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Summary
Coronary artery disease (CAD) is a pandemic disease where up to half of the risk is explained by genetic factors. Advanced insights into

the genetic basis of CAD require deeper understanding of the contributions of different cell types, molecular pathways, and genes to

disease heritability. Here, we investigate the biological diversity of atherosclerosis-associated cell states and interrogate their contribution

to the genetic risk of CAD by using single-cell and bulk RNA sequencing (RNA-seq) of mouse and human lesions. We identified 12 dis-

ease-associated cell states that we characterized further by gene set functional profiling, ligand-receptor prediction, and transcription

factor inference. Importantly, Vcam1þ smooth muscle cell state genes contributed most to SNP-based heritability of CAD. In line

with this, genetic variants near smooth muscle cell state genes and regulatory elements explained the largest fraction of CAD-risk vari-

ance between individuals. Using this information for variant prioritization, we derived a hybrid polygenic risk score (PRS) that demon-

strated improved performance over a classical PRS. Our results provide insights into the biological mechanisms associated with CAD risk,

which could make a promising contribution to precision medicine and tailored therapeutic interventions in the future.
Introduction

Cell cycle stages and cell types are well understood dimen-

sions of cellular heterogeneity that are routinely applied

to distinguish cell populations. Still, within a population

of relatively homogeneous cells, significant variability in

specific responses to an identical stimulus can be detected,

also known as cell states. Efforts to determine the extent

of such cell-to-cell heterogeneity in pathological condi-

tions have been revolutionized by the emergence of sin-

gle-cell RNA sequencing (scRNA-seq)-based studies. To

this end, cardiovascular research has witnessed an explo-

sion of studies describing an unprecedented degree of

cell diversity in atherosclerotic lesions. scRNA-seq and

cytometry by time of flight (CyTOF) methods have iden-

tified at least 19 types of leukocytes, consisting of 3–5

different macrophage subsets, 3–5 T cell subsets, two B

cell subsets, two types of monocytes, two types of den-

dritic cells, one NK cell subset, neutrophils, and eosino-

phils in atherosclerotic mouse aortas.1 In addition, seven

clusters of smooth muscle cells (SMCs) have been identi-

fied, demonstrating dedifferentiation of contractile SMCs

into intermediate cells, termed ‘‘SEM’’ cells (stem cell,

endothelial cell, monocyte) and further into fibromyo-

cytes/fibrochondrocyte-like cells and to an osteogenic

phenotype.2–6 Additionally, eight endothelial cell (EC)

subpopulations have been identified as a result of diabeto-
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genic high-fat diet or disturbed flow where proathero-

genic conditions induced a dramatic transition of

ECs into progenitor, proinflammatory, mesenchymal

(EndMT), and immune cell-like phenotypes.7,8 Still,

consistent definition and comparison of altered cell states

in atherosclerosis is missing, complicating the under-

standing of mechanisms and pathways that contribute

to pathological cell states.

An individual’s risk of atherosclerotic coronary artery

disease (CAD) is determined by an interplay of environ-

mental and genetic factors. The recent genome-wide asso-

ciation studies (GWASs) for CAD with over 1 million par-

ticipants have identified over 300 risk loci.9,10 Despite

extensive progress in statistical and experimental tools

used to link regions of the genome to disease risk, it re-

mains challenging to identify the causal genes underlying

genetic associations and the cell types through which the

effect is mediated. We have recently demonstrated that

cell-type-specific chromatin accessibility and gene expres-

sion provide a means for predicting the cell type of action

for CAD loci.11 To this end, we demonstrated that the cis-

regulatory elements active in SMCs and ECs show the

highest enrichment of GWAS SNPs for CAD and blood

pressure among the lesional cell types. However, the con-

tributions of specific disease-associated cell states or gene

signatures to the disease risk and to CAD heritability

remain unknown.
70211 Kuopio, Finland; 2Turku Bioscience Centre, University of Turku and

enter, University of Turku; 4Department of Clinical Chemistry, Fimlab Lab-

icine and Health Technology, Tampere University, 33100 Tampere, Finland;

land; 6Turku Center for DiseaseModeling, University of Turku, 20520 Turku,

2023

(http://creativecommons.org/licenses/by/4.0/).

mailto:tiit.ord@uef.fi
mailto:minna.kaikkonen@uef.fi
https://doi.org/10.1016/j.ajhg.2023.03.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2023.03.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/


To shed light into these questions, we performed scRNA-

seq of thoracic aortas of healthy and atherosclerotic

Ldlr�/�/Apob100/100 mice during disease progression. Our

results identify 12 cell states that are increased in response

to atherogenic changes. We validate our findings in bulk

RNA-sequencing (RNA-seq) studies in a separate mouse

experiment and in human samples from affected individ-

uals. We identify common pathways, transcription factors,

and ligands that define the cell state changes. Finally, we

link our findings to GWASs to prioritize the relevance of

atherosclerosis-associated cell states in the biology and her-

itability of CAD and apply this knowledge in polygenic risk

prediction.
Material and methods

Mouse model
To model a disease stage course of atherosclerosis in mouse, we

performed four combinations of genotype and dietary protocol.

We fed the atherosclerosis-prone low-density lipoprotein recep-

tor-deficient mice expressing only apolipoprotein B100 (Ldlr�/�/
Apob100/100)12,13 (The Jackson Laboratory strain #003000) a high-

fat diet (HFD; Teklad TD.88137) for 0, 1, or 3 months to model

prelesion, early, and late disease stages, respectively. We timed

diet-starting age to equalize the age at sample collection between

all groups (8 months old). Age-matched wild-type C57BL/6J

mice fed chow diet were used as a healthy control. Male and fe-

male mice were used (mouse counts for each experiment are stated

below). Throughout the study, mice were maintained on a 12-h

light-dark cycle and had access to food andwater ad libitum. All an-

imal experiments were approved by the local ethics committee

and carried out in compliance with European Union Directive

2010/63/EU.

Aorta single-cell RNA-seq library preparation
Mice were anesthetized with isoflurane and euthanized by cervical

dislocation. The mice were perfused by cardiac puncture with

10 mL of ice-cold PBS supplemented with 20 U/mL heparin and

placed on ice for dissection. The entire thoracic aorta (i.e., the

ascending aorta, the aortic arch, and the descending aorta up to

the diaphragm) was extracted and used in scRNA-seq sample prep-

aration. The adventitia was mechanically removed under a dissec-

tion microscope and discarded. Each thoracic aorta minced with a

scalpel and enzymatically dissociated into single-cell suspension

in 0.8 mL of Multi Tissue Dissociation Kit 1 (Miltenyi Biotec

#130-110-201) enzymatic mixture reconstituted in RPMI 1640

medium supplemented with 0.5% bovine serum albumin (BSA)

and 20 mM HEPES buffer (pH ¼ 7.2). The mixture was incubated

at 37�Cwith end-over-end rotation. After 20, 40, and 60min of in-

cubation time, tissue pieces were left to settle for 10 s, and 0.8 mL

of cell suspension supernatant was collected from the tube and

placed on ice. To continue the digestion, we added 0.8 mL of fresh

enzymatic digestion mixture. The collected cell suspension was

filtered through a 30 mm cell strainer, centrifuged at 400 g for

8 min at 4�C, resuspended in PBS supplemented with 1% BSA,

and placed on ice. The three cell suspension fractions for each

aorta were subsequently pooled together and red blood cell lysis

was carried out by adding 9 volumes of ice-cold 1X RBC Lysis

Buffer, Multi-species (eBioscience #00-4300-54) and incubating

on ice for 3 min. Subsequently, we added PBS to normalize the
The Ame
buffer and collected the cells by centrifugation (400 g for 8 min

at 4�C). Magnetic removal of dead cells was carried out with the

Dead Cell Removal Kit (Miltenyi Biotec #130-090-101) with Milte-

nyi MS magnetic columns following the manufacturer’s instruc-

tions. Cells were resuspended in PBS containing 0.04% BSA and

counted by hemocytometry with trypan blue staining. Cell

viability was between 74% and 85%. In each experiment group,

aortic cell isolation was carried out separately from three male

mice, the cells were stained with TotalSeq cell hashing antibodies

(BioLegend) according to the manufacturers’ recommendations,

and subsequently the cells from individual mice were pooled in

equal proportions into one lane of the Chromium Controller

microfluidics chip (10x Genomics). We only used male mice to

minimize experimental variation and increase sensitivity of the

experiment to detect disease-associated changes. This decision

was justified on the basis of bulk RNA-seq results (below), which

indicated that the effect of treatment on the major cell type pro-

portions was stronger than the effect of individual factors such

as sex (Figure S8C). We used the Chromium Single Cell 30 Kit (v2
Chemistry; 10x Genomics) to prepare scRNA-seq libraries.

Paired-end high-throughput sequencing was carried out on an Il-

lumina NovaSeq instrument (read 1: 26 bp, read 2: 91 bp).
Aorta bulk RNA-seq library preparation
Mouse aortas were dissected as for scRNA-seq (described above),

flash-frozen, and cryogenically pulverized with the Cellcrusher

cryo-press cooled with liquid nitrogen. Total RNA was isolated

and treated with DNaseI with the Absolutely RNA Nanoprep Kit

(Agilent). RNA was quantified with the Bioanalyzer RNA 6000

pico assay (Agilent) and RNA-seq libraries were prepared with

the SMARTer v2 Stranded Total RNA-Seq Pico Kit (Takara Bio).

Sample size for bulk RNA-seq was six per group, consisting of

four males and two females (except the 3-month HFD group,

which had four males and one female). High-throughput Illumina

sequencing (read length 75 bp, single-end) was carried out at

EMBL GeneCore.
Single-cell RNA-seq data analysis
Sequencing reads were processed with the Cell Ranger pipeline

(version 3.0.2; 10x Genomics) and the 10x Genomics mm10 refer-

ence transcriptome package (version 3.0.0). The Cell Ranger-

filtered cell barcode count matrices were subsequently processed

with Seurat (version 3.1.0)14 running in R version 3.5.3. The stan-

dard (log normalization-based) workflow recommended by Seurat

authors was used. For each library, to remove low-quality barcodes,

we visually evaluated cell qualitymetrics (genes per barcode, UMIs

per barcode, andmitochondrial read fraction) by using violin plots

and selected cutoffs, which resulted in retaining 87%–93% of barc-

odes. In total, 36,157 cells were retained withmedian 1,629 (mean

2,043) UMI counts per cell, median 875 (mean 965.4) genes per

cell, and median 5.8% (mean 5.8%) mitochondrial counts. Cells

from all libraries were integrated with the canonical correlation

analysis (CCA) method implemented in Seurat version 314 with

default parameters. After CCA, the standard count processing

was rerun on the integrated assay with default parameters, except

for the number of principle components used (set to 35) and

the clustering resolution (set to 1.1). The resulting 23 clusters

were manually annotated to a general cell type level with the

following marker genes: macrophage (Csf1r, Cd68, Adgre1),

smooth muscle (Myh11, Tagln, Cnn1), endothelial (Pecam1,

Cdh5, Cldn5), pericyte (Rgs5), dedifferentiated SMC (Vcam1,
rican Journal of Human Genetics 110, 722–740, May 4, 2023 723



Lgals3, Dcn), chondrocyte-like (Comp, Fmod), fibroblast (Fbln1,

Pdgfra, Serpinf1), mesenchymal stromal (Ly6a, Pi16), NK/T (Cd3d,

Cd8b1, Nkg7), and epithelial-like (Upk3b). Hashtag assignment

was carried out with the HTODemux function of Seurat. As the

Biolegend TotalSeq cell hashing staining reagent is a mixture of

anti-CD45 and anti-MHC I antibodies, HTODemux was run sepa-

rately for the immune and non-immune cells of each library. To re-

move ambient RNA contamination, we ran the DecontX function

(celda R package version 1.1.6)15 by using the automated clusters

(resolution 1.1) as the cell population labels and we used the de-

contaminated counts for subsequent analysis. Cells with an esti-

mated ambient RNA contamination fraction > 0.3 were excluded

from downstream analyses as possible doublets or otherwise low-

quality cells.

To identify disease-associated cell states, we divided the Uni-

form Manifold Approximation and Projection (UMAP) plot

from the integration of all libraries into a grid of 200 by 200

(for visualization) or 50 by 50 (for cell selection) subdivisions

and counted the number of cells from each library falling into

each sector. The cell occupancy was normalized to the total num-

ber of cells in each library, scaled to a library size of 10,000 cells,

and log2-transformed. Subsequently, for each sector, the fold

change in cell abundance was calculated between the late disease

sample and the healthy control sample. UMAP regions displaying

a more than 2-fold (>1 log2 fold change) increase in cell

occupancy in response to disease were selected for further

investigation.

Marker genes of disease-increased UMAP regions (cell states)

were defined with the Wilcoxon rank-sum test (implemented in

Seurat) comparing the cells located within the area of increased

UMAP occupancy to the other cells of the same general cell type

(i.e., cells not changed in abundance upon disease). Genes ex-

pressed in at least 10% of cells (in at least one of the cell popula-

tions of the comparison) were considered and the minimum

required log fold change was 0.25. p values were corrected for mul-

tiple testing with false discovery rate (FDR) and padj < 0.05 was

considered significant. One highly reliable marker gene was

selected to name the cell state whenever possible. The full marker

lists are available in Table S2.

Gene Ontology enrichment analysis for cell state marker gene

lists was performed with the g:Profiler web tool (access date

2020-03-26).16 All cell state marker gene lists were tested for

enrichment against all Gene Ontology Biological Process

(GO:BP) categories. The cell state SMC-4 was not included in

this analysis, as it had only three marker genes. To reduce redun-

dant and overly general hits, we filtered the GO:BP enrichment re-

sults for each cell state marker gene list to remove categories with

>1,000 genes inmouse and we further filtered for GO term seman-

tic similarity by using the GOSemSim package (version 2.8.0)17 by

ranking the GO terms on the basis enrichment p value and, start-

ing from the top, removing any less significant terms with Rel sim-

ilarity measure > 0.9. After the GO term filtering, the top four

most significantly enriched GO:BP terms were selected from

each cell state (provided the terms satisfy padj< 0.05) for a compar-

ative enrichment heatmap.

To plot gene set enrichment at the single-cell level, we used the

VISION package (version 2.0.0)18 with the GO:BP and MSigDB

Hallmarks19 gene sets.

To predict which extracellular ligands may serve as upstream in-

ducers of a cell state, we used the NicheNet package (version

0.1.0).20 For the query gene signature (i.e., the gene set to be ex-

plained by ligand-receptor interactions), an entire list of marker
724 The American Journal of Human Genetics 110, 722–740, May 4,
genes for a disease-associated cell state was used (described above).

The cells of the disease-increased cell state were considered the

‘‘receiver’’ cell population (expressing receptor) and all other cell

types in the dataset were considered potential ‘‘sender’’ cells (ex-

pressing ligands). A ligand or receptor was considered expressed

in a cell population if detected in at least 10% of the cells. Pre-

dicted ligand activities were ranked with the Pearson correlation

coefficient (default).

We used SCENIC (version 1.1.1)21 to predict transcriptional reg-

ulators, motifs, and regulons that are preferentially active in dis-

ease-associated cell states. SCENIC single-cell regulatory network

inference was run following the published vignette for one cell

type at a time. Cells from the maximally different disease stages

(control and late disease) were used. For SMC-related cells, cells

were further randomly subsampled with the automated clusters

(resolution 1.1; described above), keeping a maximum of 200 cells

per cluster. The cisTarget database was mouse mm9 transcriptional

start site (TSS)-centered (510 kb), v9 motifs, seven species (down-

load date 2020-01-24). The activity of each predicted gene network

was scored in each cell and binarized, as described by the SCENIC

authors.We used theWilcoxon rank-sum test to find regulons that

are differentially active in one cell state compared to the other cells

of the same cell type. For differential activity, the regulon was

required to be active in at least 20% of the cells of one population

and satisfy log fold change > 0.15 and FDR < 0.05.
Decomposition of cell states in mouse bulk RNA-seq
We trimmed mouse aorta RNA-seq reads by using Trim

Galore (version 0.4.4; GitHub: https://github.com/FelixKrueger/

TrimGalore) to remove adapters and bases with quality score

below 20. We aligned reads to the mm9 mouse genome with

STAR (version 2.5.4)22 and used HOMER (version 4.9)23 to

generate a gene count matrix from uniquely mapped reads.

To evaluate relative changes in cell state abundance between

atherosclerosis disease stages based on mouse aorta bulk RNA-

seq profiles, we applied the Cell Population Mapping method

(scBio R package; version 0.1.5).24 Aorta scRNA-seq cells and

the integrated UMAP were used as the cell state space. The bulk

RNA-seq count matrix was normalized for transcript length

with reads per kilobase per million reads mapped (RPKM) and

log-transformed. Cell Population Mapping was run in relative

abundance mode (subtracting the mean of the reference group

from all samples in the test group) with default parameters.
Cell state gene signature activity in human

atherosclerosis study cohorts
Gene expression microarray data was obtained for human aortic

plaque (n¼ 15; abdominal aorta), carotid plaque (n¼ 29), femoral

plaque (n ¼ 24), and non-atherosclerotic control artery (n ¼ 24;

left internal thoracic artery) from the Tampere Vascular Study25

and from human carotid artery segments classified as either

advanced (n ¼ 16) or early (n ¼ 13) atherosclerotic plaque (GEO:

GSE28829).26 Gene expression levels were quantile-normalized

with the preprocessCore R package (version 1.52.1; GitHub:

https://github.com/bmbolstad/preprocessCore). To calculate

gene signature activity scores in these bulk RNA profiles, we used

the approach of Tirosh et al.27 (implemented as the Seurat func-

tion AddModuleScore), wherein genes are binned on the basis of

average log expression level across samples, and in each sample,

a bin background level (calculated from random control genes in

the same bin) is subtracted from the levels of the test genes. The
2023
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full lists of marker genes of atherosclerosis-increased cell states

were used as the tested gene sets (gene programs).

Prioritized genes at human CAD GWAS loci
To associate human CAD GWAS loci to their potential causal

genes, we collected published gene prioritization results across

multiple different prioritization approaches and GWASs.

We used theOpenTargets Genetics Portal (data release: version 5–

21.06)28 to obtain data for the following published GWASs of CAD,

myocardial infarction, and stroke29–35 and also for the biobank-

based GWAS results36,37 for FinnGen coronary atherosclerosis

and UK Biobank ischemic heart disease, myocardial infarction,

and coronary atherosclerosis (OpenTargets study accessions

FINNGEN_R5_I9_CORATHER, SAIGE_411, SAIGE_411_2, and

SAIGE_411_4). Across the studies, the OpenTargets Locus2Gene al-

gorithm, a machine learning method trained on a gold-standard

curated result set, prioritized 238 unique genes, OpenTargets eQTL

colocalization 164 genes, and OpenTargets ‘‘nearest gene’’ 387

genes. The recent very large CADGWAS by Aragam et al.9 was addi-

tionally included. From this study, the per-association overall top-

prioritized genes contributed 186 unique genes, polygenic priority

score (PoPS) 386 genes, and ‘‘nearest gene’’ 216 genes, and for the

GWAS 1% FDR threshold loci, ‘‘nearest gene’’ contributed 716

genes. Additionally, the transcriptome-wide association study

(TWAS) of CAD by Li et al.38 prioritized 114 unique genes and the

CADGWAS reviewby Erdmann et al.39 listed 373 genes atCAD loci.

Partitioned heritability with linkage disequilibrium score

regression (LDSC)
LDSC (version 1.0.1)40 and the van der Harst et al. CAD GWAS29

full summary statistics (downloaded from Mendeley Data:

https://doi.org/10.17632/gbbsrpx6bs.1) were used for partitioned

heritability analysis of CAD following the recommendations pub-

lished by LDSC authors. The marker genes of atherosclerosis-asso-

ciated cell states (described above) were used as the gene sets. The

gene-transcribed regions in the hg19 human genome were padded

with 100 kb upstream and downstream. The LD score windowwas

1 cM (default), the provided 1000 Genomes (1000G) Phase 3 EUR

data files were used, and the 1000G Phase 3 EUR baseline models

were included in the calculation.

Accessible chromatin by cell type in human

atherosclerotic plaques
We used human endarterectomy single-cell assay for transposase-

accessible chromatin with sequencing (scATAC-seq)11 transposase

cut site coordinates and cell annotations (available at FigShare:

https://doi.org/10.6084/m9.figshare.14501985.v2) to aggregate

cut sites to pseudobulk at the level of cell lineages (SMC, EC,

macrophage, T/NK, and B/plasma) and we called peaks in each

cell lineage separately by using MACS241 with fragment extension

200 bp and shift �100 bp. Where equal-width peaks are stated, we

resized peaks centering on the MACS2-called peak summit coordi-

nate (cell type specific).

Gene set-based PRSs
We used the PRSice-2 (version 2.3.3)42 feature PRSet,43 which per-

forms region-aware (coordinate set-based) SNP clumping, to

generate clumping and thresholding PRSs based on sets of cell

state marker genes, scATAC-seq peaks, or genes of a biological

pathway. In PRSet, SNPs falling within regions of interest are pref-

erentially retained for each LD clump of SNPs. The clumping dis-
The Ame
tance was 500 kb to either side of the index SNP and the LD r2

threshold was 0.2.

The base data for all PRSs were the additive model summary sta-

tistics of the CARDIoGRAMplusC4D 1000 Genomes-based CAD

GWAS,44 a study that does not have significant sample overlap

with the UK Biobank.29 We filtered base data genetic variants to

keep variants with INFO score R 0.8 and to exclude variants

with strand-ambiguous alleles.

The UK Biobank45 was used as the target cohort for all PRS

scoring. We filtered the imputed genotype data to keep autosomal

variants with MAF R 0.01 and INFO score R 0.8 and exclude var-

iants with Hardy-Weinberg equilibrium test p< 1e�25 or genotype

missingness rate > 0.1 by using PLINK (version 2.00).46 The final

variant set across base and target data consisted of 4,958,173 vari-

ants. We included participants of self-reported White ancestry in

the precomputed UK Biobank PCA calculation (unrelated samples)

and selected available imputed genotype data and filtered to

exclude participants with sex chromosome aneuploidy, heterozy-

gosity or genotype missingness outliers, participants with excess

relatives, kinship inference analysis exclusions, those more

than seven standard deviations away from mean in the first

six principal components (PCs) (GitHub: https://github.com/

Nealelab/UK_Biobank_GWAS), and participants who had with-

drawn consent. CAD phenotype status in the UK Biobank was

defined on the basis of the example of Choi et al.43 (specifically,

GitLab: https://gitlab.com/choishingwan/prset_analyses/-/blob/

master/script/sql/generate_cad.sql), which defined CAD cases by

using primary or secondary ICD10 or ICD9 codes for hospital inpa-

tient records or cause of death and additionally OPSC4 operation

codes and self-reporting by the participant. In total, there were

21,600 cases and 359,254 controls.

For gene set-based PRSs generated from gene coordinates alone

(i.e., not using scATAC-seq regulatory region information), we

extended the transcript regions to include 35 kb upstream and

10 kb downstream. To utilize scATAC-seq peaks to inform cell state

marker gene PRSs, we only considered the scATAC-seq peaks called

in the corresponding cell type and peaks within 5500 kb of the

gene TSS were retained for PRS generation.

PRS performance was evaluated as set out in the PRSet

method.43 We evaluated variance explained by the PRS (PRS.R2)

by subtracting the pseudo R2 of the full model (CAD � PRS þ co-

variates) from the pseudo R2 of the null model (CAD� covariates).

The covariates used in PRS modeling were sex, age (earliest age of

CAD for cases, oldest age at attending UK Biobank center for con-

trols), UK Biobank assessment center, genotype batch, and the first

ten genetic PCs. We used the PRSet competitive p value calcula-

tion,43 based on permutation testing (10,000 permutations), to

test for signal enrichment compared to identically clumped SNPs

in regions of the genome considered background (defined as either

all genes or all scATAC peaks).
Results

Identification of atherosclerosis-associated cell states

To provide an unbiased, enrichment free, analysis of all

the cell types of the healthy and atherosclerotic vascular

wall, we performed scRNA-seq from single cell suspen-

sions extracted from thoracic aorta. Cells from three

mice were labeled with hashtag antibodies and pooled

from each of four conditions, including healthy control
rican Journal of Human Genetics 110, 722–740, May 4, 2023 725
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Figure 1. Clustering and identification of atherosclerosis-associated cell states
(A) Schematic overview of the experimental setup.
(B and C) (B) UMAP projection of the scRNA-seq profiles represented as eleven manually annotated clusters. (C) UMAP regional occu-
pancy analysis demonstrating relative changes in cell density comparing atherosclerotic vascular wall to healthy controls. Atheroscle-
rosis-associated cell states are revealed by increased local abundance of cells in regions of the UMAP plot (log2FC, log2 fold change).
(D) UMAP plot depicting the 12 disease-associated cell states and the selected top marker genes.
(E) Relative changes in the cell state proportions during different stages of atherosclerosis shown for each of the three biological repli-
cates. Diamond represents the average of the three replicates.
mice and Ldlr�/�/Apob100/100 mice with pre-lesioned,

early, and late atherosclerotic lesions, and prepared into

libraries with the 103 Chromium system (Figure 1A).

The scRNA-seq profiles of 36,157 cells passed quality con-

trol and were selected for downstream analysis

(Figure S1). Joint analysis of atherosclerotic and control

samples with automated clustering identified 23 cell clus-

ters that corresponded to nine major cell types, including
726 The American Journal of Human Genetics 110, 722–740, May 4,
endothelial cells (ECs), NK/T cells, monocyte/macro-

phages (MPs), smooth muscle cells (SMCs), pericytes,

dedifferentiated SMCs, chondrocyte-like cells, mesen-

chymal stromal cells (MSCs), and fibroblasts (FBs) accord-

ing to marker gene-based curation (Figures 1B and S2 and

Table S1).

Extensive variability in the regional occupancy of the

Uniform Manifold Approximation and Projection
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(UMAP) was observed across different disease stages after

data integration, indicating a spectrum of cellular states

associated with atherosclerosis. To define discrete cell

states (within broader cell types) that are atherosclerosis

associated, we selected regions of the UMAP plot where

the local cell density was increased >2-fold in late disease

compared to control. (Figures 1C and S3). Differential

neighborhood abundance analysis based on the k-nearest

neighbor graph (Milo method47) largely confirmed the re-

gions of altered abundance (Figure S4). The marker genes

of disease-increased cell states were defined by comparing

the cells located within the area of increased UMAP occu-

pancy to the other cells of the same cell type that did not

change in abundance (full marker lists in Table S2). There-

fore, it should be noted that the cell state markers represent

a distinct signature from the general cell type markers that

are obtained by comparison between cell types (Tables S1

versus S2). Using the marker gene sets to score gene pro-

gram activity revealed that the cell state signatures tend

to be upregulated gradually, and the cells within the

defined cell state showed>1 SD unit of elevated expression

relative to the expression variation in the cell type as a

whole (Figure S5).

Our analysis identified 12 cell states that were increased

in at least one of the diseased conditions (Figure 1D),

which were named on the basis of one of the top marker

genes. These included three SMC cell states, including

Vcam1þ SMC, Col2a1þ SMCs, and Palldþ SMCs, three

macrophage-derived cell states called Spp1þ MPs, Ccl4þ
MPs, and Stmn1þ MPs, two EC cell states corresponding

to Lrg1þ ECs and Calcrlþ ECs, and two NK/T cell states,

Nkg7þ NK/Ts and Ramp3þ NK/Ts, as well as Smoc2þ FB

state and Apoeþ MSC state. We noted a further candidate

population of disease-increased cells among the contractile

(Myh11þ) SMCs (Figures S2B, S4, and 1D). However, it ap-

peared to be a very mild perturbation, showing only three

marker genes (Slc22a1, Rbp4, Ndufa3), and therefore was

not included in subsequent analyses. Importantly, the

cell states demonstrated temporal patterns corresponding

to the progression of the disease. For example, the propor-

tion of cells associated with EC and MP states as well as

Vcam1þ SMC and Palldþ SMC state cells exhibited a

gradual increase toward late disease stage, whereas NK/T

states, Col2a1þ SMCs, and Smoc2þ FBs were mostly de-

tected at the late disease stage (Figure 1E). This highlights

the importance of temporal resolution in scRNA-seq-based

analysis of disease progression. Among the cell state

markers, we selected LRG1, VCAM1, and PALLD for valida-

tion with immunohistochemistry (Figure S6) and Lrg1 and

Palld for confirmation by using spatial transcriptomics

with the Molecular Cartography platform by Resolve Bio-

sciences (Figure S7). In addition, we used alternative

marker genes to visualize the Vcam1þ SMCs (Col6a3),

Col2a1þ SMCs (Col6a3 and Sox9), Ccl4þ MPs (Il1b),

Spp1þ MPs (Abca1), and Stmn1þ MPs (Top2a) because

the primary marker genes of these states exceeded the

maximum expression level limit and had to be excluded
The Ame
at the panel design stage (Figure S7). Altogether, this anal-

ysis confirmed the distinct location and identities of

several of the cell states.

Validation of the atherosclerosis-associated cell states in

mouse and human lesions

To confirm that the identification of atherosclerosis-associ-

ated cell states is not confounded by technical issues

related to scRNA-seq, we further sough to analyze the pres-

ence of the gene signatures in bulk RNA-seq. In particular,

cell dissociation could alter the relative proportions of cell

populations in scRNA-seq experiments, an effect that

would not occur with bulk RNA-seq.48 We therefore per-

formed a parallel bulk RNA-seq experiment with 5–6 repli-

cates and estimated the performance of these twomethods

in capturing cell type proportions during atherosclerosis

progression (Figure 1A). Altogether 1,049 unique genes

were upregulated and 851 downregulated during the

course of disease development (Table S3). Notably, a large

majority of the bulk RNA disease-induced genes were ex-

pressed in immune cells, in line with expected infiltration

of these cells to the vascular wall during disease progres-

sion and indicating that changes in cell type proportion

are a major driver of bulk RNA-seq differential expression

(Figures S8A and S8B). Deconvolution of bulk RNA-seq

data with the scRNA-seq data as in Newman et al.49

confirmed the gradual increase of macrophage and NK/T

cells relative to other cell types (Figure S8C). This was

also evident from the scRNA-seq data itself, although the

relative proportion of leukocytes was smaller compared

to bulk RNA deconvolution results, possibly reflecting se-

lective cell loss due to tissue dissociation (Figure S8D). To

further leverage the bulk RNA-seq data to validate the

atherosclerosis-associated cell states, we estimated the rela-

tive cell state abundance changes by using cell population

mapping,24 where scRNA-seq profiles are used to infer the

composition of cell states from bulk transcriptome data.

This analysis supported the increase in cell state abun-

dance for majority (9/12) of the cell states but failed to

recapitulate Palldþ SMCs, Smoc2þ FBs, and Apoeþ MSC

state changes, possibly because of the low amount of cells

in these populations (Figure 2A). Altogether, this analysis

supports the reliability of our workflow for cell state iden-

tification from single cell expression data.

We next sought to investigate the reproducibility of the

atherosclerosis-associated cell states in public datasets

of mouse and human scRNA-seq. To achieve this, we

compared the enrichment of gene set modules in the cell

type of interest in our data, in different mouse models

of atherosclerosis4 and in human coronary lesions3

(Figures S9–S14). In the Pan et al.4 dataset including

Ldlr�/� (0, 8, 16, and 26 weeks of HFD) and Apoe�/�

(8, 16, and 22 weeks of HFD) mouse models, the cell state

markers were enriched in a specific subpopulation of cells,

suggesting that they represent distinct phenotypes

(Figure S11). The fraction of gene set positive cells were

increased upon disease progression for all other cell types
rican Journal of Human Genetics 110, 722–740, May 4, 2023 727
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Figure 2. Atherosclerosis-associated cell state signatures are activated in mouse and human lesions based on bulk RNA-seq
(A–C) (A) Cell populationmapping using the scRNA-seq cell state space to plot the differential cell abundance estimated from themouse
bulk RNA-seq data. The gene set activity scores for each cell state were further investigated in the (B) Tampere Vascular Study15 represent-
ing 68 advanced atherosclerotic plaques (15 aortic, 29 carotid, and 24 femoral plaques) and 28 controls (left internal thoracic artery) and
(C) the Maastricht Pathology Tissue Collection16 representing atherosclerotic carotid artery segments from 13 early intimal thickening/
xanthoma lesions and from 16 advanced fibrous cap atheroma lesions.
except the Palldþ SMC and Calcrlþ EC states, which

demonstrated a relative decrease from the earliest time-

points in both mouse models (Figures S12 and S13). In

addition, FB and MSC states were only increased between

8 and 16 weeks of HFD in the Ldlr�/� mouse model,

whereas NK/T states exhibited a decrease in cell fraction be-

tween 16 and 26 weeks of HFD, suggesting mouse-model-

and time-point-specific differences.

In human lesions,3 all the cell state markers with the

exception of Calcrlþ ECs had a distinct localization within

the cell type cluster (Figure S14), supporting that the same

cell states are present. However, the available human

scRNA-seq datasets do not allow comparison between

healthy and diseased vasculature, which is why we further

extended our analysis to bulk RNA-seq datasets to investi-

gate whether the cell state signatures were associated with

disease progression. To achieve this, we studied the expres-

sion of the cell state markers in two human clinical co-

horts, the Tampere Vascular Study,25 representing 68

advanced atherosclerotic plaques (15 aortic, 29 carotid,

and 24 femoral plaques) and 28 controls (left internal

thoracic artery), and the Maastricht Pathology Tissue

Collection,26 representing atherosclerotic carotid artery
728 The American Journal of Human Genetics 110, 722–740, May 4,
segments from 13 lesions at the early intimal thickening/

xanthoma stage and from 16 advanced fibrous cap

atheroma lesions. Altogether, 10 out of the 13 disease state

gene signatures separated the diseased samples from the

controls (Figures 2B and 2C). The Palldþ SMC and Calcrlþ
EC markers were only induced in the aortic plaques,

compared to femoral or carotid plaques or control arteries,

suggesting vascular-bed-specific differences. These results

demonstrate similarities between the atherosclerotic cell

states in mouse and human and support a potential role

for these genes in disease etiology.

Identification of cell-state-specific and shared pathways

among gene signatures

The maintenance and transition of cellular states are

controlled by environmental signals that translate into

gene regulatory mechanisms and biological processes. To

investigate the similarity of the biological process activities

of the atherosclerosis-associated cell states, we next evalu-

ated the uniqueness of the cell statemarkers and their associ-

ated gene ontologies. Comparison of themarker gene sets of

each disease-associated cell state demonstrated that the large

majority (71%; 1,516/2,122) of the signature genes were
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Figure 3. Characterization of atherosclerosis-associated cell states and key biological pathways
(A) Marker gene counts for the 12 most abundant disease-associated cell states.
(B) Common markers between disease-increased cell states.
(C) UpSet plot showing the gene overlaps between cell state signatures and the gene ontologies enriched (log10 of adjusted p value) in
the intersections.
(D) Single-cell gene set enrichment scoring for selected biological processes. Enrichment score is shown from the lowest 5% (Q5) to high-
est 95% (Q95).
unique to one cell state (Figures 3A and 3B). Still, 12 genes

were common to five or more cell states, as exemplified by

matrix Gla protein (Mgp), stem cell antigen-1 (Sca1; also

calledLy6A) and legumain (Lgmn), syndecan4 (Sdc4), and in-

sulin-like growth factor bindingprotein 4 (Igfbp4), and could

thus represent global markers of atherosclerosis.

Comparison of marker gene lists at the level of gene

ontology allowed to further shed light into the phenotypes

of these cell states (Figures3Cand3D;Table S4). For example,

Vcam1 itself and the other associated cell state markers

participating inECMremodelinghavebeenpreviously iden-
The Ame
tified as hallmarks of SMC-derived intermediate cells,4 also

called fibromyocytes.3 These cells have been suggested to

differentiate into chondrocyte-like cells,2,5 i.e., fibrochon-

drocytes,4 which correspond to the Col2a1þ SMC state.

Thisgaveusauniqueopportunity tomodel a three-state con-

tinuum for the SMCs (Myh11þ - Vcam1þ - Col2a1þ) not

evident for the other cell types. The hypothesis proposing

that contractile SMCs can undergo transdifferentiation

into Vcam1þ SMCs and Col2a1þ SMCs was further corrob-

orated by the results of pseudotime trajectory analysis

(Figure S15).
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Among ECs, the Lrg1þ ECs expressed markers of

endothelial-to-mesenchymal transition, such as Sox4,50

Tubb3,51 and Fbln5,52 in line with a recent report.8 On

the other hand, Calcrlþ EC state genes were indicative of

regulation of endothelial function by mitochondrial reac-

tive oxygen species (electron-transport chain) and shear

stress (e.g., Calcrl, Klf4, Pecam1, Tek [Tie2], Jun, and Fos).7

Our analysis also uncovered the phenotypes of the five

atherosclerosis-associated immune cell states as similar to

lipid-associated Trem2þ MPs (Spp1þ MP1), proinflamma-

tory MPs (Ccl4þ MPs), proliferating MPs (Stmn1þ MPs),1

Nkg7þ Cytotoxic CD8 T cells, and Ramp3þ antigen-spe-

cific CD4 T cells.53,54

Despite extensive cell state specificity of the marker

gene sets, we also identified shared biological processes be-

tween some cell states. Gene ontologies related to ECM or-

ganization, blood vessel development, endodermal cell

differentiation, and angiogenesis were enriched among

the shared genes of Vcam1þ SMC, Col2a1þ SMC, and

Lrg1þ EC states, whereas enrichment for cholesterol

transport and homeostasis genes was shared between

Vcam1þ SMC, Col2a1þ SMC, and Spp1þ MP states

(Figures 3C and 3D). Taken together, these results provide

evidence that the disease-associated cell states largely

contribute to specific cellular functions in the atheroscle-

rotic niche with, however, important overlapping activ-

ities related to vascular development, angiogenesis, and

lipid metabolism.

Disease states share similar upstream regulators but

differ in predicted TF activities

We next sought to investigate how the gene signatures of

disease-associated cell states could be defined by the

cellular microenvironment by inferring intercellular com-

munications and intracellular signaling networks. We first

looked for expressed ligands and receptors and modeled

their gene regulatory effects in putative ligand-receiving

cells for the five most abundant disease states by using

the NicheNet tool20 (Figure 4A). Ligands belonging to the

transforming growth factor b (TGFb), inflammation (TNF,

IL-1a/b), angiogenesis (VEGFA, FGF1/2), and cholesterol

pathways (ApoE) were identified as the most probable li-

gands to give rise to the gene sets, suggesting extensive

similarities in the microenvironmental signals underlying

cell-state-specific gene expression (Figures 4A and 4B).

Among them, Tnf and Il1a/b were mostly expressed

by the lipid-associated Spp1þ and proinflammatory

Ccl4þ MPs, suggesting extensive auto- and paracrine

proinflammatory signals originating from myeloid cells

(Figure 4C). Importantly, these proinflammatory ligands

were predicted to regulate several cell state genes specific

for Vcam1þ and Col2a1þ SMCs (Figure 4B). To test the val-

idity of these computational predictions, we stimulated

mouse SMCs in vitro by using the top-ranked ligand IL-1b

for 24 and 48 h and modeled the pseudotemporal trajec-

tory of the gene expression response on the basis of

scRNA-seq. Our results demonstrated that the genes upre-
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gulated along the in vitro SMC IL-1b response trajectory

were induced along trajectory of in vivo SMC disease-asso-

ciated transition and vice versa, supporting the predictions

(Figure S16). Finally, Col2a1þ chondrocyte-like cells were

predicted to be the main producers of TGFb1, VEGFA,

and BMP2, highlighting their potential role in a cell-cell

signaling network of autocrine osteochondrogenic

signaling and paracrine signaling driving the fibrogenic

and angiogenic gene expression programs in Vcam1þ
SMCs and Lrg1þ ECs (Figures 4D and S17).

The predicted similarities in the microenvironmental

signals suggest that the differences in disease-associated

gene signatures could arise as a result of differential

response of the cell types to the same stimulus and thus

cell-state-specific transcription factor (TF) activity. To

investigate this, we inferred TF regulatory networks by sin-

gle-cell regulatory network inference and clustering

(SCENIC) analysis for the three major cell lineages

(SMCs, ECs, and MPs; Figure 5A).21 First, we predicted

the transcription factors for the Palldþ, Vcam1þ, and

Col2a1þ SMC-derived cell states (Figure 5B). The Palldþ
cell state gene expression profile was predicted to be driven

by proinflammatory TFs such as the NF-kB, AP-1, and Maf

family members. In line with the predicted differentiation

trajectory of the Vcam1þ and Col2a1þ cell states from

contractile SMCs, the SCENIC predictions supported a

gradient of TF activity (Figures 5E and S15C) and evolution

of gene networks. CEBPD and RUNX1 were identified as

the key regulators for both atherosclerosis-associated cell

states despite the higher expression of Cebpd in Vcam1þ
SMCs and Runx1 in Col2a1þ SMCs. In addition, the tran-

sition from Vcam1þ cell state to Col2a1þ state was pre-

dicted to be driven by the ER-Golgi stress transducer

CREB3 family members55 as well as EndMT associated

HAND2 and SNAI1 TFs.56 TFs induced by inflammation

and metabolic stress, including XBP1, ATF4, RARG, and

NFATC1/2, were identified as key drivers of the Col2a1þ
state.

In line withmarker gene expression, SOX4was predicted

as themain driver of the Lrg1þ EC state, followed by XBP1,

TCF4, CEBPB, IRF3, CREB3L2, and ELK3 (Figures 5C and

5E). The analysis was unable to identify candidate regula-

tors for Calcrlþ EC state. Interestingly, XBP1, TCF4,

CEBPB, CREB3L2, and ELK3 were also identified as key reg-

ulators of the Vcam1þ and Col2a1þ SMC states, suggest-

ing a key role of these TFs across cell types. As expected,

the inflammatory Ccl4þ MPs showed enrichment of

proinflammatory TF motifs, such as STAT, IRF, and AP-1

factors, whereas the Spp1þ lipid-associated MPs were en-

riched for SREBF1, USF1, NR1H3, and the ER stress

response TFs DDIT3 and XBP1, which all have been impli-

cated in lipid homeostasis57 (Figures 5D and 5E). The

proliferating Stmn1þ MPs were enriched for TF motifs

implicated in cell cycle regulation, as exemplified by

the members of the E2F TFs and EZH2. Among the TFs

identified, XBP1, MAFB, MLX, and NFE2L2 (also called

NRF2) were also identified as drivers of the Vcam1þ and
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Figure 4. Modeling intercellular communication between cell states
Ligand–receptor–target gene analysis was carried out with NicheNet.
(A) Top 10 prioritized upstream ligands for cell state signature gene sets.
(B) Ligand target gene networks presented for Vcam1þ SMCs, Col2a1þ SMCs, and Lrg1þ ECs.
(C) Expression of the prioritized ligands by the different cell states and types. Row normalized gene expression (TPM ¼ transcripts per
million) is shown.
(D) Schematic of predicted ligand-mediated signaling between Vcam1þ and Col2a1þ SMC states involving autocrine and paracrine
signaling.
Col2a1þ SMC states. Overall, we conclude that the major-

ity of the single-cell gene regulatory networks are cell state

specific and could provide critical insights into essential

factors driving the progression of atherosclerosis.

Interrogation of GWAS loci and partitioning the

heritability of CAD highlights the importance of smooth

muscle cell states

GWASs have identified over 300 risk loci for CAD.9,10,29

Nonetheless, for a vast majority of the loci, the causal

gene(s) underlying the association are not known with cer-
The Ame
tainty. In the last few years, however, several new methods

have emerged that, on the basis of genomic proximity, pro-

tein-coding variants, variant association to gene expres-

sion (QTL, TWAS), enhancer-gene maps, or similarity in

gene functions or pathways, establish links between risk

loci and genes,9,28,38,39 providing hundreds of candidate

causal genes. We made use of these candidate causal gene

lists to compute their enrichment among the cell state

gene sets by using the hypergeometric test with expressed

genes (>1 TPM in any aortic cell type or state; 14,902

genes) as the background. Our results demonstrate that
rican Journal of Human Genetics 110, 722–740, May 4, 2023 731
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Figure 5. Prediction of cell-state-specific transcription factor activities
(A–D) (A) The most abundant atherosclerosis-associated cell states were selected for SCENIC analysis21 along with disease-unperturbed
cells of the same cell type. Differentially active gene regulatory networks identified for (B) smoothmuscle cell (SMC), (C) endothelial cell
(EC), and (D)macrophage (MP) cell states. The predicted regulon activity and transcription factor gene expression (row normalized TPM)
are shown.
(E) Selected examples of regulon activities and transcription factor gene expression plotted on UMAP.
11 of the 12 cell states included genes prioritized as candi-

date causal genes, with the highest enrichment detected

for the three SMC state (Vcam1þ, Col2a1þ and Palldþ)

and Lrg1þ EC state genes (Figures 6A and S18). This enrich-

ment trend was also evident when the marker gene lists
732 The American Journal of Human Genetics 110, 722–740, May 4,
were truncated to a specific number of top genes

(Figure S19). In a further analysis, we equalized the number

of marker genes for each cell state across a larger range (top

25 to 500 genes) by also including sub-threshold marker

genes where needed. These results (Figure S20) also
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Figure 6. The contribution of cell states to CAD heritability
(A) Overlap of the CAD GWAS candidate causal gene lists from nine different sources (different colors) with the cell state markers. NA
indicates no overlapping genes.
(B) Results from LD score regression (LDSC)40 applied to cell state marker genes (using 100 kb flanking regions) to partition CAD heri-
tability within the genome.
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confirmed SMC (Vcam1þ, Col2a1þ, and Palldþ) and EC

(Lrg1þ) states as the most enriched for CAD-GWAS-priori-

tized genes, including when measured by overlap ratio.

To further investigate the contribution of atheroscle-

rosis-associated cell state signatures to the SNP-based heri-

tability of CAD, we applied the LDSC tool40 to partition

heritability to gene sets by using CAD GWAS summary sta-

tistics. In our analysis, CAD heritability was most signifi-

cantly enriched in regions surrounding Vcam1þ SMC state

genes, followed by Col2a1þ and Palldþ SMC states, Spp1þ
and Stmn1þ MPs, and Lrg1þ ECs (Figure 6B). Our results

demonstrate significant enrichment of SMC cell state

genes over all other cell types of the lesions, which could

help in functionally interpreting the GWAS signal.

Cell-state- and pathway-specific PRSs provide insight

into the biological mechanisms of CAD risk

An emerging body of evidence has shown that aggregation

and weighing of CAD-associated variants into PRSs can

improve an individual’s risk prediction beyond traditional

risk factors and provide an opportunity to identify novel

mechanisms influencing CAD risk.58 GWAS results could

be considered a composite of signals corresponding to

CAD-relevant processes encoded by different genomic re-

gions and biological pathways. We therefore sought to

test how much polygenic risk for CAD is influenced by

the cell state, cell type, and gene ontology pathways by

aggregating the risk alleles across the respective gene

sets. To study this, we employed the PRSice-2 extension

PRSet,43 which performs LD clumping in a region set-

aware manner, generating PRSs that preferentially include

SNPs falling into regions of interest. We used the GWAS

summary statistics from the CARDIoGRAMplusC4D44

study as the basis for PRS generation, and we used the

UK Biobank cohort (21,600 CAD cases and 359,254 con-

trols) to evaluate PRS performance.

We first applied PRSet to cell state marker gene sets (gene

body with �35 kb and þ10 kb flanks). To evaluate PRS per-

formance, PRSet computes the amount of phenotypic vari-

ance explained by the PRS, defined as the increase in

model R2 when PRS is included, compared to a null model

consisting of covariates only. Further, permutation-based

significance testing is carried out, comparing the perfor-

mance for a PRS to identically clumped SNP sets from back-

ground regions.43 We observed that PRS derived from the

Vcam1þ SMC state genes explained greatest CAD risk vari-

ance and was strongly enriched in the predictive power

relative to background, followed by Col2a1þ SMCs and

Lrg1þ ECs (Figure 7A). Importantly, the cell state genes

outperformed the corresponding cell type marker genes

in predictive performance (Figure S21). Truncating the

cell state marker gene sets to a specific number of top genes

revealed that performance does tend to increase with the

number of genes; however, the increase appearsmore rapid

for some cell states than others, and permutation-based p

value (i.e., predictive power relative to background SNP

sets) tends to plateau for several cell states (Figure S22).
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To investigate how marker genes of non-plaque cell

types perform in a similar analysis, we derived marker

sets (Table S5) for 79 human cell types across the body by

using the gene expression profiles compiled from scRNA-

seq datasets.59 As an evaluation of the marker sets, related

cell types showed more pairwise shared markers

(Figure S23), as expected, and testing the 79 cell type

marker sets (top 500 genes each) for overlap with CAD-

GWAS-prioritized genes revealed the strongest enrichment

in SMC and EC, followed by FB and adipocytes, while most

cell types showed no significant enrichment (Figure S24).

Next, we constructed gene set-based PRSs for CAD by using

between 20 and 500 top markers for each cell type (gene

body regions þ flanks) and evaluated PRS R2. Out of the

79 cell types, hepatocytes ranked highest, followed by

SMCs, with adipocytes and ECs also among the top ten

cell types (Figure S25). Several other cell types in the top

ten tend to be ones that share markers with SMCs

(Figure S23).

Pathway-based PRSs have been suggested to better

inform disease biology compared to classical PRSs.43,58

We therefore also performed PRS analysis on the gene on-

tologies that were significantly enriched among the cell

state signature genes (Figures 2C and 2D). For each of the

significant ontology categories (Figures 2C and 2D), we

collected all human genes assigned to the ontology and

used these to create a CAD PRS. Interestingly, the PRSs

derived from functional categories that were shared among

several cell states (Figures 2C and 2D), including choles-

terol transport, lipid localization, blood vessel develop-

ment, and angiogenesis gene sets, were among the top in

predictive performance and enrichment significance

(Figure 7B). In addition, enzyme-linked and growth factor

receptor signaling, cell division, leukocyte differentiation,

and cell cycle, were among the top ten categories associ-

ated with CAD risk. Altogether, our analysis suggests

pivotal roles for disease-associated cell states and pathways

as mediators of the genetic risk for CAD.

A great majority of the genetic variants associated with

CAD are located within non-coding elements of the

genome where they are thought to play a role in gene

expression regulation. In line with this, inclusion of func-

tional annotations of genomic and epigenomic elements

has been shown to improve the prediction accuracy of

PRSs.60 Therefore, we derived a next set of PRSs prioritizing

for variants in plaque cell type regulatory elements, repre-

sented by scATAC-seq peaks.11 Using scATAC peaks in

range TSS 5 500 kb for cell state marker genes resulted in

PRSs consisting of similar numbers of variants as the

gene coordinate-based PRSs above, allowing direct compar-

ison of power. Notably, PRS performance was considerably

improved when we used the regulatory elements as func-

tional priors, with �2-fold increase in R2 (Figures 7A versus

7C). In line with gene coordinate-based analysis, Vcam1þ
SMC state gene continued to outperform other cell states.

As the regulatory element-based analysis appeared to

inform SNP selection, we further tested scATAC peak-based
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Figure 7. Pathway- and cell-state-specific polygenic risk scores shed light into the genetic basis of CAD
(A) Cell-state-specific PRS was constructed with (A) gene coordinates (�35 kb upstream to 10 kb downstream) using PRSet.43 To obtain
the empirical p value, random SNP sets containing the same number of post-clumping SNPs were selected from background regions of
the genome, selected from all genic regions.
(B) Explained variance of each pathway-specific PRS to polygenic risk of CAD calculated for the gene sets listed in Figure 3C.
(C) Cell-state-specific PRS analysis constructed with plaque scATAC-seq peak coordinates that were found within 5500 kb of the TSS.
(D) Proportion of variance of CAD explained by PRS in genome-wide analysis. The values represent PRS calculated for all cell-type-spe-
cific scATAC-seq peaks at different p value thresholds, which are compared to the classical genome-wide clumping and thresholding PRS.
PRSs genome wide (i.e., without gene set limitations). Out

of the cell types studied, SMC scATAC-based PRS per-

formed the best, although the combined PRS from all pla-

que scATAC cell types outperformed it (Figure 7C). This

was not dependent on the total peak counts, as selecting

the strongest 10,000 cell type unique peaks reproduced

similar results (Figure S26). At its optimal p value

threshold, the standard (classical) genome-wide PRS out-

performed the scATAC PRSs. However, the p value

threshold curves for scATAC and standard PRSs were differ-

ently shaped, and the scATAC PRS continued to gain power
The Ame
even at weaker p value thresholds whereas the standard

PRS lost power (Figure 7D). Based on this observation, we

constructed a hybrid PRS where all strong p value SNPs

were included irrespective of scATAC data, and scATAC

was only used for weaker p value variants. This hybrid

PRS outperformed the classical PRS at its optimal p value

threshold (Figure 7D).

Because other tissues such as liver and adipose tissue

have been associated with the risk of CAD, we also gener-

ated genome region-based PRSs for CAD by using the

recent scATAC atlas of 30 adult human tissues, consisting
rican Journal of Human Genetics 110, 722–740, May 4, 2023 735



of 111 cell types and approximately 890,000 peaks.61 To

confirm our cell type marker peak selection, we generated

a pairwise marker sharing matrix, which revealed the ex-

pected similarity patterns between related cell types

(Figure S27). In line with our plaque scATAC-based PRS

analysis, SMC-related cell types explained the greatest

CAD risk variance, followed by adipocytes, ECs, and fibro-

blasts. Notably, cardiomyocytes, hepatocytes, and immune

cells scored considerably lower in R2-based ranking irre-

spective of the total peak count used (peaks selected by

ATAC signal strength; Figures S28 and 29). The cell type

ranking was similar for peaks selected by cell type speci-

ficity (Figure S30).
Discussion

By performing a cell-type-unbiased time-course analysis of

single cell transcriptomes in mouse atherosclerotic aorta,

we identified 12 disease-associated cell states. Majority of

these states are concordant with the previous studies

focusing on specific subtypes of cells and lineage-tracing

experiments.1–8,53,54 In addition, we identified four less

abundant disease states corresponding to Calcrlþ ECs,

Smoc2þ FBs, Apoeþ MSCs, and Palldþ SMCs that require

further experimental validation. Specifically, these cell

states were not activated in Ldlr�/� and Apoe�/� mouse

models to the same extent and could also represent states

that are specific to certain aortic vascular beds. Still, our

enrichment-free setup allowed us to provide the first com-

parison of shared and differential gene regulatory mecha-

nisms underlying the atherosclerosis-associated cell states.

Despite that the majority of marker genes were specific to a

disease state, a handful of genes were shared between five

or more states and thus represent potential candidates for

global biomarkers of CAD. To this end, circulating levels

of LGMN, MGP, SDC4, and IGFBP4 have been associated

with atherosclerosis and acute cardiovascular events with

potential prognostic or risk stratification value.62–66 For

example, levels of MGP and IGFBP4 could reflect differen-

tial vascular calcification burden and highlight differences

in plaque pathobiology between ST-segment-elevation

myocardial infarction (STEMI) and non-ST segment eleva-

tion myocardial infarction (NSTEMI).66

Signals from the microenvironment can be transmitted

into the intracellular gene expression programs through

multiple layers of signal propagation including ligand-re-

ceptor interactions, signaling molecules, and transcription

factors. Based on the predicted ligand-receptor activities

and downstream gene expression changes, our analysis

strongly suggests that TGFb, IL-1a/b, TNF, VEGFA, FGF1/

2, APOE, and SPP1 signaling pathways dominate in the

atherosclerotic microenvironment and are shared as up-

stream inducers of many cell states. This suggests that the

distinct gene content of the disease-associated gene signa-

tures is a result of cell-type-specific responses to the same

environmental stimuli. This is in linewith the recent report
736 The American Journal of Human Genetics 110, 722–740, May 4,
by us and others where proatherogenic stimulus-induced

gene expression responses in ECs, SMCs, andMPs appeared

very cell type specific.67,68 Supporting this, we demonstrate

that cell states are largely governed by specific TFs that form

intricate gene regulatory networks. Still, a few TF modules

were shared between the SMC and EC cell states (XBP1,

TCF4, CEBPB, CREB3L2, and ELK3) and between SMC

and MP cell states (XBP1, MAFB, MLX, and NRF2), identi-

fying them as potential candidates driving the expression

of the genes in shared ontology categories related to ECM

organization, blood vessel development, angiogenesis,

cholesterol transport, and lipid localization. Indeed,

XBP1, a key modulator of unfolded protein response, has

been demonstrated to play an important role in the regula-

tion of lipid metabolism and angiogenesis and the inhibi-

tion of this pathway alleviates atherosclerosis.57,69,70

Analysis of the atherosclerotic cell state signatures in hu-

man lesions supported the relevance of the majority of the

cell states in separating healthy from diseased samples or

early disease from advanced disease samples. But in cases

where the cell state gene sets were short, the power of sam-

ple classification was not apparent. Supporting the rele-

vance of the disease signatures, we further demonstrated

that many of the cell state marker genes were predicted

target genes of CAD GWAS variants and the genome re-

gions where the marker genes reside contribute signifi-

cantly to the heritability of CAD. Importantly, the genetic

variation in the Vcam1þ SMCs and Col2a1þ SMCs

contributed to CAD heritability beyond other cell states,

suggesting that these cell states are particularly important

in understanding the pathobiology of atherosclerosis.

This is also supported by other recent studies looking

into the cell-type-specific expression of predicted GWAS

target genes.71,72 Importantly, our analysis demonstrated

that atherosclerosis-associated cell state markers explain a

larger proportion of CAD risk variance compared to cell

type markers, suggesting a more prominent role for genes

that participate in pathological changes compared to those

that maintain healthy cell identity.

Substantial ongoing efforts are looking into applying

CADPRS in the clinical practice including risk stratification

and prediction of treatment response. By enhancing early

predictionofCADbeyond traditional risk factors, PRS could

also guide new treatment strategies. This is exemplified by

several landmark studies that demonstrated that the indi-

viduals at high genetic risk for CAD experience the greatest

benefit from lipid-lowering treatments.73–75 However, the

standard PRS sums an individual’s genetic profile to a single

estimate that may fail to identify more nuanced pheno-

types that are necessary for risk stratification, prediction

of treatment response, or identificationofpathways leading

to novel treatment.43 Here, we evaluated the performance

of PRS, which accounts for genomic substructure/regional

functional heterogeneity by aggregating risk alleles across

cell states/types and biological pathways. Our results

demonstrate that while the regular (genome-wide) PRS out-

performs the cell state gene set-based PRSs in absolute
2023



accuracy, regulatory element-based PRS effectively quality

filters the SNPs with weaker GWAS p value. This allowed

us to construct a hybrid PRS that achieved higher power

than the regular PRS at its optimal p value threshold. On

the other hand, pathway-based PRS identified biological

processes conferring higher genetic risk, providing

pathway-level processes to target in drug design. In partic-

ular, the pathways shared between several cell states related

to cholesterol transport, lipid localization, extracellularma-

trix, bloodvessel development, andangiogenesis couldpro-

vide actionable targets.While our analysis provides the first

steps toward cell-state-, cell-type-, and pathway-level un-

derstanding of the genetic risk, future studies are needed

to evaluate whether incorporation of such functional prior

information improves polygenic prediction accuracy in in-

dividual stratification or prediction of treatment response.

In summary, we provide in depth characterization of

atherosclerosis-associated cell states and demonstrate the

value of cell-state-specificmarkers in understanding the ge-

netic basis of CAD. Substantial work still needs to be done

to functionally validate the role of these genes in the path-

ophysiology of atherosclerosis. Defining the mechanisms

that contribute to distinct cell states in pathological condi-

tions could provide a basis for applying precision medicine

and targeted therapies in the future.
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to P.P.M.; 314556 and 335975 to A. Roivainen; 321535 and

328835 to J.P.L.), InFLAMES Flagship Programme of the Academy
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59. Karlsson, M., Zhang, C., Méar, L., Zhong, W., Digre, A., Ka-
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