteins and the transposable 

elements that they target can be co-opted by the host genome to expand the lineage and 

species-specific regulatory network [75,76].

In summary, H3K9me3-heterochromatin dynamics are critical for early development. 

Interestingly, the drastic heterochromatin remodeling in early development does not 

necessarily lead to genome instability, and similarly no genome-wide genome instabilities 

in liver were observed after global loss of H3K9me3 caused by compound SUV39H1/2 

and SETDB1 deletions [13], suggesting that the roles of H3K9me3 heterochromatin 

in safeguarding genome stabilities are cell context dependent. Understanding how 

different heterochromatin associated proteins direct diverse heterochromatin patterns during 

development has inspired novel screens to perturb heterochromatin machineries to help 

reprogram cells [10].

Heterochromatin blocks transcription factor binding and gene activation

To elicit cellular reprogramming, transcription factors are induced to bind and activate genes 

of a new cell identity. Many reprogramming protocols have been developed to enable 

conversion to diverse cell identities, including pluripotent stem cells [4], macrophages 

[3], hepatocytes [5], cardiomyocytes [6] and neurons [7]. However, in most cases, the 

reprogramming elicited by the ectopic expression of transcription factors is limited and 

does not reflect the desired, fully differentiated cell state [77]. Indeed, reprogramming 

transcription factors are often impeded from binding terminal differentiation genes of 

alternative fates because of repressive chromatin at important differentiation genes, 

particularly H3K9me3-heterochromatin [8] [9,15,78]. Transcription factors possess different 

capacities to bind and open closed chromatin.
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Pioneer transcription factors have DNA binding domains that can bind a partial motif 

displayed on the surface of a nucleosome [79], leading to chromatin opening and enabling 

additional factors to bind [80]. Hence pioneer factors can scan closed chromatin regions, 

in contrast to transcription factors that primarily target open chromatin regions [81,82]. 

Analysis of heterochromatin compartments and diverse transcription factors by single 

molecule tracking demonstrated that the pioneer transcription factors’ nonspecific DNA 

and nucleosome binding ability enabled access to the most restricted heterochromatin 

[83]. Loss of OCT4 nucleosome binding ability, without compromising free DNA binding 

affinity, was sufficient to exclude OCT4 from binding closed chromatin and abolish its 

reprogramming capacities [84]. Therefore, pioneer factor binding initiates structural changes 

between the DNA and histones [85,86] and facilitates binding of other transcription factors 

and remodelers [87].

Despite their abilities to bind nucleosomes, the pioneer transcriptional factors Sox2 and Oct4 

are largely excluded from the H3K9me3 marked heterochromatin during reprogramming 

[9,88]. For instance, in human pluripotent cells Oct4, Sox2 and Klf4 are bound to 

pluripotency genes such as Nanog and Prdm14, but these genes are buried in H3K9me3-

marked heterochromatin domains in human fibroblasts. The activation of such pluripotent 

genes in H3K9me3 heterochromatin occurs at the final stage of iPSC reprogramming and 

is a rate-limiting step. Similarly, during fibroblast to hepatic cell reprogramming by pioneer 

factor FoxA3 with transcription factors HNF1α and HNF4α, hepatic genes repressed by 

H3K9me3-marked heterochromatin are more resistant to activation than the genes marked 

by H3K27me3 or silenced chromatin marked by neither H3K9me3 and H3K27me3 [8]. 

During pro-opiomelanocortin to melanotropes differentiation, binding of the pioneer factor 

PAX7 was also blocked from regions with high H3K9me3 [89]. H3K27me3 heterochromatin 

can also block MyoD in undifferentiated muscle cells [90] and multiple lineage specific 

transcription factors during early mouse and human embryonic stem cell differentiation [91]. 

Although heterochromatin has been shown to exclude transcription factor binding in many 

cell contexts, the ability to bind or being excluded from specific chromatin contexts varies 

among specific pioneer factors [83,92].

Heterochromatin can be de-repressed to enhance reprogramming gene 

activation

Loss of all H3K9 methylation through disruption and deletion of all H3K9 lysine 

methyltransferases leads to global chromatin decompaction, including loss of electron-

dense heterochromatin and derepression of protein-coding genes and repeat elements 

[93]. Transiently depleting diverse non-enzymatic proteins important in maintaining 

H3K9me3 enhances activation of genes in heterochromatin and improves reprogramming 

[8–10,12,15,94] (Figure 3A). However, inhibition of H3K27me3 by knockdown of PRC2 

components EED, EZH2, or SUZ12 decreased iPSC reprogramming, potentially due to a 

failure to silence fibroblast specific transcripts which gain H3K27me3 during successful 

iPSC reprogramming [11] (Figure 3A). Disruption of MBD3 or GATAD2A in the 

NuRD complex, which normally facilitates repression through histone de-acetylation and 

remodeling, enhanced iPSC reprogramming [95]. GATAD2A siRNA knockdown was 

McCarthy et al. Page 7

Trends Biochem Sci. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also shown to improve the activation of genes located in H3K27me3 heterochromatin 

during fibroblast to hepatocyte reprogramming [10], potentially due to decreased H3K27 

de-acetylation [95]. Gene de-repression alone is typically not sufficient for activation during 

reprogramming which requires both de-repression as well as the presence of an activating 

transcription factor [10,15].

The rationale here is that a transient diminution of heterochromatin proteins can allow the 

reprogramming factors to activate new genetic networks, and the subsequent restoration of 

heterochromatin proteins, after transient diminution, can allow a new genetic network to 

re-establish heterochromatin appropriate for the new cell type.

However, such manipulations can be a dangerous game. Heterochromatin opening during 

reprogramming can lead to activation of off-target lineages and repeat elements [10]. 

To lessen this problem, recent findings reveal that groups of heterochromatin proteins 

co-repress distinct sets of genes located in heterochromatin and each gene set possesses 

a particular chromatin signature [10]. While H3K9me3 HMTs and complexes such as 

HUSH target H3K9me3 to broad classes of genes and repeat elements for repression, 

recent findings have identified heterochromatin proteins necessary for subsets of H3K9me3 

targets (Figure 3B). Thus, to more precisely open heterochromatin domains and lessen the 

undesired consequences, it is necessary to learn more about the mechanisms by which the 

heterochromatin machinery is targeted in a locus- and gene-specific manner.

Recently it was demonstrated that depletion of Enhancer of Rudimentary Homolog (ERH) 

in human cells, the S. pombe homolog of which is a known regulator of H3K9 methylation 

[96,97], leads to global H3K9me3 loss in human cells, activation of heterochromatic 

protein coding genes during induced hepatocyte reprogramming, and activation of satellite 

repeats [10] (Figure 3A). In S. pombe, Erh1 interacts with the YTH domain-containing 

protein Mmi1 and is recruited in an RNA-dependent manner to meiotic genes, to maintain 

H3K9me3 heterochromatin and silencing [96,97]. Despite a conserved protein sequence 

with Erh1 [96] and H3K9me3 regulatory function [10], the mechanism of ERH recruitment 

in humans is unknown, as the direct ortholog of Mmi1 is absent in mammals [98]. 

Surprisingly human ERH was found to repress genes in heterochromatic and euchromatic 

H3K9me3 domains, indicating that it may function in the targeting of many or most of 

H3K9me3 deposition mechanisms [10].

Although heterochromatin is partially defined by its transcriptionally silent nature, recent 

findings demonstrate a role for RNAs in heterochromatin establishment and maintenance, 

beyond the canonical role of the XIST RNA in X inactivation [37]. RNA-directed 

heterochromatin establishment is of particular interest due to the potential for uncovering 

target specificity, which could allow specific RNAs to be disrupted to unlock specific 

heterochromatin domains. An example of such sequence specificity can be observed in 

RNAi-directed post-transcriptional gene silencing by which nuclear Argonaute proteins 

establish repression in S. pombe, D. melanogaster, A. thaliana and C. elegans [22,41], 

nuclear Argonaute proteins in mammals, however, may be involved in both activation and 

repression [99].
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Euchromatic H3K9me3 regions are transcriptionally dampened but not fully silenced 

by the HUSH complex, which recruits SETDB1 to repress evolutionarily young L1 

retrotransposons, naïvely integrated lentiviruses, and tissue specific genes including ZNF 

gene clusters [100]. The HUSH complex is recruited by intronless RNAs, a feature of 

retroelements, to repress transgenes and mobile elements [101]. In turn, the repression by 

HUSH also produces shorter non-polyadenylated transcripts, favorable for nuclear exosome 

targeting (NEXT) degradation [102]. HUSH complex suppression of L1 elements is required 

for self-renewal of ground-state pluripotent stem cells [103], but depletion of HUSH 

complex component Periphilin 1 enhanced activation of genes in heterochromatin during 

reprogramming to hepatocytes [10]. How HUSH is targeted to genes with introns such as the 

ZNF clusters remains unclear.

In parallel, heterochromatic H3K9me3 domains are highly enriched for HP1 proteins, 

which can bind RNA through HP1’s hinge domain [62]. Recent in vitro modeling 

suggests that the affinities of IAP and satellite RNAs for HP1 proteins are five-fold 

higher than for Mediator complexes, therefore partially explaining the different recruitment 

mechanisms to repeats versus gene promoters and enhancers [104]. Depletion of HP1 

proteins during reprogramming destabilizes H3K9me3 heterochromatin domains that repress 

pluripotency genes, and therefore enhances reprogramming efficiency [105]. SAFB, a 

nuclear matrix associated protein, binds major satellite RNA to promote phase separation 

at the boundaries of H3K9me3 marked heterochromatin domains [106]. Interestingly SAFB 

has been demonstrated to interact with ERH [107] and may cooperate in miRNA processing 

[108]. Deletion of YTHDC1, which targets the RNA modification m6A to direct SETDB1 

H3K9me3 to retrotransposons and totipotent genes, in mouse ESCs initiated reprogramming 

to a 2-cell like totipotent state [55] (Figure 3A).

Heterochromatin opening can be facilitated by the active removal of repressive marks 

and addition of activating marks to histones. Ectopic lysine demethylases, KDM6A 

and KDM4B, targeting to H3K27me3 and H3K9me3 domains, respectively, improved 

reprogramming [109,110] (Figure 3A). Similarly, increased histone acetylation, triggered 

through pathways downstream of MAP2K6 phosphorylation, can lead to improvements in 

Sox2 and Klf4 binding and reprogramming to pluripotency [111].

These studies reveal that heterochromatin de-repression can be triggered by disrupting 

maintenance functions or active heterochromatin removal, making target chromatin more 

permissible and improving reprogramming by transcription factors.

Selectively de-repressing heterochromatin domains

The activation of unintended transcripts, including repeat elements and alternative 

lineage genes [10], as well as increased genome instability associated with widespread 

heterochromatin de-repression [17,93,112], remains a major barrier to heterochromatin 

diminution for cell therapy applications. The goal remains to selectively de-repress specific 

heterochromatic gene sets or domains while maintaining repression of repeat regions 

and undesired genes. Further work to understanding how the HUSH complex [100–102], 

ERH [10,96], or YTHDC1 [55] are recruited or maintained in chromatin will be key. It 
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is important to note that, as best we understand, disrupting H3K9me3 heterochromatin 

maintenance still requires either dilution through cell division [113] or the action of 

demethylases, for the H3K9me3 mark to go away [114]. Understanding which H3K9me3 

HMTs are targeted and how this targeting can be disrupted is complicated by their ability to 

function redundantly and compensate for partial losses of the other of the three H3K9me3 

HMTs [13,22,93]. Another approach involves the identification of highly specific repressors, 

such as sequence specific ZNFs [71–74], or the design of synthetic de-repressors, which has 

been done recently by fusing epigenetic regulators to transcription activator-like effectors 

[112] and dCas9 [115].

The transcriptional outcome of derepressing H3K9me3 domains may be influenced by 

other marks that are either coincident with H3K9me3 or that are established in a 

compensatory manner. For example, in mouse ESCs, dual H3K36me3/H3K9me3 domains, 

but not H3K9me3-only domains, gained interaction with upregulated genes upon a 

SETDB1 knockout [116]. H3K9me2 [15] and compensation by H3K27me3 [10,13,93] have 

been shown to maintain repression at a subset of sites after loss of H3K9me3. Better 

understanding the complex landscape of heterochromatin will be key to enabling precise and 

selective de-repression.

Concluding Remarks

Despite the extensive rearrangement of heterochromatin during development, genome 

stability and repression of repeats are maintained, indicating that different types of 

heterochromatin can be selectively modulated. Different heterochromatin complexes, 

directed by RNA and transcription factors, appear at different chromatin domains to 

accommodate various developmental needs. By discovering the mechanisms by which 

heterochromatin is selectively targeted during development, we hope to selectively derepress 

key genes in heterochromatin for reprogramming to diverse cell types, without activating 

repetitive regions and off-target genes that are seen with global heterochromatin loss [10,93]. 

Recent advances in human iPSC reprogramming suggests that the route(s) to pluripotency 

transiently goes through a totipotent state [117], which was recently captured in vitro [118], 

offering an opportunity to reconstitute early human development in vitro and investigate 

the heterochromatin remodeling underlying cell fate transitions in greater detail. Future 

studies are required to dissect upstream signaling pathways, and examine the functional 

consequences of disrupting different heterochromatin associated proteins and complexes in 

various developmental and reprogramming contexts to establish a more unifying principle 

that governs heterochromatin functions (see Outstanding Questions). Finally, understanding 

how pioneering factors interact with silenced chromatin will also inspire novel designs 

for synthetic reprogramming factors that combine the chromatin binding capacities of 

pioneer factors with chromatin effector domains that modulate repressive heterochromatin 

environments to improve reprogramming.
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Outstanding Questions Box

• How are heterochromatin proteins dynamic at particular genomic locations in 

a cell type specific manner, e.g., during development?

• What are the roles of RNA binding proteins and RNAs in regulating 

heterochromatin at lineage specific genes and how they can be targeted to 

enhance reprogramming?

• How can heterochromatin at genes be de-repressed while maintaining 

repression of repeats and transposable elements?

• How can manipulating heterochromatin be used to improve cellular 

reprogramming?
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Highlights

• Various categories of heterochromatin exist and are regulated by different 

proteins, RNAs, and mechanisms to restrict access by transcription factors in 

different ways and degrees.

• Activation of a gene during reprogramming that was in heterochromatin 

requires both the opening of the heterochromatin and activating factors.

• Disrupting mechanisms required for maintenance of heterochromatin makes 

sites permissive to transcription factor binding and activation, but can cause 

activation of off-target genes and repeat elements.
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Figure 1. 
H3K9me3-heterochromatin as a barrier to cell fate change. Central to the functions 

of H3K9me3-heterochromatin is the “reader-writer” module, in which H3K9me3 mark 

deposited by H3K9me3 methyltransferases is recognized by reader proteins, including 

HP1α/β/γ, which further recruit methyltransferases to modify the neighboring nucleosomes. 

This leads to spreading of heterochromatin domains and stable maintenance of H3K9me3 

domains over the cell cycle. Further enrichment of linker histone H1, HP1 proteins and other 

heterochromatin associated proteins lead to heterochromatin compaction and restricting the 

TFs from activating their targets. Building from this basic principle, we discussed how 

heterochromatin is established and maintained in development, different compositions of 

heterochromatin domains, how it molds the TF bindings and finally how to this knowledge 

to enhance cellular reprogramming.
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Figure 2. 
Heterochromatin is dynamic during development. (A) Heterochromatin remodeling 

accompanies developmental progression during early mouse development. In the zygote, 

the maternal genome possesses H3K9me3 heterochromatin marks at centromeric 

and pericentromeric regions, whereas paternal genome does not. (B) An ensuing 

heterochromatin remodeling creates an open chromatin environment, a hallmark of 

totipotent states and leads to activation of repeat regions, which recruit heterochromatin 

machinery to establish heterochromatin and promote the transition from totipotency to 

pluripotency. (C) Heterochromatin domains in pluripotent stem cells are decorated with 

H3K9me3 marks, compacted by linker histone H1 and recruit heterochromatin associated 

proteins, including HP1. (D) During lineage specifications in mouse development, 

transcription factors, including KRAB-ZNF proteins direct heterochromatin machinery to 

repress alternative lineage-specific genes to maintain the cell fate. (E) Genes are increasingly 
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marked by H3K9me3 for repression during germ layer development, but this mark is 

removed from key functional genes upon lineage specification [13].
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Figure 3. 
Groups of heterochromatin proteins regulate distinct classes of heterochromatin and can be 

disrupted to facilitate gene activation. (A) Published results showing knockdowns/knockouts 

(blue) and overexpression (red) experiments that lead to de-repression of heterochromatin 

and enhanced reprogramming. (B) Regulation of H3K9me3 at genes and repeat classes by 

H3K9me3 HMTs, protein complexes and selected heterochromatin proteins. Green boxes 

indicate the indicated protein or complex has been experimentally demonstrated to regulate 

H3K9me3 at the designated gene or repeat class.
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