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Background: The immune microenvironment of non-small cell lung cancer (NSCLC) plays a critical role 
in its treatment. Mast cells (MCs) appear to play a key role in the tumor microenvironment, and studies are 
needed to further elucidate the diagnosis and treatment of NSCLC.
Methods: Data was collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) datasets. Univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression 
analyses constructed a resting mast cell related genes (RMCRGs) risk model. Differences in the immune 
infiltration levels of diverse immune infiltrating cells between the high- and low-risk groups were 
identified by CIBERSORT. We analyzed the enrichment terms in the entire TCGA cohort using Gene Set 
Enrichment Analysis (GSEA) software version 4.1.1. We used Pearson correlation analysis to identify the 
relationships between risk scores, immune checkpoint inhibitors (ICIs), and tumor mutation burden (TMB). 
Finally, the half-maximal inhibitory concentration (IC50) values for chemotherapy in the high- and low-risk 
populations were evaluated via the R “oncoPredict” package.
Results: We found 21 RMCRGs that were significantly associated with resting MCs. Gene ontology (GO) 
analysis showed that the 21 RMCRGs were enriched in regulating angiotensin blood levels and angiotensin 
maturation. An initial univariate Cox regression analysis was performed on the 21 RMCRGs, four of which 
were identified as significantly related to prognostic risk in NSCLC. Then, LASSO regression was carried 
out to construct a prognostic model. We found a positive correlation between the expression of the four 
RMCRGs with resting mast cell infiltration in NSCLC; the higher the risk score, the less resting mast cell 
infiltration and immune checkpoint inhibitor (ICI) expression. A drug sensitivity analysis showed a difference 
in drug sensitivity between the high- and low-risk groups.
Conclusions: We constructed a predictive prognostic risk model for NSCLC containing four RMCRGs. 
We hope this risk model will provide a theoretical basis for future investigations on NSCLC mechanisms, 
diagnosis, treatment, and prognosis.

Keywords: Resting mast cells (Resting MCs); non-small cell lung cancer (NSCLC); prognostic model

Submitted Feb 02, 2023. Accepted for publication Apr 13, 2023. Published online Apr 26, 2023.

doi: 10.21037/jtd-23-362

View this article at: https://dx.doi.org/10.21037/jtd-23-362

1957

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd-23-362


Journal of Thoracic Disease, Vol 15, No 4 April 2023 1949

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(4):1948-1957 | https://dx.doi.org/10.21037/jtd-23-362

Introduction

Lung cancer is the most frequent malignancy in China, and 
non-small cell lung cancer (NSCLC) is its most common 
pathological type (1). In recent years, although combination 
therapy (mainly chemotherapy) has improved the survival 
rate of patients with NSCLC, the overall 5-year prognosis 
for patients is low, and quality of life and the actual survival 
rate of patients have not changed significantly due to the 
additional damage caused by chemoradiotherapy (2-4). 
Recent advances in tumor immunology and molecular 
biology research have highlighted the importance of 
immunotherapy for lung cancer and provided a new 
direction for treating patients with NSCLC (5,6). However, 
further studies are needed to clarify these immune cell-
mediated effects in NSCLC.

Although mast cells (MCs) have long been recognized 
as central players in allergy reactions, only recentlythe 
role of mast cells in tumors is multifaceted, including 
promoting tumor growth, angiogenesis, and immune 
escape. become apparent (7-9). First, mast cells can secrete 
a variety of growth factors and cytokines, such as vascular 
endothelial growth factor (VEGF), basic fibroblast growth 
factor (bFGF), etc., which can promote tumor growth and 
metastasis (10,11). Second, mast cells can also promote tumor 
angiogenesis. Tumors need to obtain nutrients and oxygen 
through new blood vessels, and mast cells can secrete factors 

such as VEGF to stimulate angiogenesis (12-14). Finally, 
mast cells can also contribute to tumor immune escape. 
Mast cells can secrete factors such as IL-10 to inhibit the 
activity of immune cells such as T cells, so that tumors can 
escape the attack of the immune system (15,16). However, 
no studies have reported the biological function of MCs 
in the carcinogenesis of lung cancer. Therefore, mast cells 
play an important role in the occurrence and development 
of tumors, and are one of the important targets for research 
and treatment of tumors.

In the present study, we compared mast cell infiltrates in 
tumor tissues versus normal tissues to identify differentially 
infiltrated resting MCs. Then, we used a co-expression 
network to construct a four-gene risk-scoring model for 
predicting prognosis in NSCLC. We further explored 
the relationships between the high- and low-risk groups, 
immune infiltration cells, tumor mutation burden (TMB), 
and immune checkpoint inhibitors (ICIs). In conclusion, 
these results may provide theoretical guidance for the 
clinical application of NSCLC therapy. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-23-362/rc).

Methods

Data acquisition

We acquired the gene expression data from the LUAD 
and LUSC datasets of The Cancer Genome Atlas (TCGA) 
(https://portal.gdc.cancer.gov/) and the Gene Expression 
Omnibus (GEO) database (GSE75037). The clinical and 
somatic mutation data were retrieved from TCGA database 
(LUAD and LUSC). The mutation data were analyzed by 
the R “maftools” package (17). Due to the use of publicly 
available surveillance data, no ethical approval was required 
for this study. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Evaluation of infiltrating immune cells in NSCLC

CIBERSORT (18) was used to calculate tumor-infiltrating 
immune cells. The 22 types of immune cells in the two risk 
groups were determined using the Wilcoxon test. A Pearson 
correlation analysis was conducted to determine the co-
expression relationship, with cutoffs of R>0.4 and P<0.001. 
Gene ontology (GO) was applied to disclose the biological 
function of resting mast cell-related genes (RMCRGs).

Highlight box

Key findings
•	 We constructed a mast cell-related prognostic model for 

NSCLC. This risk model may provide a theoretical basis for 
future investigations concerning NSCLC mechanisms, diagnosis, 
treatment, and prognosis.

What is known, and what is new?
•	 There have been reports of early mast cell infiltration in a variety 

of human and animal tumors, particularly malignant melanoma, 
breast cancer, and colorectal cancer.

•	 In the present study, we used a co-expression network to construct 
a risk-scoring model for predicting prognosis in NSCLC. We 
further explored the relationships between the risk-scoring 
model, immune infiltration cells, TMB, and immune checkpoint 
inhibitors.

What is the implication, and what should change now?
•	 Our findings may provide theoretical guidance for the clinical 

application of NSCLC therapy. Further cell and animal 
experiments and clinical analysis are required to verify the risk 
regression model we constructed and the function of risk genes.
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Yang et al. A mast cell-related prognostic model1950

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(4):1948-1957 | https://dx.doi.org/10.21037/jtd-23-362

Establishment of RMCG signatures

To explore the prognostic value of RMCRGs, univariate 
Cox regression and least absolute shrinkage and selection 
operator (LASSO) regression analyses were performed 
using the expression levels of the 21 genes in the TCGA 
dataset. To calculate the risk score of the gene signature, we 
used the following formula: risk score = (coefficient gene1 × 
RMCG1) + (coefficient gene2 × RMCG2) +…+ (coefficient 
gene × expression gene). The NSCLC patients were divided 
into low- and high-risk groups using the cut-off value 
of the prognostic risk score from the receiver operating 
characteristic (ROC) curve. The patient survival rates in 
the high- and low-risk groups were estimated using the 
Kaplan-Meier survival curve and the “survival” R package. 
A nomogram was constructed based on each cohort’s risk 
score and other clinical parameters.

Gene set enrichment analysis (GSEA)

We analyzed the enrichment terms in the entire TCGA 
cohort using GSEA software version 4.1.1 to reveal the 
high- and low-risk group pathways. The GSEA analysis 
of the high- and low-risk groups was performed using 
the GSEA “clusterProfiler” package for the gene sets “c2.
cp.kegg.symbols.gmt” (19).

Immune checkpoint inhibitor (ICI) analysis in the low- 
and high-risk groups

The correlations between known ICI targets and our 
signature were analyzed to explore the possible roles of 
RMCRGs and the risk signature in ICI efficacy in NSCLC. 
We used a Pearson correlation analysis to assess the 
associations between risk scores and ICIs. 

Evaluation of the risk model’s significance in clinical 
treatment

To further assess the significance of the prognostic 
signature in predicting clinical NSCLC therapy response, 
the half-maximal inhibitory concentration (IC50) values for 
chemotherapeutic or targeted drugs in the high- and low-
risk populations were evaluated via the R “oncoPredict” 
package (20).

Statistical analysis

We analyzed the relationship between RMCRGs and 

NSCLC clinical characteristics using Wilcoxon signed-
rank tests. The relationship between risk scores, RMCRGs, 
immune cells, and ICIs was analyzed using Spearman’s 
correlation. Kaplan-Meier curves were drawn for the survival 
analysis.

Results

Mast cell-related genes in NSCLC

We performed a differential gene expression analysis in 
the GSE75037 dataset to identify genes whose expression 
differed between NSCLC and normal tissues. We used the 
“limma” R package to perform the differential gene analysis 
in two groups and create heatmaps and volcano plots (Figure 
1A,1B). Then, the CIBERSORT algorithm was used to 
calculate the proportion of immune cells infiltrating the 
tumors, and a significant difference in resting mast cell 
infiltration was observed (Figure 1C). To further elaborate 
on the association between resting MCs and NSCLC, we 
analyzed the correlations of RMCRGs using the TCGA-
LUAD and TCGA-LUSC datasets. We found 21 RMCRGs 
that were significantly associated with resting MCs (Figure 
1D,1E). The GO term enrichment and pathway analysis of 
the 21 RMCRGs was carried out using the “clusterProfiler” 
R package. The GO analysis showed that the 21 RMCRGs 
were enriched in regulating angiotensin blood levels and 
angiotensin maturation (Figure 1F). These pathways control 
the flow of nutrients to the tumor and are crucial for tumor 
cell migration, growth, metastasis, and survival.

A prognostic model of NSCLC constructed with four 
RMCRGs

The role of MCs in tumorigenesis and development has 
received increasing attention, but the study of MCs in 
NSCLC only just beginning. A prognostic risk model was 
constructed based on RMCRGs to predict the prognosis of 
patients with NSCLC. An initial univariate Cox regression 
analysis was performed on the 21 RMCRGs, and four of 
these were identified as significantly related to prognosis in 
NSCLC (available online: https://cdn.amegroups.cn/static/
public/jtd-23-362-1.xlsx). Then, LASSO regression was 
carried out to construct a prognostic model. Per the median 
risk score, the LASSO Cox regression analysis generated a 
four-gene risk signature that classified NSCLC patients into 
high- or low-risk groups. Overall survival was significantly 
better in the low- vs. high-risk group in early stage NSCLC 
(Figure 2A). An independent prognostic analysis showed 

https://cdn.amegroups.cn/static/public/jtd-23-362-1.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-362-1.xlsx
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Figure 1 Identification of genes associated with resting MCs in tumors. (A) Heatmap of the differential gene expressions in paired non-small 
cell lung cancers (treat) and normal tissues (control). Color scale bar represents gene expression. (B) Volcano plot of differentially expressed 
genes. (C) Tumor-infiltrating immune cells were inferred using CIBERSORT. (D) The network plot showing co-expression clusters of 
resting mast cells. Color scale bar represents correlation. (E) Gene-gene correlation heatmap of the resting mast cells. (F) GO enrichment 
analyses for resting mast cell-related genes. MCs, mast cells; GO, gene ontology; FC, fold change.
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that the risk scores could be used as independent prognostic 
factors for NSCLC (Figure 2B). The “rms” R package was 
used to construct a nomogram to identify risk based on the 
independent factors for clinical prognosis (Figure 2C). We 
also found that high-risk patients over 65 years and with 
stage III–IV disease were strongly associated with a poorer 
prognosis, but there was no association with gender (Figure 
2D-2F). We further analyzed GSEA pathway enrichment 
in the high- and low-risk patient groups. We found that the 
cell cycle, DNA replication, Parkinson’s disease, ribosome, 
and spliceosome pathways were significantly enriched in 
the low-risk group. In contrast, the allograft rejection, 
asthma, cell adhesion molecules cams, and intestinal 
immune network for IGA production signaling pathways 
were significantly enriched in the high-risk group (Figure 3). 
GSEA results suggest that there are significant individual 

differences in enriched signaling pathways in patients with 
different risks. These results suggested that our prognostic 
risk model based on RMCRGs could predict the prognosis 
of patients with NSCLC.

Infiltrating abundance of distinct immunocytes in the low- 
and high-risk NSCLC groups

We explored the immune infiltration levels of the diverse 
immune infiltrating cells between the high- and low-
risk groups using CIBERSORT. The immune infiltration 
analysis showed that 14 immune cell infiltration levels were 
significantly different between the high and low-risk groups, 
with the low-risk group having the highest level of resting 
MCs (Figure 4A). These results indicate that the MCs were 
inhibited in the low-risk group. We also revealed a positive 
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Figure 2 Construction of a resting mast cell-related gene prognostic risk score model (A) Survival analysis of NSCLC patients stratified 
into high- and low-risk groups. (B) Multivariate analysis results of the association between clinical factors and risk scores. (C) Nomogram 
predicting 1-, 3-, and 5-year overall survival for NSCLC patients. *, P<0.05; ***, P<0.001. (D-F) The prognosis of NSCLC patients with 
high- vs. low-risk scores. NSCLC, non-small cell lung cancer. 
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Figure 3 GSEA. (A) GSEA analysis in the high-risk group; (B) GSEA analysis in the low-risk group. GSEA, gene set enrichment analysis. 
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correlation between the expression of four RMCRGs and 
resting mast cell infiltration in NSCLC: the higher the risk 
score, the less resting mast cell infiltration (Figure 4B). This 
result was confirmed on the TISIDB web portal for tumor 
and immune system interactions (Figure 4C) (http://cis.hku.

hk/TISIDB/index.php). The potential relationship between 
risk score and the efficacy of immunotherapy was evaluated 
by analyzing the expression of immune checkpoint molecules, 
an effective marker of immunotherapy, in different risk 
scores. We found that the risk score was negatively related 

http://cis.hku.hk/TISIDB/index.php
http://cis.hku.hk/TISIDB/index.php
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to the expression of the immune checkpoint genes (ICGs) 
(Figure 4D). These results strongly suggest that patients in 
the low-risk group may benefit from immunotherapy.

Association between risk scores and TMB

TMB, an emerging immunotherapy marker, is defined 
as the total number of somatic mutations in a specific 
region of the genome of tumor cells, which is precisely 

defined to vary with the size of the sequenced region and 
the mutability. In theory, the more somatic mutations in 
a tumor cell, the higher the TMB value and the greater 
the likelihood of neoantigens being formed, only some of 
which can be recognized by T cells and cause an antitumor 
immune response. To screen out those who truly benefit 
from immunotherapy and to distinguish reliable TMB 
values, clinicians need to develop a better understanding of 
the factors that contribute to the heterogeneity of TMB. 

Figure 4 Immune cell infiltration in different risk groups. (A) Infiltrating abundance of distinct immunocytes in the low-risk vs. high-risk 
NSCLC subgroups. (B) Correlation analysis of risk score, resting mast cell-related genes, and immune cell infiltration. (C) Correlation 
analysis of four resting mast cell-related genes and MCs in TISIDB. (D) Correlation between risk score and immune checkpoints. *, P<0.05. 
NSCLC, non-small cell lung cancer; MCs, mast cells; LUAD, lung adenocarcinoma.
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We attempted to analyze the relationship between the 
risk score and TMB. Our TMB analysis showed that the 
risk scores between the wild types and the mutation types 
of TP53, TTN, MUC16, and CSMD were significantly 
different (Figure 5A,5B). Furthermore, the TMB in the 
high-risk group was higher than in the low-risk group 
(Figure 5C). These results suggest that the reliability of 
TMB as a biomarker of immunotherapy efficacy is critical.

Drug sensitivity of NSCLC patients with high versus low 
risk

We further investigated the drug sensitivity between the 
different risk groups using the “oncoPredict” R package. 
The drug sensitivity analysis showed a significant difference 
in drug sensitivity between the high and low-risk groups. 
Specifically, a high-risk score was associated with lower 
IC50 values for drugs such as Acetalax (Figure 6A), Afatinib 
(Figure 6B), Alisertib (Figure 6C), AZD3759 (Figure 6D), 
AZD5991 (Figure 6E), and ERK_6604 (Figure 6F), whereas 
a low-risk score was associated with lower IC50 values for 
drugs such as AZD6482 (Figure 6G), AZD8055 (Figure 
6H), BMS-754807 (Figure 6I), Doramapimod (Figure 6J), 
Ribociclib (Figure 6K), and SB216763 (Figure 6L). So, 
accurate prediction can potentially help to provide better 
treatment for patients.

Discussion

Lung cancer has one of the highest fatality rates among 
malignant tumors in China (21,22). Compared with small 
cell lung cancer, NSCLC has a slow onset and growth rate 

but is generally found to be in an advanced stage at initial 
diagnosis and, therefore, very difficult to control and treat 
(23-25). A non-invasive, sensitive, and specific biomarker 
for NSCLC early detection is needed.

MCs are granulated-filled immune cells located primarily 
under the mucosal epithelium where the body is in contact 
with the external environment (26). MCs are known for 
their biological role in allergic reactions but are also now 
known to be involved in many other important physiological 
and pathological processes (27,28). MC infiltration has 
also been found in some human and animal tumor models; 
however, its function in the tumor microenvironment 
remains controversial (26,29). Further studies of the role of 
MCs in NSCLC are warranted.

In the present study, we found that resting MC 
infiltration in NSCLC is significantly inhibited. Li et al. 
also found that the ratio of eosinophils, resting MCs, and 
memory-activated CD4 T cells in the low-risk NSCLC 
group was higher than in the high-risk group (30). Several 
studies have shown that CD4 memory T cells can stimulate 
the activation of mast cells and release cytokines, thereby 
regulating immune and inflammatory responses (31,32). 
In addition, resting mast cells can also affect the activation 
and expansion of CD4 memory T cells, thereby affecting 
the strength and direction of the immune response (31,33). 
These findings provide an important reference for further 
understanding the regulatory mechanism of the immune 
system and the occurrence and development of related 
diseases. However, the specific role of resting MCs in 
early diagnosis and prognosis in NSCLC has not yet been 
elucidated. 

First, we conducted a correlation analysis of 22 

Figure 5 Correlation analysis between risk score and TMB. (A-C) TMB analysis of high- and low-risk groups. TMB, tumor mutation 
burden. 
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immune cells associated with genes using a Spearman 
rank correlation analysis. A total of 21 RMCRGs were 
identified, of which four were found to be prognosis-related 
RMCRGs. By using univariate Cox and LASSO regression 
analyses, we constructed an RMCG-associated risk model. 
Significantly, this study showed that the high-risk group had 
significantly lower resting mast cell infiltration and ICG 
expression compared with the low-risk group. In our study, 
we identified subgroups of patients with a significantly 
higher risk of having deleterious mutations. These results 
strongly suggest that patients in the high-risk group may 
not benefit from immunotherapy. We next evaluated the 
differences in drug susceptibility between the high-and low-
risk groups. The results provide a basis for risk stratification 
and individualized treatment.

These results have clinical implications, as patients in 
high-risk groups may not benefit from immunotherapy. 

Therefore, this study provides a basis for risk stratification 
and individualized treatment. In addition, the study assessed 
differences in drug sensitivity between high-risk and low-
risk groups, which could help in the development of more 
effective individualized treatment options.

However, the study also had some limitations. First, 
this is a database analysis that requires further in vitro 
experimental studies to validate. Second, the sample size used 
in this study was small, and further expansion of the study 
scale is required. In addition, the data used in this study are 
horizontal research data, and further longitudinal research is 
needed to verify the stability and reliability of its results.

Taken together, the study’s findings contribute to 
understanding the relationship between immune cells and 
risk stratification, and response to immunotherapy. This 
has important clinical implications for the development of 
more effective individualized treatment options, but further 

Figure 6 Correlation between the risk model and drug sensitivity of NSCLC. (A-L) Drug sensitivity of NSCLC patients with high vs. low 
risk. NSCLC, non-small cell lung cancer. 
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verification and exploration are needed.

Conclusions

In the present study, LASSO analysis was performed to 
construct a prediction model for estimating NSCLC 
prognosis. Immune cell infiltration, TMB, ICG expression, 
and drug sensitivity in different risk groups were analyzed 
to investigate the impact of risk scores on the tumor 
microenvironment. In summary, the present results 
provided novel insights into NSCLC immunotherapy 
and identified potential intervention targets for treating 
NSCLC patients.
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