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Abstract 

Background  Pericyte-myofibroblast transition (PMT) has been confirmed to contribute to renal fibrosis in several 
kidney diseases, and transforming growth factor-β1 (TGF-β1) is a well-known cytokine that drives PMT. However, the 
underlying mechanism has not been fully established, and little is known about the associated metabolic changes. 

Methods  Bioinformatics analysis was used to identify transcriptomic changes during PMT. PDGFRβ + pericytes were 
isolated using MACS, and an in vitro model of PMT was induced by 5 ng/ml TGF-β1. Metabolites were analyzed by 
ultraperformance liquid chromatography (UPLC) and tandem mass spectrometry (MS). 2-Deoxyglucose (2-DG) was 
used to inhibit glycolysis via its actions on hexokinase (HK). The hexokinase II (HKII) plasmid was transfected into peri-
cytes for HKII overexpression. LY294002 or rapamycin was used to inhibit the PI3K-Akt-mTOR pathway for mechanistic 
exploration.

Results  An increase in carbon metabolism during PMT was detected through bioinformatics and metabolomics 
analysis. We first detected increased levels of glycolysis and HKII expression in pericytes after stimulation with TGF-
β1 for 48 h, accompanied by increased expression of α-SMA, vimentin and desmin. Transdifferentiation was blunted 
when pericytes were pretreated with 2-DG, an inhibitor of glycolysis. The phosphorylation levels of PI3K, Akt and 
mTOR were elevated during PMT, and after inhibition of the PI3K-Akt-mTOR pathway with LY294002 or rapamycin, gly-
colysis in the TGF-β1-treated pericytes was decreased. Moreover, PMT and HKII transcription and activity were blunted, 
but the plasmid-mediated overexpression of HKII rescued PMT inhibition.

Conclusions  The expression and activity of HKII as well as the level of glycolysis were increased during PMT. Moreo-
ver, the PI3K-Akt-mTOR pathway regulates PMT by increasing glycolysis through HKII regulation.
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Background
Myofibroblasts secrete extracellular matrix and con-
tribute to renal fibrosis [1–4], which is a hallmark of 
poor repair in acute kidney injury and progression to 
chronic kidney disease. In recent years, despite diver-
gent opinions on the source of renal myofibroblasts 
[5–7], an increasing number of comprehensive genetic 
fate mapping studies have demonstrated that pericytes 
are the main progenitors of renal scar-forming myofi-
broblasts [2, 8–10]. Moreover, pericytes have been 
increasingly exploited in cell therapy to inhibit renal 
fibrosis and promote tissue regeneration [11–14].

Transforming growth factor β-1 (TGF-β1) is a 
pluripotent cytokine that drives organ fibrosis and 
regeneration [15, 16]. Following unilateral ureteral 
obstruction, injured epithelial cells primarily secrete 
TGF-β1, which can then trigger pericyte-myofibro-
blast transition (PMT) [16]. A previous study estab-
lished an in vitro PMT model induced by TGF-β1 [16, 
17].

Differentiation is a complicated process that involves 
dynamic epigenetic, transcriptional, and metabolic 
remodeling [18–20]. Metabolic remodeling, also 
known as metabolic reprogramming (MR), refers to 
the change in the primary production of ATP by cells 
from oxidative phosphorylation to aerobic glycolysis 
[21, 22]. Increasing research has revealed that meta-
bolic reprogramming is no longer limited to changes 
in the balance of glycolysis and oxidative phospho-
rylation but extends to changes in the metabolism 
of various nutrients, such as fatty acids, amino acids 
and glutamine [23–25]. Studies have found a novel 
link between metabolism and epigenetic modulation 
in transdifferentiation [11, 20, 26], in which metabo-
lites can regulate differentiation [18, 27]. PMT is an 
important pathological factor in the progression of 
renal fibrosis. However, changes in metabolic pro-
files and metabolic pathways in PMT remain poorly 
understood, and numerous questions regarding TGF-
β1 biology and the pathophysiology of PMT remain 
unanswered.

In this study, we first report that glycolysis is 
increased during PMT and that the PI3K-Akt-mTOR 
pathway plays a role in this effect. Our data reveal 
that glycolysis and HKII expression levels were signifi-
cantly elevated in PMT, and inhibiting glycolysis with 
an HKII competitive antagonist (2-DG) could reverse 
PMT. Moreover, when the PI3K-Akt-mTOR path-
way was inhibited, PMT was blunted, accompanied 
by decreased HKII expression and activity. An HKII 
rescue experiment further clarified that the PI3K-
Akt-mTOR pathway affects TGF-β1-induced PMT by 
regulating HKII.

Methods
Bioinformatics analysis
To identify the main transcriptomic changes that 
accompany the process of PMT, we downloaded the 
gene expression profiles of GSE50439 [28], whose 
raw data were extracted with the GPL1261 plat-
form, (Mouse430_2) Affymetrix Mouse Genome 430 
2.0 Array. In this database, Col1a1-eGFPL10a mice 
were subjected to sham or unilateral ureteral obstruc-
tion (UUO) surgery. From the mice subjected to the 
sham surgery, we extracted samples GSM1219324, 
GSM121932 and GSM1219326 as the control group, 
while from those subjected to UUO after 2 or 7 days, we 
extracted GSM1219330, GSM1219331, GSM1219332, 
GSM1219333, GSM1219334 and GSM1219335 as the 
PMT group. The preprocessing of the gene expression 
profile data, which included background correction, 
quantile normalization, median polish summarization, 
and log2 transformation, was performed by R and RStu-
dio software. The limma R package was applied to iden-
tify differentially expressed genes (DEGs) by comparing 
expression values between pericyte samples and myofi-
broblast samples. The criteria for assessing DEGs were 
|log2-fold change (FC)|≥ 1 and p < 0.05 in the gene 
expression between pericytes and myofibroblasts and an 
adjusted p < 0.05. A volcano plot of DEGs was generated 
by the ggplot2 package in R. GO and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment pathway 
analyses of the DEGs were performed with the Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID) online tool.

Metabolic profiling
Samples were collected and immediately stored at 
−80  °C according to previous literature [29]. Samples 
were extracted with 80% methanol aqueous solution and 
analyzed by ultraperformance liquid chromatography 
(UPLC) and tandem mass spectrometry (MS). Metabolite 
quantification was performed by using multiple reaction 
monitoring (MRM) mode in a triple-quadrupole mass 
spectrometer. Analyst 1.6.3 software was used to process 
the mass spectrometry data. Based on the local metabolic 
database, the metabolites of the samples were analyzed 
qualitatively and quantitatively by mass spectrometry.

Primary pericyte isolation, culture and cell treatment
Pericytes were isolated from C57/BL6 WT mice (male, 
6–8  weeks old, purchased from the Animal Center of 
Chinese PLA General Hospital) by separating the kid-
neys aseptically, then dicing and incubating them with 
Liberase (0.5  mg/ml, Roche Applied Science, USA) and 
DNase (100 U/ml, Roche Applied Science, USA) at 37 °C 
for 30  min in DMEM (Corning, USA). Digestion was 
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inactivated with DMEM containing 10% FBS (Corn-
ing, USA). The suspension was filtered with a 40 μm cell 
strainer to remove glomeruli and multicellular debris. 
Pericytes were purified by isolating PDGFRβ + cells 
using MACS (Miltenyi Biotech, Germany) and cultured 
in DMEM-F12 (Gibco Life Technologies, USA) with 
10% FBS, 1% penicillin/streptomycin (Gibco Life Tech-
nologies, USA) and 1% ITS (Invitrogen, USA) in colla-
gen-type I-coated (Sigma‒Aldrich, USA) T25 flasks. P1 
primary pericytes were used for experiments. Additional 
details on the above procedure can be found in the ref-
erenced literature [16, 30, 31]. Pericytes were pretreated 
with 5  mmol/L 2DG (Sigma‒Aldrich, USA), 50  μmol/L 
LY294002 (HY-10108, MCE, USA) or 100  nmol/L rapa-
mycin (HY-10219, MCE, USA) to inhibit glycolysis [32] 
or the PI3K-Akt-mTOR pathway [33–35].

Model of PMT in vitro
When the cell confluence reached approximately 80%, the 
culture medium was replaced with 1640 medium without 
glucose and serum and cultured for 12 h. After the cells 
were synchronized, they were divided into two groups: 
(1) the control group, in which pericytes were cultured 
with complete culture medium, and (2) the TGF-β1-
treated group, in which pericytes were cultured with 
complete culture medium containing 5  ng/mL TGF-β1 
(1218209, PeproTech) for 24 or 48 h [16]. The cell pheno-
type was verified by determining the expression levels of 
α-SMA, vimentin and desmin. According to our results, 
we considered that the in vitro PMT model was success-
fully established by 48 h of treatment with TGF-β1.

Quantitative real‑time polymerase chain reaction (PCR) 
analysis
Briefly, the cells were homogenized using TRIzol (Invit-
rogen, USA), and the total RNA was reverse-transcribed 
to cDNA by a ProtoScript II FirstStrand cDNA Synthesis 
Kit (Applied Biosystems, USA). Real-time PCR was car-
ried out (Bio-Rad, USA) with FastStart Universal SYBR 
Green Master Mix (Roche, Germany). The primers are 
shown in Table  S1. The relative mRNA level was deter-
mined with the 2−ΔΔCt method normalized by 18S as 
described previously [36, 37].

Western blotting
Cells were lysed in RIPA buffer with 1% PMSF on ice 
for 20 min, and the protein concentrations were evalu-
ated with a BCA protein assay kit (Thermo, Rockford, 
IL, USA). The same quality proteins were separated 
in 10–15% polyacrylamide gel and then transferred to 
NC membranes by Trans-Blot Turbo (Bio-Rad, Her-
cules, CA, USA). After the membranes were blocked 
in 20% casein, they were incubated overnight with 

the following primary antibodies: GAPDH (1/50000, 
60004–1, Proteintech), α-SMA (1/3000, ab7817, 
Abcam), vimentin (1/10000, 60330, Proteintech), 
desmin (1/1000, sc-23879, Santa Cruz Biotechnol-
ogy), hexokinase II (HKII) (1/1000, ab209847, Abcam), 
PKM (1/5000, ab150377, Abcam), and LDH (1/5000, 
ab52488, Abcam). Quantification was performed by 
measuring the intensity of the gels with ImageJ (Rawak 
Software, Inc. Germany).

Immunofluorescence staining
Immunofluorescence staining was described previously 
[38]. Cells cultured on coverslips were washed twice 
with cold PBS and fixed with 4% paraformaldehyde for 
3  min at room temperature and 15  min at 4℃. Follow-
ing three extensive washes with PBS, the slides were per-
meabilized with 0.2% Triton X-100 for 10  min, blocked 
with 5% BSA for 30 min at room temperature, and then 
incubated with the specific primary antibodies previously 
described. The slides were probed with Cy3‐conjugated 
secondary antibody (red) and FITC‐conjugated second-
ary antibody (green) at room temperature for 1  h. The 
slides were imaged by confocal fluorescence microscopy. 
Each experiment was repeated three times, and immuno-
fluorescence images were captured with identical expo-
sure settings. The signal intensity of immunofluorescence 
images was quantified with the same parameter settings 
using ImageJ software, and scores were expressed as the 
percentage of total area.

Extracellular flux (XF) analysis
P1 pericytes were seeded in an XF 24-well cell culture 
microplate (Seahorse Bioscience, Copenhagen, Denmark) 
at a density of 2 × 104 cells/well and washed in glucose-
free XF base medium. A Seahorse XFe24 Extracellu-
lar Flux Analyzer was used to measure the extracellular 
acidification rate (ECAR) and the oxygen consumption 
rate (OCR) in the medium [39]. The ECAR was meas-
ured after serial injections with 100  mmol/L D-glucose, 
10 μmol/L oligomycin, and 500 mmol/L 2-deoxyglucose. 
OCR was measured after serial injections with 15 μmol/L 
oligomycin, 20  μmol/L FCCP, and 5  μmol/L rotenone/
antimycin A. Glycolysis was defined as the ECAR 
response to oligomycin after glucose injection, and the 
glycolytic reserve was calculated as ΔECAR Oligomycin-Glu-

cose. The maximum OCR value stimulated by FCCP was 
defined as the maximal respiration, and the difference 
between the maximum respiration and the basal respira-
tion was the spare respiratory capacity. Data were ana-
lyzed by the XF Glycolysis Stress Test Report Generator 
macro provided by Seahorse Biosciences.
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HK activity assays
We measured HK activity by using an HK activity assay 
kit (MAK091, Sigma, USA). In brief, glucose is con-
verted to glucose-6-phosphate, which is oxidized by 
glucose-6-phosphate dehydrogenase to form NADH. The 
resulting NADH reduces a colorless probe, resulting in 
a colorimetric product (at λ = 450  nm). The HK activity 
was accurately measured by a microplate reader (Thermo 
Fisher, USA).

Transformation of the HKII plasmid and transfection 
into pericytes
The pCMV6 plasmid (EX-Mm03044-M02, GeneCo-
poeia) containing the HKII cDNA sequence was trans-
formed into TOP10 competent E. coli (CB104, Tiangen). 
After amplification, the plasmid was extracted with a 
Plasmid Mini Kit II according to the manufacturer’s pro-
tocol (D6945, Omega). When the cell confluence reached 
approximately 50%, the HKII plasmid was transfected 
into P1 pericytes with EndoFectin™ Max Transfection 
Reagent (EF003, GeneCopoeia) according to the instruc-
tions. The expression of HKII was measured by PCR.

Statistical analyses
All Western blot and immunofluorescence images are 
representative of at least three independent experiments. 
RT‒qPCR assays were performed in quadruplicate. Data 
shown are the mean ± SD for three or more independ-
ent experiments. Student’s t test was used for two-group 
comparisons. P < 0.05 indicated statistical significance.

Results
Bioinformatics and metabolomics analysis revealed 
significant changes in the carbon metabolism pathway 
during PMT
To study the major changes that accompany PMT in 
transcriptomics, we extracted GSE50439 data from 
the GEO database. We analyzed gene expression in the 
bound fraction, which reflects pericyte/myofibroblast-
specific RNA [28]. Sham-treated kidneys were used as 
the control group, and UUO-treated kidneys collected 
on day 2 or day 7 were used as the PMT group. By com-
paring the gene expression profiles of the two groups, we 
identified 1485 DEGs (Additional file  1: Fig. S1), which 
were enriched in 58 signaling pathways (data not shown). 
Among these pathways, 14 were related to metabolism 
(Additional file 1: Fig. S2). These results led us to further 
investigate the carbon metabolic changes during PMT. In 
the carbon metabolism pathway, we noticed that HKII 
levels changed significantly (data not shown).

Then, we established an in vitro model of PMT induced 
by TGF-β1. Primary pericytes were isolated from 
C57BL/6 mice using magnetic bead sorting. After the 

pericytes (passage 2) were stimulated with 5 ng/mL TGF-
β1 for 24  h, the cells presented with a myofibroblast-
like morphology (Additional file 1: Fig. S3), along with a 
prominently increased expression of α-SMA (Fig. 1A–B), 
consistent with previous reports [17]. After stimula-
tion with TGF-β1 for 48  h, the increased expression 
of α-SMA, desmin and vimentin was more significant 
(Fig.  1A–B). Thus, we regarded pericytes treated with 
TGF-β1 for 48 h as myofibroblasts.

By using the PMT model established above, we con-
ducted targeted metabolomic profiling of carbon metab-
olism in pericytes and TGF-β1-induced myofibroblasts. 
The results showed that 31 metabolites in carbon metab-
olism were increased in myofibroblasts (data not shown). 
Then, we performed KEGG analysis on the 31 metabo-
lites and found that these metabolites were enriched in 
both glycolysis and oxidative phosphorylation (Fig. 1C).

Glycolysis in carbon metabolism was prominently 
enhanced in TGF‑β1‑induced PMT
A schematic illustration of glycolysis is shown in Fig. 2A. 
We first observed the accumulation of glycolytic metabo-
lites, such as glucose-6-phosphate, fructose 6-phosphate, 
fructose 1,6-bisphosphate, glyceraldehyde 3-phosphate, 
2,3-bisphosphoglyceric acid, 3-phosphoglycerate, pyruvic 
acid and lactate, during PMT (Fig. 2B).

To further define the metabolic profile, we examined 
the extracellular acidification rate (ECAR), which allows 
the quantification of glycolytic flux. The cells were first 
incubated in medium without glucose and pyruvate, 
and we found that the nonglycolytic acidification rate 
was unchanged during PMT (Fig.  2C). Nevertheless, 
the acidification rate increased further after injection of 
glucose and oligomycin in the TGF-β1-48h group, indi-
cating a substantial improvement in glycolysis and gly-
colytic capacity. Additionally, the glycolytic reserve was 
improved in the TGF-β1-48h group compared to the 
control group. These results confirmed an increase in gly-
colysis during PMT.

We also detected the OCR as a measure of mitochon-
drial oxidative phosphorylation. As shown in Additional 
file 1: Fig. S4, compared with the control group, the TGF-
β1-48h group had higher basal mitochondrial respira-
tion, maximal respiration, and spare respiration capacity 
(p<0.05), but there was no significant difference in the 
ratio of the spare respiration capacity/basal respiration 
between the two groups (Additional file  1: Fig. S4E). 
Moreover, the ratio of glycolysis reserve/glycolysis was 
higher in the TGF-β1-48h group (Additional file  1: Fig. 
S4F). Therefore, glycolysis has a greater potential to sup-
ply energy during PMT.

As overall glycolysis increased, we also detected the 
uptake and consumption of glucose during PMT. The 
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Fig. 1  Carbon metabolism was changed in TGF-β1-induced PMT. A Immunofluorescence staining of α-SMA (red) and nuclei (blue) and quantitative 
data. Scale bar = 50 μm. B Representative Western blotting and quantitative data of vimentin, desmin and α-SMA expression after TGF-β1 
stimulation. C Bubble chart of the pathways that were enriched in the 31 differentially expressed metabolites between pericytes and pericytes/
myofibroblasts. Data are presented as the mean ± SD (n = 3–6)
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Fig. 2  Glycolysis in carbon metabolism was prominently enhanced during TGF-β1-induced PMT. Pericytes stimulated with 5 ng/ml TGF-β1 for 
48 h were recognized as myofibroblasts. A Schematic diagram of glycolysis; B Change in the levels of glycolysis metabolites during PMT. Control: 
inactive pericyte, TGF-β1-24 h: pericyte stimulated with 5 ng/ml TGF-β1 for 24 h, TGF-β1-48 h: pericyte stimulated with 5 ng/ml TGF-β1 for 48 h. 
C Extracellular acidification rate (ECAR) in pericytes and myofibroblasts, followed by sequential treatments with glucose, oligomycin A, and 
2-deoxyglucose (2-DG). The level of glycolysis, glycolytic capacity and glycolytic reserve in the TGF-β1-48 h group were higher than those of the 
control group. D, E Representative Western blots and the gene expression of key glycolytic enzymes. Data are presented as the mean ± SD (n = 3–4)
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expression of glucose transporter 1 (p=0.006) and glu-
cose transporter 4 (p=0.024) was significantly elevated 
in the TGF-β1-48h group relative to the control group 
(Additional file  1: Fig. S5). Furthermore, through the 
relative quantitative detection of glucose, we found 
that the glucose content in the TGF-β1-48h group was 
higher than that in the control group (p<0.001) (Addi-
tional file  1: Fig. S6A). In addition, the glucose con-
centration in the culture medium of the TGF-β1-48h 
group was significantly lower than that in the culture 
medium of the control group (p=0.013) (Additional 
file 1: Fig. S6B).

Having validated the increase in glucose uptake 
and consumption, we then measured changes in the 
expression of key glycolytic enzymes. Western blot 
analysis revealed increased expression levels of HKII, 
M2 pyruvate kinase (PKM) and lactate dehydrogenase 
(LDH) in the TGF-β1-48h group compared with the 
control group (Fig. 2D). TaqMan PCR analysis showed 
that the mRNA expression levels of HKII, Pkm2 and 
Ldhα were significantly elevated in the TGF-β1-48h 
group (Fig. 2E).

Reducing glycolysis levels significantly inhibited 
TGF‑β1‑induced PMT
The increase in glycolysis during PMT led us to inves-
tigate whether decreasing glycolysis can affect PMT. 
Thus, we pretreated pericytes with 2-DG, a glucose 
analog that inhibits glycolysis via its effect on HK, 
to answer this question. First, we applied the XFe24 
Extracellular Flux Analyzer for real-time analysis of 
ECAR. As shown in Fig.  3A, compared with that of 
the TGF-β1 + vehicle group, the ECAR of the TGF-
β1 + 2-DG group was significantly reduced. More 
importantly, the level of glycolysis, glycolytic capac-
ity and glycolytic reserve were significantly decreased 
after 2-DG treatment (Fig.  3B-D). These results sug-
gested that 2-DG significantly decreased the level of 
glycolysis.

Moreover, immunofluorescence showed that the 
expression of α-SMA was significantly reduced after 
2-DG treatment (Fig.  3E). RT‒qPCR showed that the 
protein and mRNA levels of vimentin, desmin and 
α-SMA were decreased in the TGF-β1 + 2-DG group 
compared with the TGF-β1 + vehicle group (Fig.  3F). 
Since 2-DG acts on HK, we also analyzed the expression 
of other downstream glycolytic enzymes, such as PFKP, 
PKM2, LDHA and pyruvate dehydrogenase A (PDHA), 
and the results showed that the mRNA expression of 
these enzymes was reduced after the addition of 2-DG 
(Fig. 3G). Therefore, reducing the level of glycolysis can 
inhibit PMT as well as downstream glycolytic enzymes.

Inhibiting the PI3K‑Akt‑mTOR pathway can reverse 
TGF‑β1‑induced PMT
In the bioinformatics analysis, we noticed that the 
DEGs were enriched in the PI3K-Akt pathway during 
PMT. Then, we detected the phosphorylation levels of 
PI3K, Akt and mTOR and found that the PI3K-Akt-
mTOR pathway was activated in PMT (Additional file 1: 
Fig. S7). Next, we treated the PMT model in vitro with 
LY294002 (a PI3K inhibitor) or rapamycin (an mTOR 
inhibitor) to specifically inhibit the PI3K-Akt-mTOR 
pathway. These treatments resulted in a decrease in the 
ECAR in the PMT model (Fig.  4A). The levels of gly-
colysis, glycolytic capacity and glycolytic reserve (all 
p<0.01) were significantly reduced (Additional file  1: 
Fig. S8).

Since lowering glycolysis can reduce PMT, we then 
evaluated pericyte transition after inhibition of the 
PI3K-Akt-mTOR pathway. The fluorescence intensity 
of α-SMA was notably reduced after treatment with 
LY294002 and rapamycin (Fig.  4B). The Western blot-
ting results also showed that the expression levels of 
vimentin, desmin and α-SMA decreased in the TGF-
β1 + LY294002 group and the TGF-β1 + rapamycin 
group (Fig. 4C).

The PI3K‑Akt‑mTOR pathway influences TGF‑β1‑induced 
PMT by regulating HKII
Thus far, the results demonstrated that inhibiting the 
PI3K-Akt-mTOR pathway reduced the level of glyco-
lysis and suppressed PMT, but how the PI3K-Akt-mTOR 
pathway regulates PMT remains unclear. As we noticed 
a significant change in the level of HKII by bioinformat-
ics analysis, consistent with a previous study, we hypoth-
esized that HKII may play a key role in PMT. We found 
that the protein and mRNA levels of HKII were decreased 
in the PMT model after treatment with LY294002 or 
rapamycin (Fig. 5A–B). We then analyzed the activity of 
HK and found that it was also lower after treatment with 
LY294002 and rapamycin (Fig. 5C).

Then, we performed an HKII rescue experiment. We 
successfully overexpressed HKII by plasmid transfec-
tion into pericytes (Additional file 1: Fig. S9), after which 
the pericytes were treated with TGF-β1 and LY294002. 
As shown in Fig.  5D–E, after HKII was overexpressed, 
PMT was significantly increased. Compared with PMT 
upon treatment with only LY294002, the overexpres-
sion of HKII also significantly increased PMT. Moreo-
ver, we detected lower mRNA expression levels of HKII 
in the PMT model after LY2940002 treatment. All these 
data suggest that the PI3K-Akt-mTOR pathway increases 
TGF-β1-induced PMT by enhancing the expression and 
activation of HKII (Fig. 6).
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Fig. 3  Reducing glycolysis levels significantly inhibited TGF-β1-induced PMT. 2-Deoxyglucose (2-DG) was used to reduce the level of glycolysis. 
A Effects of 2-DG on the ECAR in TGF-β1-induced PMT. B, C and D Statistical analyses of glycolysis, glycolytic capacity and glycolytic reserve in the 
ECAR. E Immunofluorescence staining of α-SMA (red) and nuclei (blue). Scale bar = 50 μm. F Gene expression of α-SMA, vimentin and desmin. G 
Gene expression of glycolytic enzymes downstream of HKII in the glycolytic pathway. Data are presented as the mean ± SD (n = 3–5)

(See figure on next page.)
Fig. 4  Inhibition of the PI3K-Akt-mTOR pathway reverses TGF-β1-induced PMT. A Effects of inhibition of the PI3K-Akt-mTOR pathway on the 
ECAR in TGF-β1-induced PMT. P1 pericytes were first treated with DMSO (TGF−β1+ vehicle), the PI3K inhibitor LY290042 (TGF−β1+ LY290042) or the mTOR 
inhibitor rapamycin (.TGF−β1+rapamycin) for 1 h, followed by the addition of TGF-β1 to a concentration of 5 ng/ml. B Immunofluorescence staining and 
quantitative detection of α-SMA (red) and nuclei (blue) before and after inhibiting the PI3K-Akt-mTOR pathway. Scale bar = 50 μm. C Representative 
Western blotting and quantitative data of α-SMA, vimentin and desmin. Data are presented as the mean ± SD (n = 3–5)
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Fig. 4  (See legend on previous page.)
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Fig. 5  The PI3K-Akt-mTOR pathway influences TGF-β1-induced PMT by regulating HKII. A Immunofluorescence staining of HKII (green) and nuclei 
(blue) and quantitative data with or without inhibition of the PI3K-Akt-mTOR pathway. B Gene expression of HKII with or without inhibition of the 
PI3K-Akt-mTOR pathway. C HK activity with or without inhibition of the PI3K-Akt-mTOR pathway. D, E HKII rescue experiments showed that HKII 
overexpression rescued PMT induced by TGF-β1. F LY294002 decreased the mRNA expression of HKII. Scale bar = 50 μm. Data are presented as the 
mean ± SD (n = 3–8)
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Discussion
In this study, we compared the gene expression profiles 
of renal pericytes and pericyte-derived myofibroblasts 
through bioinformatics analysis. The results illustrated 
that cell metabolism changes significantly during PMT, 
involving carbon metabolism, HKII and the PI3K-Akt 
pathway. Then, we built an in  vitro model of PMT to 
observe the specific changes in glycolysis. Moreover, we 
found that the PI3K-Akt-mTOR pathway may participate 
in the regulation of PMT by affecting HKII and glycolysis.

Renal fibrosis is the basic pathological feature of the 
progression of various renal diseases, and myofibroblasts 
are regarded as the predominant effector cells in fibrosis. 
However, the origins of myofibroblasts remain controver-
sial, and possibilities include resident fibroblasts, peri-
cytes, bone marrow-derived fibroblasts, tubular epithelial 
cells and endothelial cells [5, 7, 10, 40, 41]. In 2021, Kuppe 
C et  al. published an article in Nature, and they identi-
fied distinct subpopulations of pericytes and fibroblasts 
as the main cellular sources of scar-forming myofibro-
blasts during human kidney fibrosis by using single-cell 
RNA sequencing and spatial transcriptomics in human 
samples and genetic fate tracing, time-course single-cell 
RNA sequencing and ATAC-seq experiments in mice 

[42]. Since an increasing number of in vitro and in vivo 
studies have confirmed that PMT is the main source of 
renal myofibroblasts in both humans and rodents [10, 42, 
43], the role of PMT in renal diseases is self-evident.

The relationship between glycometabolism and renal 
disease has attracted the attention of many researchers. 
The mRNA and protein levels of key enzymes in glyco-
lysis, as well as glycolysis levels, have been shown to be 
elevated in fibroblasts in a UUO mouse model [44], 
endothelial cells [45] and macrophages [46] in diabetic 
kidney disease (DKD). Inhibiting aerobic glycolysis can 
attenuate the progression of polycystic kidney disease, 
DKD, proliferative kidney disease, chronic kidney dis-
ease and kidney cancer [45, 47–50]. Our study revealed 
the changes in carbon metabolism in PMT, especially the 
role of the PI3K-Akt-mTOR pathway. We believe that our 
study may provide new ideas for preventing renal fibrosis 
and renal disease.

Metabolic studies on pericytes vary between pericyte 
subpopulations. Placental pericytes in the proliferative 
state rely heavily on glycolysis, which is responsible for 
producing approximately 85% of their ATP [51], while 
our results suggest that the level of ATP produced by 
mitochondria is 2–7 times that produced by glycolysis in 

Fig. 6  Schematic illustration showing that the PI3K-Akt-mTOR pathway regulates PMT by affecting HKII in glycolysis
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primary renal pericytes at different cell densities (Addi-
tional file  1: Fig. S10D). The difference may be partly 
explained by the long-term hypoxia in malignant micro-
environments and the abundant blood and oxygen supply 
in the kidney. Both GLUT1 and GLUT4 are detectable 
in renal pericytes, indicating that glucose uptake occurs 
through both insulin-dependent and insulin-independ-
ent pathways in pericytes [26], consistent with studies in 
murine brain pericytes [52]. Under TGF-β1 stimulation, 
the expression of GLUT1 and GLUT4 was increased, 
and the level of glucose in culture medium was lower 
in myofibroblasts (data not shown). These results illus-
trate that glucose uptake and consumption are higher 
in myofibroblasts than in pericytes. Cells in a quiescent 
state usually have low cellular metabolism, but when 
stimulated by growth factors, myofibroblasts increase 
ATP production to support cellular contractility [53]. 
Researchers have observed increased glycolysis and oxi-
dative phosphorylation during the differentiation of neu-
rons, podocytes and lung fibroblasts [53–55]. Moreover, 
metabolites such as the oxidized form of nicotinamide 
adenine dinucleotide (NAD+) can orchestrate transcrip-
tion and differentiation [56]. Studies have found that gly-
colysis mainly provides most of the energy in the early 
stage of neuronal cell differentiation [54]. However, the 
levels of most metabolites begin to increase in the late 
stage of TGF-β1–induced PMT. N-cadherin, Notch3 and 
FoxO3A signaling not only participate in preserving cell‒
cell interactions but also maintain a quiescent state in 
pericytes by limiting cellular metabolism, mainly glyco-
lysis [11, 57, 58]. After blocking PFKFB3 with 3PO, glyco-
lysis in pericytes is reduced, proliferation and migration 
are impaired, and attachment to epithelial cells by N-cad-
herin is enhanced [51]. After inhibiting the expression of 
PDK4 in human pulmonary pericytes, a similar phenom-
enon is observed, and the interaction between endothe-
lial cells and pericytes is enhanced, thereby preventing 
vascular loss in pulmonary hypertension [59].

Renal pericytes, which have been neglected by 
researchers for years, are mesenchymal cells that sur-
round endothelial cells in the capillary bed and postcapil-
lary venules [60]. In recent studies, PMT has become a 
tenable target for preventing renal fibrosis [9, 61]. Peri-
cytes activated by platelet-derived growth factor recep-
tor signaling, TGF-β1 signaling or the Wnt pathway can 
detach from capillaries and transdifferentiate into myofi-
broblasts [16, 62]. TGF-β1 is a primary cytokine that 
stimulates PMT. In our study, pericytes cultured with 
TGF-β1 for 48 h strongly expressed α-SMA (a myofibro-
blast marker), while primary pericytes weakly expressed 
α-SMA.

TGF-β1 is a key mediator in the development of 
renal fibrosis, and our study demonstrated that TGF-β1 

activated the PI3K-Akt-mTOR pathway and partici-
pated in pericyte differentiation by increasing glycolysis. 
Indeed, TGF-β regulates renal fibrosis via both canoni-
cal and noncanonical pathways [63]. TGF-β exerts bio-
logical effects by activating Smad2 and Smad3, which are 
negatively regulated by an inhibitory Smad7 [64]. In our 
bioinformatics analysis, even though the gene expres-
sion of most Smads (including Smad1-6) did not dif-
fer between pericytes and myofibroblasts derived from 
pericytes, we found that Smad7 is downregulated during 
renal fibrosis (data not shown), which is consistent with 
previous reports [65, 66]. The overexpression of Smad7 
has been shown to be a therapeutic agent for renal fibro-
sis in various models of kidney diseases [66]. Moreover, 
Smads also interact with other signaling pathways, such 
as the mitogen-activated protein kinase (MAPK) and 
nuclear factor-κB (NF-κB) pathways [65], to positively or 
negatively regulate renal fibrosis. In our previous bioin-
formatics analysis, 27 DEGs were highly enriched in the 
MAPK signaling pathway, including MAPK9, MAPK11, 
MAPK13, MAPK14, MAPK8IP1 and MAPK8IP2 (data 
not shown). Some studies have demonstrated that the 
MAPK signaling pathway may participate in neural or 
cardiovascular pericyte differentiation [67–69], but 
whether the TGF-β1/MAPK pathway participates in 
renal pericyte metabolism and differentiation needs fur-
ther study.

The results of bioinformatics analysis indicated that the 
PI3K-Akt-mTOR pathway may be involved in PMT; we 
verified that the PI3K-Akt-mTOR pathway participated 
in the regulation of PMT by regulating HKII in glycoly-
sis. Some studies have indicated that Akt stimulates the 
phosphorylation of HKII and results in the protection 
of mitochondria against oxidant- or Ca2+-stimulated 
permeability transition pore opening [70]. In addition 
to playing an important role in cell proliferation, apop-
tosis and metabolism in malignant cells and neural stem 
cells [71–73], the PI3K-Akt-mTOR pathway is essential 
in cell pluripotency and differentiation [74]. It has been 
reported that when activated by insulin and insulin-like 
growth factor 1 (IGF1), the PI3K-Akt pathways maintain 
cell pluripotency by inhibiting the MEK/ERK signaling 
pathway [74].

In the present study, we first described metabolic 
reprogramming with enhanced glycolysis as a character-
istic of PMT, including increased glucose consumption 
and an elevated level of glycolysis, and we demonstrated 
the vital role of the PI3K-Akt-mTOR pathway in PMT. 
Our study further suggests that the PI3K-Akt-mTOR 
pathway may affect glycolysis by mediating HKII. In addi-
tion, our work has implications not only for the funda-
mental understanding of metabolic reprogramming in 
PMT but also in prompting new ideas for inhibiting renal 
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fibrosis. This research, however, is subject to several limi-
tations. Although our research is based on previous tran-
scriptome data analysis, it has not been verified in animal 
experiments, which will also be our future work. Mean-
while, the PMT model is induced by TGF-β1, and TGF-
β1 is a multifunctional cytokine that is interconnected 
with multiple pathways. To explain how this complex 
network plays a role in PMT, more in-depth and system-
atic research is needed.

Conclusion
The levels of glycolysis and HKII expression are increased 
during PMT. Reducing the level of glycolysis or inhibiting 
the PI3K-Akt-mTOR pathway inhibits PMT. The PI3K-
Akt-mTOR pathway regulates PMT by increasing glyco-
lysis through HKII regulation.
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