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A B S T R A C T   

Since the year 2019, the entire world has been facing the most hazardous and contagious disease as Corona Virus 
Disease 2019 (COVID-19). Based on the symptoms, the virus can be identified and diagnosed. Amongst, cough is 
the primary syndrome to detect COVID-19. Existing method requires a long processing time. Early screening and 
detection is a complex task. To surmount the research drawbacks, a novel ensemble-based deep learning model is 
designed on heuristic development. The prime intention of the designed work is to detect COVID-19 disease using 
cough audio signals. At the initial stage, the source signals are fetched and undergo for signal decomposition 
phase by Empirical Mean Curve Decomposition (EMCD). Consequently, the decomposed signal is called “Mel 
Frequency Cepstral Coefficients (MFCC), spectral features, and statistical features”. Further, all three features are 
fused and provide the optimal weighted features with the optimal weight value with the help of “Modified Cat 
and Mouse Based Optimizer (MCMBO)”. Lastly, the optimal weighted features are fed as input to the Optimized 
Deep Ensemble Classifier (ODEC) that is fused together with various classifiers such as “Radial Basis Function 
(RBF), Long-Short Term Memory (LSTM), and Deep Neural Network (DNN)”. In order to attain the best detection 
results, the parameters in ODEC are optimized by the MCMBO algorithm. Throughout the validation, the 
designed method attains 96% and 92% concerning accuracy and precision. Thus, result analysis elucidates that 
the proposed work achieves the desired detective value that aids practitioners to early diagnose COVID-19 
ailments.   

1. Introduction 

During the end period of 2019 and throughout 2020, a very disas-
trous virus is spread widely and rapidly worldwide as it is contagious in 
nature. It is identified as one kind of disease as “Severe Acute Respira-
tory Syndrome Corona Virus 2 (SARS-CoV-2)” [1]. In 2020th February, 
the World Health Organization (WHO) named this virus as COVID-19. 
The entire world stumbles by the outbreak of this virus. Over the 
world, due to its quick spread, around 434,150,000 cases were 
confirmed in February 2022 [2], in which 5,940,000 cases were re-
ported as deaths. Major notable syndromes are reported as follows (i) 
Ear, Nose, and Throat (ENT) and respiratory issues like cough and less 
breathness [3], head pain and sore throat, (ii) general symptoms like 
muscle pain, fever, and weakness and (iii) lack of taste and smelling 
sense. Further, the common ENT symptoms are noticed along with 

COVID-19 that lead to other ailments like nasal congestion, upper res-
piratory tract infection, rhinorrhea, pharyngeal erythema, and tonsil 
inflammation [4]. Subsequently, the analysis of cough detection be-
comes recent attention in COVID-19 disorder as it directly affects the 
lung parts of the human. Predominantly, cough is the prime identifica-
tion for confirming COVID-19 patients [5]. Therefore, the lung disorder 
causes an impact in the glottis to do the metabolism process in a way of 
either being obstructed or restricts. This disease could be influenced by 
considering the acoustic signals of breath, cough, and speech [6]. 

For COVID-19 patients, the cough becomes the second most notable 
syndrome as fever is in prior symptoms. While diagnosing the cough for 
COVID patients, it is firstly in the dry and non-productive state that is the 
same as like a tickle in their throat region [7], whereas the most affected 
individuals get wet in the throat as well as productive in nature, which 
leads to cause the flu or cold. From the acoustic perspective, the cough 
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sound is defined as a “forced expulsive maneuver” that exhibits against 
the closed glottis with a cough sound [8]. In nature, the cough sounds 
can be distinguished into three phases; they are phase 1 – explosive, 
phase 2 – intermediate, and phase 3 – voiced, correspondingly. The 
voiced phase is always not existed [9], but due to its absence, the 
identification of the intermediate is critical one. Therefore, as always, 
the presence of the explosive phase, it is used for primarily diagnosing 
the disease [10]. Over the recent few years, several scholars have 
examined the performance analysis for cough and respiratory sounds to 
reach the attention for earlier treatment of COVID-19. The cough in 
COVID-19 differs from other normal respiratory causes of cough syn-
dromes [11]. 

In order to develop an effective cough detection model, cough 
acoustic sounds are initially considered. Certain experts have filed the 
cough audio datasets, where the acoustic signals are presented in short 
record samples of breath and cough [12]. Owing to the audio signals, the 
cough detection model is processed with frequency domain features, and 
then, classification is done by either machine or deep learning ap-
proaches [13]. Conversely, some machine learning approaches are 
employed to diagnose the COVID-19 disease by considering the images. 
In [14], Computed Tomography (CT) image is utilized to analyze cough 
detection, where the ResNet50 classifier is used to acquire more accu-
rate values. Using chest X-ray images, the detection is performed with 
promising results. Yet, rather than the image representation, the signals 
can be used to easily identify as every individual varies with acoustic 
signals of cough or respiratory [15]. Over the past two to three years, the 
automated cough detection model has been implemented with respira-
tory or cough signals. Furthermore, other transfer learning approaches 
are deployed with significant features to do the classification tasks [13]. 
Hence, the deep learning model emerges with its beneficial traits to 
diagnose COVID-19 disorder and the respiratory audio signals [17]. 

The prime contributions for the new detection work are listed as 
below.  

• To adopt a novel cough detection model by optimized deep learning 
model with heuristic improvement for COVID-19 disorder that is 
helpful for a medical institution to sustain their reputation for 
diagnosing the disease in an appropriate way. The recommended 
cough detection model can be suitable for different applications like 
healthcare and mobile-based applications.  

• To extract the most informative features of cough audio signal by the 
concept inference of MFCC, spectral and statistical features, to 
enhance the performance of the cough detection model. Hence, the 
MFCC can be performed to minimize the error, and also it provides a 
significant feature when the signal is affected by noise.  

• To concatenate all the resultant features to select the weighted-based 
optimal features. It is upgraded into the weighted features, where the 
weight factor is optimally determined by a novel MCMBO algorithm 
that resolves the dimensionality issues. Moreover, the developed 
MCMBO algorithm can be used to resolve the issues in local optima. 
Consequently, it can resolve complex optimization problems.  

• To frame the optimized DEC model for classifying the features into 
the presence or absence of COVID-19. Here, it possesses LSTM, DNN, 
and RBF to do the classification task, in turn, the hidden neurons and 
epochs are tuned using the MCMBO algorithm. The optimized DEC 
method solves the gradient vanishing and underfitting issues. 
Moreover, the accuracy rate can be improved by the developed 
method.  

• To analyze the performance with different measures and compare 
over traditional heuristic algorithms and other classifier models. The 
comparative analysis provides effective results for improving the 
system’s robustness. 

The rest parts are explored. Part II describes the existing research 
works on the cough detection model in COVID-19. It is followed by 
explaining the novel intelligence cough detection framework in Part III. 

Part IV demonstrates the weighted feature selection with a modified 
heuristic approach. Part V illustrates the optimized ensemble learning 
model for classification purposes. Part VI implements the proposed 
concept and its respective results. Finally, the conclusion and future 
scope are described in Part VII. 

2. Existing works 

2.1. Literature papers 

In 2020, Laguarta et al. [18] have implemented the Artificial Intel-
ligence (AI)-based detection model for COVID-19. Here, the experi-
mentation was done using acoustic signals and recordings of cough 
audio. Thus, it became a non-invasive model with real-time implications 
and less cost-effective. Initially, the collected signals were used to 
extract the MFCC features, which were fed into the Convolutional 
Neural Network (CNN). This model was structured with “one Poisson 
biomarker layer and 3 pre-trained ResNet50s in parallel”. From the 
datasets, 4256 recordings were trained in the model as CNN, and 1064 
signals were conducted for testing. Similarly, the transfer learning 
approach was employed to retrieve the biomarker features of the signal, 
which has also improved the detection performance. Finally, the simu-
lation was carried out, and its corresponding value was validated by 
various metrics. Thus, the suggested method has scored the higher 
specificity as 98.5% and also the Area under the Curve (AUC) as 0.97, 
respectively. 

In 2022, Ren et al. [19] have developed a model based on acoustic 
traits of cough to diagnose corona disease. The objective of this model 
was to analyze the test results as either positive or negative. With the 
admittance of traditional statistics, it could be used for analyzing the 
correlation among the signals that relied on ComParE set, which has 
comprised around 6,373 audio traits of cough. Subsequently, the ma-
chine learning approach was taken for classifying the features and 
explored the status of every affected individual. The simulated results 
were estimated by considering the multiple metrics as statistical value, 
MFCC features, root mean square energy, and so on for providing the 
outcome as negative and positive sample indications for COVID-19. 
Thus, the novel automated system has achieved an impressive value of 
0.632 for Unweighted Average Recall (UAR) by considering the total 
samples as 1411 cough recordings. 

In 2022, Pahar et al. [20] have used the transfer learning model and 
feature extraction process for identifying COVID-19 using the audio files 
of breath, cough, and speech. Since it could not be performed in a 
contact manner, the audio recordings were fetched from the benchmark 
online sources. It could be able to collect data of sneeze, cough, noise, or 
speech and could not have proper COVID-19 labels. To identify the 
sample labels, the deep learning models were pre-trained. Here, the 
three classifiers as, LSTM, CNN, and ResNet50, were taken. Further, 
these pre-trained networks were used to classify the features, whether it 
is in a state of normal or abnormal. Among the three models, the 
ResNet50 was used by concept inference of the transfer learning model. 
Finally, the results were computed by various metrics and provided 
comparative results. The simulation value of the model has been ach-
ieved as 0.94 for breath signals, 0.98 for cough recordings, and 0.92 for 
speech recordings, correspondingly. 

In 2021, Sattar [21] has designed a fully automated based detection 
technique using cough audio for COVID-19 detection. This methodology 
was relied on the time domain characteristics of the signal to represent 
the cough recordings of the individual. Further, it has also considered 
the “plausible click sequences” for diagnosing the COVID19 affected 
patients. This type of sequence was determined from the slope func-
tionalities of source signals. It was further utilized to estimate the 
“Scoring Index (SI) and Inter-Click Intervals (ICIs)”. Also, it was done 
based on the Coefficient of Variation (CV) related to ICIs. Finally, the 
Probability Density Function (PDF) was acquired for output clicks. Here, 
the implementation was done by taking the real-time based audio from 
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the medical dataset as “Novel Coronavirus Cough Database (NoCo-
CoDa)”. Finally, the performance was evaluated and analyzed on the 
time-domain features. Then, the analysis has demonstrated to attain 
precise results for detection. 

In 2022, Hamdi et al. [22] have framed a novel detection model for 
diagnosing COVID-19 using a deep learning approach. This model was 
named as the augmentation process, where the data was applied in a pre- 
filtered format. The two steps were considered as (a) augment the pitch- 
shifting process of the source signal and (b) spectral-based augmentation 
as SpecAugment that has deployed mel-aided spectrogram features. The 
classification model was newly designed with CNN and LSTM networks, 
along with an attention mechanism to diagnose the disorder. The 
experimentation was carried out with CoughVid-type datasets and 
compared over classical methodologies. Based on the validation, the 
result has attained as 91.13% for accuracy and AUC 90.93% for sensi-
tivity, which has ensured to exhibit better detection performance. 

In 2022, Soltanian and Borna [23] have explored a novel lightweight 
deep-learning technique for providing the classified result as Non- 
COVID and COVID patients. Here, the analysis was made using the 

Virufy database, which was then compared with other existing ap-
proaches. Hence, the outstanding results regarding accuracy has been 
improved when compared with the other conventional methods. In 
2022, Hemdan et al. [24] have introduced the machine learning-assisted 
detection model using cough audio. It has also inferred the Genetic Al-
gorithm (GA) to exploit the optimal value. The performance was 
computed based on recall, precision, and F-measure. In contrast with 
other conventional models, the proposed GA-aided machine learning 
has obtained outperformed outcomes to diagnose the COVID-19. The 
suggested method has achieved a better accuracy value. Hence, from the 
analysis, the recommended method has ensured that it has exploited 
better outcomes to improve the detection performance. 

In 2021, Pahar et al. [25] have introduced machine learning-based 
models for detecting COVID-19 positive or negative using cough audio 
samples. To experiment with the model, it has considered publicly 
available online sources such as the Coswara dataset, which was 
comprised of 92 positive cases and 1079 negative reports. Similarly, the 
second dataset was taken from the region of South Africa, where it has 
included 18 and 26 cases of positive and negative. Subsequently, it has 
employed the “Synthetic Minority Oversampling Technique (SMOTE)”. 
Here, the training was done by seven distinct classifiers as K-Nearest 
Neighbour (KNN), CNN, Multi-Layer Perceptron (MLP), Support Vector 
Machine (SVM), LSTM, ResNet50 and Logistic Regression (LR). Finally, 
the validation of the designed method was estimated with different 
metrics. In the designed method, the recommended technique has ach-
ieved an AUC of 98%. Through the extensive results, the suggested 
approach has enhanced efficiency, reduced the cost functions, and 
become flexible to implement in such medical institutions. 

2.2. Research gaps and challenges 

Amongst all other syndromes for COVID-19, the cough becomes the 
predominant symptom that immensely affects the respiratory of the 
individual. Several studies have concentrated on cough detection in 
Covid 19 disease, and its advantages and disadvantages are discussed in 
Table 1. CNN and ResNet50 [18] effectively detect COVID disorder with 
accurate results. But, it becomes fragile when it deals with large-scale 
dimensions of the dataset. MFCC [19] increases the performance as it 
extracts the essential acoustic features and also increases the training 
speed. Since it does not contain adequate symptom information, the 
performance gets degraded.CNN, LSTM, and ResNet50 [20] increase the 
AUC value to detect the cough in COVID patients and also increases the 
robustness and reduce the load problem. Yet, while managing the 
enormous amount of data, the systems fall into the overfitting issue. ICIs 
[21] enhance the entropy value that provides essential features. On the 
other hand, it increases the time complexity, and overlapping occurs. 
CNN-LSTM [22] improves the sensitivity and accuracy value and in-
creases the AUC score for cough sounds. However, it degrades the 
overall performance as it restricts class imbalance issues and has the 
constraints of binary class detection. CNN [23] reduces the computa-
tional burden and enhances the F1-score and recall measures. Due to the 
scarcity of training samples, an inaccurate result is obtained. GA-ML 
[24] enhances the performance of diverse validation measures and is 
applied for real-time applications. But, the scalability of the model gets 
mitigated by handling large datasets. KNN, SVM, LSTM, and MLP [25] 
achieve better performance concerning the higher value of AUC. How-
ever, it does not support the huge amount of datasets. With the aim of 
overcoming these challenging problems, it is suggested to design an 
efficient framework for cough detection. 

3. Intelligent model with cough detection for COVID diagnosis 
using optimized DEC 

3.1. Proposed cough detection framework 

By 2021 February, COVID-19 affects millions of individuals in the 

Table 1 
Advantages and limitations of cough detection in COVID-19.  

Author 
[citation] 

Techniques Advantages Limitations 

Laguartaet al.  
[18] 

CNN and 
ResNet50  

• It effectively detects 
the COVID disorder 
with accurate 
results.  

• It becomes fragile 
when it deals with 
a large-scale 
dimension of the 
dataset. 

Ren et al. [19] MFCC  • It increases 
performance as it 
extracts essential 
acoustic features.  

• It increases the 
training speed.  

• Since it does not 
contain adequate 
symptom 
information, the 
performance gets 
degraded. 

Pahar et al.  
[20] 

CNN, LSTM, 
ResNet50  

• The AUC value is 
increased to detect 
the cough in COVID 
patients.  

• It increases the 
robustness and 
reduces the load 
problem.  

• While managing 
the enormous 
amount of data, the 
systems are falls 
with overfitting 
issues. 

Sattar [21] ICIs  • It enhances the 
entropy value that 
ensures to provide of 
the most essential 
features.  

• It increases the 
time complexity, 
and overlapping 
occurs. 

Hamdi et al.  
[22] 

CNN-LSTM  • It improves the 
sensitivity and 
accuracy value.  

• It also increases the 
AUC score for cough 
sound.  

• It degrades the 
overall 
performance as it 
restricts with class 
imbalance issues.  

• It has the 
constraints of 
binary class 
detection. 

Soltanian and 
Borna [23] 

CNN  • It reduces the 
computational 
burden  

• It enhances the F1- 
score and recall 
measures.  

• Due to the scarcity 
of training 
samples, an 
inaccurate result is 
obtained. 

Hemdanet al.  
[24] 

GA-ML  • It helps to improve 
the performance 
regarding diverse 
validation measures.  

• It is applied for real- 
time applications.  

• The scalability of 
the model gets 
mitigated by 
handling large 
datasets. 

Klopper et al.  
[25] 

KNN, SVM, 
LSTM, MLP  

• It achieves better 
performance with 
respect to the higher 
value of AUC  

• It does not support 
the huge amount of 
datasets.  
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world, it still continues the pandemic situation in some regions. Due to 
its variant nature, it cannot be able to suppress. Therefore, the recent 
attention is to diagnose the ailments significantly. Since the vaccination 
is progressed, it exists to affect the persons with less immunity power. 
Owing to the contagious nature of the virus, the diagnosis becomes a 
challenging issue. This disorder is identified by such symptoms as cough, 
fever, and lack of smell or taste. Rather than other syndrome, the cough 
plays a vital role in detection techniques. The acoustic nature of cough 
aids to rapidly detect COVID-19 [40 41]. Since the cough audio signals 
render key information, it exhibits the respiratory state of each indi-
vidual. Thus, some experts plan to use the audio signals to perform the 
detection performance. For the past few years, various machine-learning 
methods have been adopted to diagnose the disease. Since, it contains 
some limitations, such as time and structural complexity. Several feature 
extraction techniques have been used as the signal entails with peculiar 
traits like frequency and time domain in the signal samples. Yet, it faces 
the issue of dimensional problems that degrades performance. Recently, 
a deep learning approach has been performed to improve the detection 
results. Being with the diverse characteristics of deep learning classifier, 
it also exploits the promising results to ensure the effectiveness of the 
system. Nevertheless, it faces some shortcomings as complexity occur-
rence of ensemble deep classifiers also becomes infeasible, as well as 
more consumption of training time. Sometimes, data acquisition also 
comes under motivational factors as it does not contain real-time signals. 
Thus, it increases the overfitting problem. To combat all the afore-
mentioned challenges, a new heuristic-aided deep ensemble classifier is 
proposed which is represented in Fig. 1. 

The suggested methods comprise with distinct phases as (a) Audio 
signal acquisition, (b) Decomposing the signal, (c) Feature Extraction, 
(d) Optimal Weighted Feature Extraction, (e) Detection. Firstly, the 
source cough audio signals are fetched from the online data sources. It is 
further deployed for signal decomposition, where the decomposed 
signal is attained by EMCD. Subsequently, the feature extraction is 
carried out with three techniques as MFCC features, spectral features, 
and statistical features. Here, the relevant features are identified from 
the decomposed signal that is further combined with each other. Based 
on the acquired features, the optimal weighted features are chosen, 

where the weight is optimally evaluated by the MCMBO algorithm. 
Owing to this, it solves the dimensional issue and mitigates the false rate. 
Finally, the novel ODEC is developed with LSTM, DNN, and RBF, 
respectively, which is employed to provide the classified results as either 
the presence of COVID-19 or the absence of COVID-19. It has a 
complexity problem that is to be overcome by optimizing the parameters 
as epochs and hidden neuron counts by the MCMBO algorithm. The 
performance and comparative analysis are conducted over existing 
works of cough detection. Hence, the findings of the recommended 
method demonstrate to achieve impressive results, thereby ensuring an 
effective detection model. 

3.2. Cough detection dataset description 

The cough detection is performed by considering two different 
datasets explained below. 

Dataset 1: The first dataset is named as “Covid-19 Cough Audio 
Classification”, where the required audio signals are fetched. The 
collected signals are taken from “https://www.kaggle.com/datasets/a 
ndrewmvd/covid19-cough-audio-classification: Access Date: 
2022–10–10”. It constitutes almost 25,000 recordings of cough audio, 
which is used for classification and regression. It also contains 2800 
subsets of audio files examined by four clinicians to identify the 
disorder. 

Dataset 2: For the second dataset, the cough audio signals are 
collected from “https://www.kaggle.com/code/himanshu00712 
1/covid-19-cough-classification/data: Access Date: 2022-10-10′′. The 
source files are extracted via the Kaggle website for performing the 
detection task. 

Here, the gathered input audio signals for both datasets are repre-
sented as Cs where s = 1,2,3,…,S. Here, the variable S defines the total 
cough audio signals used for subsequent sections. 

3.3. EMCD-based signal decomposition 

Once the required signal is taken, it is further fed to the process of 
signal decomposition. The novel method utilizes EMCD [26] for 

Fig. 1. The architecture of the developed cough detection model by ensemble deep learning model with cough audio signal.  
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decomposing the signal. The signal as Cs is given as input for decom-
position. The core function of this decomposition method is to decom-
pose the time-series-based input signal in the manner of data-driven. 
Further, it is processed with a maxima and minima approach. Finally, 
the inferior and superior envelope and mean curves are considered for 
achieving the decomposed signal. The mathematical expression of 
EMCD is explained as follows. 

Maxima and Minima: In the input signal as Cs(a), where a = 1,2,3,
…, A. Thus, the maximal series of the input signal is represented by 
{
(g,C[g] ), g = 1, 2,…,Ag

}
. Here, the number of maxima and their time 

indices is denoted by g and Ag, correspondingly. Similarly, the minimal 
series of the input signal is declared as {(h,C[h] ), h = 1,2,…,Ah }. Here, 
the total number of minima and their time indices is noted as h and Ah, 

respectively. 
Superior Envelope: It encompasses the entire maxima time series 

signal on the basis of the upper curve. In order to interpolate all the 
maxima series signals, it uses B-Spline (BS) interpolation technique. It is 
referred using Eq. (1). 

Csp[a] = bs{(g,C[g] ), Cs(a) } (1) 

Inferior Envelope: It consists of all minima time series signal that 
relies on a lower curve. For interpolating all the series, it employs the BS 
interpolation approach, and which is given in Eq. (2). 

Cin[a] = bs{(h,C[h] ), Cs(a) } (2) 

Fig. 2. The diagrammatic visualization of the designed method of the 
MCMBO algorithm. 

Fig. 3. Diagrammatic illustration of optimal weighted feature selection using 
MCMBO algorithm. 

Fig. 4. General architecture of the DNN model.  

Fig. 5. The basic architecture of the LSTM model.  
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Mean Curve: It is computed by taking the average value of inferior 
and superior envelopes. It is given in Eq. (3). 

Cmc[a] =
Csp[a] + Cin[a]

2
(3) 

Mode: The mode characteristic of the signal is estimated by taking 
the average value of maxima and minima. It is expressed using Eq. (4). 

md[Cs(a) ] =
Ag + Ah

2
(4) 

Empirical waveform: During the mean curve time of determination, 
it generates a new signal as extrema and alters the maxima and minima. 
It is derived in Eq. (5). 

ew[Cs(a) ] = {(g,C[g] ), (h,C[h] ) } (5) 

In addition to this, the empirical period and empirical frequency are 
evaluated using Eq. (6) and Eq. (7). 

epd = A/md(Cs(a) ) (6)  

efy = md(Cs(a) )A (7) 

Finally, concerning waveform representation and maxima and 
minima mode, the decomposed signal is attained that is denoted by Cdec

s . 
It is further used for extracting the relevant features in the following 
section. 

4. Modified CMBO-based optimal weighted feature selection for 
enhanced cough detection 

4.1. Feature extraction 

With the admittance of the resultant decomposed signal, then the 
process of feature extraction is outperformed. Here, the three distinct 
types of features are determined. Those techniques are illustrated as 
given below. 

MFCC [27]: The MFCC feature is commonly used to extract infor-
mation related to the signals. It is mainly focussing on Mel-coefficients 
and Mel-filters to obtain the resultant features. The objective behind 
MFCC is to process the extraction as a signal windowing method, 
“Discrete Fourier Transform (DFT)”. It computes the logarithmic value 
of mel-coefficient magnitudes and mel-frequency scales on the func-
tionality of “Discrete Cosine Transform (DCT)”. 

Thus, the features are identified by mel-spectrum trait of the signal, 
which is acquired using the Fourier transform and fed into the band pass 
filter series. Here, the decomposed signal Cdec

s is taken as input. It is 
formulated using Eq. (8). 

MFCC(ff ) = 2595log10

(

1 +
ff

700

)

(8) 

The term ff signifies the length of the decomposed signal frame. 
Therefore, the acquired MFCC feature is indicated by FEmfcc

f . 
Spectral Features [28]: It represents the activities on the cough 

audio signals. For spectral feature analysis, the decomposed signal Cdec
s 

acts as an input. Some of the strategies used for choosing the spectral 
features that are explained as follows. 

Power Spectrum: It is identified by computing the frequency magni-
tude value of decomposed signal. Every spectral peak is used here to 
retrieve the feature information regarding amplitude, frequency, and 
width. 

Cross-Spectral Density (CSD: The CSD is used to determine the 
graphical characteristics of the decomposed signal to fuse the power- 
based features. It is extracted on the basis of frequency domain irre-
spective of the time domain. With the help of power measure, features of 
CSD are acquired. 

Magnitude-Squared Coherence: It is retrieved by considering the two 
stationary features of decomposed signals correspondingly. It is repre-
sented in real number value. 

SQ2
i,j(C) =

⃒
⃒MGij(C)

⃒
⃒2

MGii(C)MGjj(C)
(9) 

Spectrogram: As the name itself, the spectrogram features are to be 
calculated by both frequency and time characteristics of the decomposed 
signal. Thus, the required features are obtained. 

Short-Time Fourier Transform: The STFT features are determined 
using the spectral features of the decomposed audio signal. It is evalu-
ated by accounting for the decomposed audio signal and window as Cdec

s 
and window as N, as shown in Eq. (10). 

stft =
∑T − 1

t=0
Cdec

t + fNte− j2πlt
T (10) 

Fig. 6. The general structure of the RBF model.  

Fig. 7. The structure of ODEC with parameter optimization of 
MCMBO algorithm. 
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Thus, the spectral related features are acquired and represented by 
FEspec

f . 
Statistical features [29]: The statistical based features are estimated 

on the basis of five distinct factors as “Mean, Median, Standard Devia-
tion, Variance, Minimum, and Maximum”. Here, the features are 
computed from the decomposed signal as Cdec

s . Thus, it describes as 

below. 
Mean: It is the process of finding “the sum of a collection of samples 

in decomposed signal is divided from the total samples of signal” is given 
in Eq. (11). 

Fig. 8. K-fold validation of the designed cough detection model concerning “(a) Accuracy, (b) F1-score, (c) MCC, (d) NPV, (e) Precision, (f) FDR, (g) FNR, (h) FPR, (i) 
Sensitivity, and (j) Specificity”. 
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Mn =
1
S
∑S

s=1
Cdec

s (11) 

Median: The median value is computed by the centre samples of the 
decomposed signal as Cdec

s . It represents both the upper and lower half of 
signal samples, which is derived by Eq. (12). 

Mdn =
S + 1

2
(12) 

Standard Deviation: SD uses to determine “how much the signal 
samples are different from the mean”. The value is acquired via Eq. (13). 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑A

a=1

∑B

b=1
|T(a, b) − Mn |2

√

AB
(13) 

Variance: It refers by the “measure of how samples of decomposed 
signal that is completely varying from the mean value. It shows the given 
sample is spread towards from the average value” is given in Eq. (14). 

Vnc =
∑S

s=1

(
Cdec

s − Mn
)2 (14) 

Minimum: The value that annotates the minimum number of samples 
that exist in decomposed signal. It also estimates by considering the less 
feature and minimal samples. 

Maximum: It defines the highest sample representation of the 
decomposed signal. Here, also, it considers the maximal signal samples 

along with more number of features. 
Hence, the statistical related features are obtained on the basis of 

statistical measurement of the decomposed signal and indicated by 
FEstat

f . Further, the feature concatenation process is used to combine all 

the acquired three features. It is noted by FCf =
{

FEmfcc
f , FEspec

f , FEstat
f

}

that is used for selecting the optimal features. 

4.2. Modified CMBO 

The proposed MCMBO algorithm is developed with the objective of 
the conventional CMBO [30] algorithm. Some advantages are achieving 
good generalization capability and convergence measure and also 
solving the local optima issue. Since, it is not utilized in the real-time 
data, multi-objective constraints, etc. To overcome with all chal-
lenging problems, a new MCMBO algorithm is developed. 

As the name implies, this optimization algorithm is developed by cats 
and mouse. It mimics the chasing behaviour of cat to attack the mouse 
that escapes from the searching region. Here, the search agents are 
categorized into two elements as cats and mice. The optimization pro-
cess is accomplished using two different ways. In a first way, the cat 
movements are explained, while at the second way, the mice make a 
move to escape and reach the haven place. The mathematical expression 
of the new MCMBO algorithm is explored as given here. 

Initialization: Initiate the population that is taken from the matrix 
format. It is shown in Eq. (15). 

Fig. 8. (continued). 
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Y =

⎡

⎢
⎢
⎢
⎢
⎣

Y1
⋮
Yj
⋮
YZ

⎤

⎥
⎥
⎥
⎥
⎦

Z×n

=

⎡

⎢
⎢
⎢
⎢
⎣

y1,1 ⋯ y1,x ⋯ y1,n
⋮ ⋱ ⋮ . . . ⋮

yj,1 ⋯ yj,x ⋯ yj,n
⋮ . . . ⋮ ⋱ ⋮

yZ,1 ⋯ yZ,x ⋯ yZ,n

⎤

⎥
⎥
⎥
⎥
⎦

Z×n

(15) 

Here, Yj represents the jth agents for searching, the number of pop-
ulation and problem variables is declared by Z and n, correspondingly. 
Then, the value of xth problem variable, along with jth search agents, is 
noted by yj,x. With respect to the total population, the fitness value is 
estimated and given in matrix format as Eq. (16). 

Fig. 9. K-fold analysis of developed cough detection model concerning“(a) Accuracy, (b) F1-score, (c) MCC, (d) NPV, (e) Precision, (f) FDR, (g) FNR, (h) FPR, (i) 
Sensitivity, and (j) Specificity”. 
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Ft =

⎡

⎢
⎢
⎢
⎢
⎣

Ft1
⋮

Ftj
⋮

FtZ

⎤

⎥
⎥
⎥
⎥
⎦

Z×1

(16) 

The term Ftj signifies the fitness function of jth the search population. 
Sorting the population: In this phase, it is performed by the fitness 

objective function of the search agents is sorted. The sorting is happened 
from the best population of lower fitness value to the worst population of 
higher fitness value. The sorting operation is expressed via Eq. (17) and 
Eq. (18). 

YA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

YA
1

⋮
YA

j

⋮
YA

Z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Z×n

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ya
1,1 ⋯ ya

1,x ⋯ ya
1,n

⋮ ⋱ ⋮ . . . ⋮
ya

j,1 ⋯ ya
j,x ⋯ ya

j,n

⋮ . . . ⋮ ⋱ ⋮
ya

Z,1 ⋯ ya
Z,x ⋯ ya

Z,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Z×n

(17)  

FtA =

⎡

⎢
⎢
⎣

FtA
1 mn(Ft)

⋮ ⋮
FtA

Z mx(Ft)

⎤

⎥
⎥
⎦

Z×1

(18) 

In the aforementioned two equations, the sorted population based on 
the matrix is defined as YA. Similarly, the jth member of sorted search 
agents is defined using YA

j . Further, the term FtA annotates the sorted 
fitness function. 

Population matrix of cats and mice: The initial population matrix 
comprised of cats and mice. Here, the members are differentiated with 
the better and lower values of the objective population. Therefore, the 
members of lower values contain a cat population, whereas the member 
with higher function entails mice population. Thus, the population of 
mice is given in Eq. (19), and the cat population matrix is shown in Eq. 
(20). 

Fig. 9. (continued). 
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Fig. 10. K-fold validation of the cough detection model concerning (a) Accuracy, (b) F1-score, (c) MCC, (d) NPV, (e) Precision, (f) FDR, (g) FNR, (h) FPR, (i) 
Sensitivity, and (j) Specificity”. 
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I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I1 = YA
1

⋮
Ij = YA

j

⋮
IZi = YA

Zi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Zi×n

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ya
1,1 ⋯ ya

1,x ⋯ ya
1,n

⋮ ⋱ ⋮ . . . ⋮
ya

j,1 ⋯ ya
j,x ⋯ ya

j,n

⋮ . . . ⋮ ⋱ ⋮
ya

Zi ,1 ⋯ ya
Zi ,x ⋯ ya

Zi ,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Zi×n

(19)  

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T1 = YA
Zi+1

⋮
Tk = YA

Zi+k

⋮
TZt = YA

Zi+Zt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Zt×n

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ya
Zi+1,1 ⋯ ya

Zi+1,x ⋯ ya
Zi+1,n

⋮ ⋱ ⋮ . . . ⋮
ya

Zi+k,1 ⋯ ya
Zi+k,x ⋯ ya

Zi+k,n

⋮ . . . ⋮ ⋱ ⋮
ya

Zi+Zt ,1 ⋯ ya
Zi+Zt ,x ⋯ ya

Zi+Zt ,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Zt×n

(20) 

In both equations, the population matrix for mice and cat is denoted 
by I and T, respectively. The number of cats and mice is represented by 
Zt and Zi, correspondingly. 

Updating the cat’s position: In this first phase, the cats usually 
changed their position to chase the mouse. The updating process for cats 
is modelled in Eq. (21). 

Tnw
k : tnw

k,a = tk,a + rd ×
(
il,a − N × tk,a

)
,

where, k = 1 : Zt, a = 1 : n, l = 1 : Zi
(21) 

Here, the random value lies where the ranges between [0, 1] is 
denoted by rd, il,a refers the ath dimension with lth mouse agents. As the 
utilization of random value, the conventional CMBO is not satisfying the 
optimal values. It also leads to cause the overall performance degrada-
tion in terms of detection. It also provides the fluctuation in results to 
optimize the required parameters. To overcome this issue, the new 
MCMBO algorithm is developed by deriving a new formulation. Hence, 
in Eq. (21), the term N is estimated with novel expression in the MCMBO 
algorithm is given in Eq. (22). 

N = round

[

Y⋅
(

mn(Ft) + mx(Ft)
2

)2
]

(22) 

The total population as Y, maximum and minimum fitness value is 
declared by mn(Ft) and mx(Ft), respectively. Thus, the new position is 
obtained using the below equation as Eq. (23). 

Fig. 10. (continued). 
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Tk =

{
Tnw

k , Ftt,nw
k < Ftt

k,

Tk, otherwise
(23) 

The new position for cat search agent is referred by Tnw
k . Moreover, 

the new fitness value is estimated based on the new position of cat, it is 
expressed as Ftt,nw

k . 
Updating the mice position: In the second phase, the mice are 

planning to escape from the cats that enter into a haven. Assume each 
mouse takes the haven for hiding purpose as in a random manner. Thus, 
in the search space, the haven positions are arbitrarily selected, and it is 
given in Eq. (24). 

Vb : vb,a = yc,a, where, b = 1 : Zi, a = 1 : n, c = 1 : Y (24) 

Then, the new position is acquired for mice that it derived using Eq. 
(25) and Eq. (26). 

Inw
j : inw

j,a = ij,a + rd ×
(
vb,a − N × ij,a

)
× sign

(
Fti

j − FtV
j

)
(25)  

Ij =

{
Inw

j , Fti,nw
j < Fti

j,

Ij, otherwise
(26) 

Term, Inw
j defines the new location for the mouse. Also, the new 

fitness function is computed for mice denoted by Fti,nw
j . The pseudo-code 

of the MCMBO algorithm is summarized as below.  
Algorithm 1: Suggested MCMBO algorithm 

Initiate population and maximum iteration 
Determine the fitness value for all search agents 
Evaluate the term N with new formulation is shown in Eq. (22) 
For every iteration  

Sorting all the population by Eq. (17) and Eq. (18)  
Initialize mice population using Eq. (19) and cat population by Eq. (20)  
For every cat agent   

Position is upgraded with Eq. (21), Eq. (22), and Eq. (23)  
End for  
For every mice agents   

Haven position is revised in Eq. (24)   
New solution is created for mice using Eq. (25) and Eq. (26)  

End for  
Acquires the finest solution 

End for 
Return the best solution  

Simultaneously, the flow diagram of the proposed MCMBO is illustrated 
in Fig. 2. 

4.3. Optimal weighted feature selection 

The fused feature FCf is given as input to get the optimal weighted 
features. Owing to the concatenated feature, the dimension problem 

Fig. 11. The K-fold using developed cough detection model for dataset 2 regarding “(a) Accuracy, (b) F1-score, (c) MCC, (d) NPV, (e) Precision, (f) FDR, (g) FNR, (h) 
FPR, (i) Sensitivity, and (j) Specificity”. 
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occurs that degrades the detection performance. In order to avoid the 
dimensional curse and inefficient performance, the MCMBO algorithm is 
utilized to select the optimal features denoted by Fopt

r . It aims to choose 
the optimal weighted features to improve the performance of the 
designed method. Here, the weight factor is determined optimally by 
influencing the MCMBO algorithm. It is mathematically modelled using 
Eq. (27). 

FWt
s = Wt*Fopt

r +(1 − Wt)*Fopt
r (27) 

Term,Wt defines the weight factor that is optimally evaluated by the 
MCMBO algorithm. The range of weight is varied from 0.01 to 0.99. This 
resultant optimal weighted feature is fed into the deep ensemble 
learning model. Thus, the schematic representation of optimal weighted 
feature selection by the novel MCMBO algorithm is shown in Fig. 3. 

Fig. 11. (continued). 
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5. Novel model for COVID cough detection using optimized deep 
Ensemble classifier 

5.1. DNN model 

DNN [31] assists to classify the features into positive or negative 
indication for COVID-19 disorder. Rather than other models [42], it 
constitutes multiple hidden neurons connected between the “input and 
output layer”. In the input layer, it contains many nodes to get the input 
and passes to the hidden layer. Meanwhile, the binary decision is ob-
tained from the output layer. Here, the “softmax activation function” 
whereas the hidden nodes employ the “sigmoid function”. Other than 
the presence of layer, some of the notable components are present in the 
network to do the classification task. Such nodes are bias, weight, and 
function. Finally, the DNN model exhibits the effectively classified result 
as either presence or absence of COVID-19. Fig. 4 shows the general 
architecture of the DNN model. 

5.2. LSTM model 

Nowadays, LSTM [20] has become the trendsetting techniques to 
perform the detection using cough audio. Here, FWt

s it is given as input to 
LSTM, where the features are classified as either COVID-19 or non– 

COVID-19. LSTM is defined as an extended version of the Recurrent 
Neural Network (RNN) model that processes in long-term dependency 
nature. The beneficial traits of this model are resolving the gradient 
vanishing issues and improving the classification accuracy. Unlike other 
deep classifiers, the LSTM constitutes various gates such as “input as IG, 
forget as FG , and output as OG”. 

The input gate is used to consider the required features from the 
preceding layer. The forget gate as the name implies, it forgets or ignores 
such irrelevant features. Finally, the output gate takes responsibility for 
providing the classified result. Hence, the derivation for the LSTM model 
is given in the below equations. 

IG = σ
(
WIG⋅

[
Hsx− 1,FWt

s

]
+ BsIG

)
(28)  

OG = σ
(
WOG⋅

[
Hsx− 1,FWt

s

]
+ BsOG

)
(29)  

FG = σ
(
WFG⋅

[
Hsx− 1,FWt

s

]
+ BsFG

)
(30)  

CT ′

x = tanh
(
WCS⋅

[
Hsx− 1,FWt

s

]
+ BsCG

)
(31)  

CTx = FGx⋅CTx− 1 + IGx⋅CT ′

x (32)  

Hsx = OGx*tanh(CTx) (33) 

Fig. 12. Comparative analysis of the developed cough detection model for dataset 1 concerning “(a) Accuracy, (b) F1-score, (c) MCC, (d) NPV, (e) Precision, (f) FDR, 
(g) FNR, (h) FPR, (i) Sensitivity, and (j) Specificity”. 
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In the above all equations, the term FWt
s defines the input vector CTx 

and denotes the cell state of LSTM, the hidden state, and the bias term is 
declared by Hsx− 1 and Bs, accordingly. Finally, the activation functions 
are marked by σ and tanh, respectively. The structural diagram of the 
LSTM model is depicted in Fig. 5. 

5.3. RBF model 

RBF [32] is mostly used for the signal-based classification model. As 
the nature of high-speed learning process, it enhances the COVID-19 
detection performance. It is processed as non-linear based kernel func-
tion to classify the features. It consists of three major layers as input, 
hidden, and output layer as well. Here, the weighted feature FWt

s acts as a 
model input. The input layer fetches the weighted feature and forwards 

Fig. 12. (continued). 
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Fig. 13. Comparative analysis of designed cough detection model in terms of “(a) Accuracy, (b) F1-score, (c) MCC, (d) NPV, (e) Precision, (f) FDR, (g) FNR, (h) FPR, 
(i) Sensitivity, and (j) Specificity”. 
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to the hidden layer. The activation function and weight factor are used 
to process the features. Finally, the output layer exploits the outcome by 
performing the linear relationship of all hidden units. 

Let us consider FWt
s the given input and wg refers the weight vector 

and basis term. It is derived using Eq. (34). 

RBF =
∑Z

z=1
wgzφz

(
FWt

z

)
(34) 

Here φz = Gn(‖x − μz‖ ), which indicates the Gaussian function to do 
the cough detection task. The basic structure of the RBF model is 
depicted in Fig. 6. 

5.4. Optimized deep Ensemble classifier 

The three classifier models as, DNN, LSTM, and RBF, play a vital role 
in the cough detection framework. Though, it provides certain advan-
tages for improving performance. However, it still subsists with certain 
shortcomings. Due to the presence of enormous hidden neurons of DNN 
and LSTM, it easily becomes vulnerable to the overfitting problem. On 
the other hand, the LSTM and RBF is processed on the preceding layer 
function, thus it requires more epoch counts. This count value causes an 
impact on computational complexity. To overcoming these issues, these 
parameters like hidden neuron counts and epochs are optimally chosen 
with the objective of novel MCMBO algorithm. The objective function of 
ODEC is expressed by Eq. (35). 

OF = argmax
{Fopt

r ,Wt,EpLSTM ,HnLSTM ,EpRBF ,HnDNN}

[ARY] (35) 

The term Fopt
r refers to the optimal selected features that lie between 1 

and 10. The optimized weight as Wt lies in the range of [0.01, 0.99], and 
the epochs in LSTM and RBF are declared by EpLSTM and EpRBF, which 
ranges from 50 to 100. Finally, the hidden neuron in DNN and LSTM is 
noted by HnDNN

, and HnLSTM that contains the range of [5, 255]. In 
addition to this, ARY specifies the accuracy, it is the state or quality to 
represent the appropriate value is given in Eq. (36). 

ARY =
TrP + TrN

TrP + TrN + FaP + FaN
(36) 

In Eq. (36), the true as well as false positive value is mentioned by 
TrP and FaP, and also, a true and false negative value is defined by TrN 
and FaN. Once the parameter is optimized, the three classifier models 
are performed and provide the results. Further, the ODEC model com-
putes the average value with three outcomes to attain the final detection 
results. The process of ODEC using the MCMBO algorithm is demon-
strated in Fig. 7. 

6. Results 

6.1. Simulation settings 

The improved cough detection framework was implemented using 

Fig. 13. (continued). 
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Python, and its simulated value was measured. Here, the number of 
population is considered as 10, maximum iteration counts as 25, and 
chromosome length as 15. Heterogeneous metrics were considered as 
Negative Predictive Value (NPV), Sensitivity, Specificity, Precision, 
Accuracy, False Negative Rate (FNR), F1Score and Mathews Correlation 
Coefficient (MCC), False Positive Rate (FPR), and False Discovery Rate 

(FDR). The analysis of the proposed model was compared with (Deer 
Hunting Optimization Algorithm) DHOA-ODEC [33], (Chimp Optimi-
zation Algorithm) ChOA-ODEC [34], (Sea Lion Optimization) SLnO- 
ODEC [35], and CMBO-ODEC [30]. On the second hand, different 
classifiers like CNN [18], DNN [31], LSTM [20], RBF [32], and 
Ensemble [36] were taken. 

Fig. 14. Comparative analysis of the designed cough detection model for dataset 2 regarding “(a) Accuracy, (b) F1-score, (c) MCC, (d) NPV, (e) Precision, (f) FDR, (g) 
FNR, (h) FPR, (i) Sensitivity, and (j) Specificity”. 
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6.2. Evaluating parameters 

Various parameters are considered for proving the effectiveness of 
the system which is explained as below [37]. 

Accuracy: It is given in Eq. (36). 
Precision: It estimates the very close values of the cough audio signal. 

Pn =
TrP

TrP + FaP
(37) 

FPR and FNR: “The false positive rate results are not estimated 
accurately in the presence of audio signals. The false negative is used to 
determine the incorrect samples of cough signal when the signal is 
present”. 

FPR =
FaP

FaP + TrN
(38)  

FNR =
FaN

FaN + TrP
(39) 

Sensitivity and Specificity: “The actual positive test is termed as 
sensitivity, and also the probability of negative test is taken as 
specificity”. 

Sensitivity =
TrP

TrP + FaN
(40)  

Specificity =
TrN

TrN + FaP
(41) 

F1-Score: “It is the mean value of recall and precision”. 

F1Score = 2*
Pn*Re

Pn + Re
(42) 

FDR: “It is the ratio among the false positive values by the total of 
true and false positive values”. 

FDR =
FaP

TrP + FaP
(43) 

NPV: “The ratio of true negative by the total value of true and false 
negative”. 

NPV =
TrN

TrN + FaN
(44) 

MCC: It is evaluated by “difference among the classified as well as the 
actual value”. 

MCC =
TrP × TrN − FaP × FaN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TrP + FaP)(TrP + FaN)(TrN + FaP)(TrN + FaN)

√ (46)  

6.3. K-fold Analysis of the recommended cough detection model for 
dataset 1 

Figs. 8 and 9 depict the k-fold validation of the cough detection 

Fig. 14. (continued). 
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model over different optimization algorithms and classifiers while using 
dataset 1. The analysis of the F1-score measure is given in Fig. 8 (b) with 
respect to different k-folds. When the k-fold is 3, the proposed MCMBO- 
ODEC achieves better performance rather than a lesser value of 6% of 
DHOA-ODEC, 4.3% of ChOA-ODEC, 2.08% of SLnO-ODEC and 1.04% of 
CMBO-ODEC, correspondingly. Hence, the higher value tends to achieve 

the higher efficiency of the detection model. 

6.4. K-fold Evaluation of the recommended detection model for dataset 2 

The k-fold results of the developed model are depicted in Fig. 10 over 
various algorithms and Fig. 11 with existing classifiers for dataset 2. 

Fig. 15. Comparative analysis of offered cough detection model compared with traditional deep learning classifiers for dataset 2 concerning “(a) Accuracy, (b) F1- 
score, (c) MCC, (d) NPV, (e) Precision, (f) FDR, (g) FNR, (h) FPR, (i) Sensitivity, and (j) Specificity”. 
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Fig. 15. (continued). 

Table 2 
Analysis of optimal weighted feature selection over tradition extraction techniques for two datasets.  

Metrics MFCC [27] Spectral [28] Statistical [29] Fused Features [27 28 29] Optimal Weighted Features 

Dataset 1 
“Accuracy”  90.99071  90.99893  91.87007  93.95957  97.9292 
“Sensitivity”  91.0318  91.07495  91.87007  93.94107  97.94694 
“Specificity”  90.97017  90.96092  91.87007  93.96881  97.9066 
“Precision”  83.44539  83.4378  84.96266  88.62077  98.35078 
“FPR”  9.02983  9.03907  8.12993  6.03118  2.093398 
“FNR”  8.968195  8.925049  8.129931  6.058925  2.053064 
“NPV”  90.97017  90.96092  91.87007  93.96881  97.9066 
“FDR”  16.55461  16.5622  15.03734  11.37923  1.649223 
“F1-Score”  87.07367  87.08926  88.28146  91.2034  98.14844 
“MCC”  0.803584  0.803819  0.82219  0.866953  0.958006 
Dataset 2 
“Accuracy”  91.26506  90.66265  91.86747  93.9759  97.93761 
“Sensitivity”  91.56627  90.36145  92.16867  93.9759  97.92566 
“Specificity”  90.96386  90.96386  91.56627  93.9759  97.94528 
“Precision”  91.01796  90.90909  91.61677  93.9759  96.83348 
“FPR”  9.03614  9.03614  8.43373  6.024096  2.054719 
“FNR”  8.433735  9.638554  7.831325  6.024096  2.074343 
“NPV”  90.96386  90.96386  91.56627  93.9759  97.94528 
“FDR”  8.982036  9.090909  8.383234  6.024096  3.166521 
“F1-Score”  91.29129  90.63444  91.89189  93.9759  97.37651 
“MCC”  0.825316  0.813268  0.837365  0.879518  0.956817  
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Fig. 11 (c) visualizes the MCC values is enhanced by varying the k-fold 
numbers. At 2nd k-fold, the value is acquired as 21%, 26%, 22%, 11%, 
and 8% for CNN, DNN, LSTM, RBF, and Ensemble, which is lesser than 
the novel MCMBO-ODEC method, accordingly. Thus, the findings reveal 
that it obtains the desired outcome for diagnosing the disease. 

6.5. Comparative evaluation for dataset 1 

Fig. 12 elucidates the performance analysis of the suggested model is 
validated with different algorithms. Similarly, Fig. 13 demonstrates the 
performance analysis over various classifier networks for dataset 1. In 
Fig. 12 (a), it explains the accuracy of the model. The accuracy of the 
proposed MCMBO-ODEC acquires 8.7% higher than DHOA-ODEC, 
10.4% more than ChOA-ODEC, 6.4% more than SLnO-ODEC, and 
5.6% higher than CMBO-ODEC. Therefore, the more accurate value 
helps clinicians to diagnose the disease appropriately. 

Table 3 
Tabulation results of proposed cough detection model over former algorithms for two various datasets.  

Metrics DHOA-ODEC [33] ChOA-ODEC [34] SLnO-ODEC [35] CMBO-ODEC [30] MCMBO-ODEC 

Dataset 1 
“Accuracy”  91.6831  91.61119  93.86095  93.3432  97.9292 
“Sensitivity”  91.67899  91.54956  93.87944  93.36169  97.94694 
“Specificity”  91.68516  91.64201  93.8517  93.33395  97.9066 
“Precision”  84.64603  84.5602  88.41867  87.50433  98.35078 
“FPR”  8.31484  8.35798  6.14829  6.6660  2.093398 
“FNR”  8.321006  8.450444  6.120562  6.638314  2.053064 
“NPV”  91.68516  91.64201  93.8517  93.33395  97.9066 
“FDR”  15.35397  15.4398  11.58133  12.49567  1.649223 
“F1-Score”  88.02225  87.91619  91.06726  90.33816  98.14844 
“MCC”  0.818204  0.816581  0.864872  0.853728  0.958006 
Dataset 2 
“Specificity”  92.16867  91.56627  94.57831  93.37349  97.94528 
“Accuracy”  91.86747  91.26506  94.27711  93.37349  97.93761 
“Sensitivity”  91.56627  90.96386  93.9759  93.37349  97.92566 
“Precision”  92.12121  91.51515  94.54545  93.37349  96.83348 
“FPR”  7.83132  8.43373  5.42168  6.626506  2.054719 
“FNR”  8.433735  9.036145  6.024096  6.626506  2.074343 
“NPV”  92.16867  91.56627  94.57831  93.37349  97.94528 
“FDR”  7.878788  8.484848  5.454545  6.626506  3.166521 
“F1-Score”  91.8429  91.23867  94.25982  93.37349  97.37651 
“MCC”  0.837365  0.825316  0.885558  0.86747  0.956817  

Table 4 
Tabulation results of proposed cough detection model over former classifiers for two various datasets.  

Metrics CNN [18] DNN [31] LSTM [20] RBF [32] Ensemble [36] MCMBO-ODEC 

Dataset 1 
“Accuracy”  88.97313  90.34763  91.05646  94.05408  94.21022  97.9292 
“Sensitivity”  89.07791  90.31681  91.05646  94.03353  94.24926  97.94694 
“Specificity”  88.92073  90.36304  91.05646  94.06435  94.19071  97.9066 
“Precision”  80.0797  82.4128  83.58132  88.79059  89.02538  98.35078 
“FPR”  11.07927  9.636958  8.94354  5.935651  5.809295  2.093398 
“FNR”  10.92209  9.683185  8.94354  5.966469  5.75074  2.053064 
“NPV”  88.92073  90.36304  91.05646  94.06435  94.19071  97.9066 
“FDR”  19.92021  17.58718  16.41867  11.20941  10.97462  1.649223 
“F1-Score”  84.33953  86.18398  87.15891  91.33689  91.56287  98.14844 
“MCC”  0.761236  0.789858  0.804905  0.868991  0.872434  0.958006 
Dataset 2 
“Accuracy”  88.25301  91.26506  91.26506  93.9759  94.27711  97.93761 
“Sensitivity”  88.55422  92.16867  90.36145  93.9759  93.9759  97.92566 
“Specificity”  87.95181  90.36145  92.16867  93.9759  94.57831  97.94528 
“Precision”  88.0239  90.53254  92.0245  93.9759  94.54545  96.83348 
“FPR”  12.04819  9.638554  7.831325  6.024096  5.421687  2.054719 
“FNR”  11.44578  7.831325  9.638554  6.024096  6.024096  2.074343 
“NPV”  87.95181  90.36145  92.16867  93.9759  94.57831  97.94528 
“FDR”  11.97605  9.467456  7.97546  6.024096  5.454545  3.166521 
“F1-Score”  88.28829  91.34328  91.18541  93.9759  94.25982  97.37651 
“MCC”  0.765074  0.825436  0.825436  0.879518  0.885558  0.956817  

Table 5 
Computational complexity of the developed cough detection model.  

Proposed Computational complexity 

MCMBO-ODEC O(Iter*((Nc + Nc*chlen)) + (Nm + (Nm*chlen))))

Table 6 
Computational analysis of the suggested cough detection model.  

Methods MCDM [8] GMM-UBM [38] HMM [39] MCMBO-ODEC 

Dataset 1 
Time (sec)  55.5484  55.3257  58.4865  50.5337 
Dataset 2 
Time (sec)  59.5367  58.6844  61.6432  53.0563  
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6.6. Comparative analysis of dataset 2 

The performance analysis of the novel detection model is compared 
over conventional algorithms and classifiers, as shown in Figs. 14 and 15 
for dataset 2. Fig. 15 (e) provides the precision measure of the designed 
method. At the learning percentage of 35, the better performance is 
achieved for the suggested MCMBO-ODEC that is compared with 14% 
less value of CNN, 13.4% less value of DNN, 13% less value of LSTM, 
10.7% less value of RBF and 7.52% less value of Ensemble, accordingly. 
Due to more precision value, it improves the efficiency level for 
detecting the disease. 

6.7. Analysis of optimal weight feature selection with classical extraction 
techniques 

Table 2 provides the result analysis for optimal weighted feature 
selection. By using the optimal features, the divergent metrics are esti-
mated to validate the efficiency. The FPR value of optimal features 
obtain as 1.43% of MFCC and spectral, 1.2% of statistical, and 0.62% of 
fused features, which is higher than the proposed optimal weighted 
features. Hence, less error aids to increase the detection accuracy. 
(SeeTable 3.). 

6.8. Overall evaluation of suggested detection model with different 
algorithms 

The overall validation of the novel method compared with conven-
tional algorithms for two datasets. This table analysis is based on the 
learning percentage. The sensitivity is yielded as 4.76% of DHOA-ODEC, 
4.9% of ChOA-ODEC, 2.5% of SLnO-ODEC, and 3.05% of CMBO-ODEC 
is lesser than the suggested MCMBO-ODEC while using dataset 1. Thus, 
the acquired results enhance the detection performance. 

6.9. Overall evaluation of the suggested detection model with distinct 
classifiers 

Table 4 demonstrates the overall evaluation of the novel method by 
validating for two datasets compared over diverse classifiers. When 
implementing dataset 2, the specificity is acquired as 8.74%, 6.24%, 
4.37%, 2.5%, and 1.87% for CNN, DNN, LSTM, RBF, and Ensemble, 
which is lesser than offered work. This proves the system efficiency of 
the detection performance. 

6.10. Analysis of computational complexity of the cough detection model 

The analysis of the computational complexity of the designed cough 
detection model is given in Table 5. The variable chlen defines the 
chromosome length, and also the term Iter defines the total number of 
iterations. The term Nc and Nm is represented the number of mice and a 
number of cats, respectively. 

6.11. Computation time of the designed cough detection model 

The detecting the cough has been analyzed based on the computa-
tional time is shown in Table 6. Thus, the developed MCMBO-ODEC 
method attains better performance when compared with other existing 
approaches. 

6.12. Comparative analysis of the given offered method for the cough 
detection model 

The validation of the given offered model for various existing 
methods is depicted in Table 7. The recommended MCMBO-ODEC 
method achieves 10.5%, 7.6%, and 5.2% enriched performance than 
MCDM, GMM-UBM, and HMM. Thus, the empirical outcome of the 
designed MCMBO-ODEC method attains enhanced performance. 

6.13. Configuration of the developed method for cough detection model 

The configuration of the offered MCMBO-ODEC method for the 
cough detection model is shown in Table 8. Here, the DHOA and ChOA 
algorithm contains three configurations. Additionally, the SLOA algo-
rithm contains totally five configurations. The CMBO and the developed 
MCMBO algorithm have four configurations. Based on the result anal-
ysis, the developed MCMBO algorithm obtains an enriched performance 
than other heuristic algorithms. 

6.14. Discussion 

In this research work, standard evaluation measures like specificity, 
precision, sensitivity, FPR, accuracy, FNR, FDR, F1-score, MCC, and NPV 
were evaluated to improve efficiency and system performance. Thus, the 
experimental result analysis of the designed method has attained 96% 
regarding accuracy. Hence, the designed method can be applied in 
subsequent real-time applications like health monitoring and mobile 
application. In recent times, the mobile application can be utilized to 
detect cough and snoring sound based on the audio spectrograms. In a 
practical scenario, it helps to speed up the cough diagnosis process so; it 
can be easily detecting the disease at an early stage. Hence, it provides 

Table 7 
Comparative analysis of the given offered cough detection model.  

TERMS MCDM [8] GMM-UBM [38] HMM [39] MCMBO-ODEC 

Dataset 1 
Accuracy  93.69369  94.77477  95.67568  97.83784 
Sensitivity  93.51351  94.59459  95.67568  97.83784 
Specificity  93.78378  94.86486  95.67568  97.83784 
Precision  88.26531  90.20619  91.70984  95.7672 
FPR  6.216216  5.135135  4.324324  2.162162 
FNR  6.486486  5.405405  4.324324  2.162162 
NPV  93.78378  94.86486  95.67568  97.83784 
FDR  11.73469  9.793814  8.290155  4.232804 
F1-Score  90.81365  92.34828  93.65079  96.79144 
MCC  0.861018  0.88442  0.904209  0.951737 
Dataset 2 
Accuracy  93.6747  94.57831  95.18072  98.19277 
Sensitivity  93.9759  94.57831  95.18072  98.19277 
Specificity  93.37349  94.57831  95.18072  98.19277 
Precision  93.41317  94.57831  95.18072  98.19277 
FPR  6.626506  5.421687  4.819277  1.807229 
FNR  6.024096  5.421687  4.819277  1.807229 
NPV  93.37349  94.57831  95.18072  98.19277 
FDR  6.586826  5.421687  4.819277  1.807229 
F1-Score  93.69369  94.57831  95.18072  98.19277 
MCC  0.87351  0.891566  0.903614  0.963855  

Table 8 
Configuration of the recommended cough detection model.  

CONFIGURATIONS DHOA  
[33] 

ChOA  
[34] 

SLOA  
[35] 

CMBO  
[30] 

MCMBO 

Dataset 1 
Configuration 1  1.00327  1.00011  1.00202  1.00241  1.00482 
Configuration 2  1.00003  1.00086  1.00277  1.0045  1.0055 
Configuration 3  1.00008  1.00231  1.00543  1.00672  1.01524 
Configuration 4  –  –  1.00526  1.01733  1.03052 
Configuration 5  –  –  1.00270  –  – 
Dataset 2 
Configuration 1  1.00543  1.00171  1.00324  1.00435  1.00743 
Configuration 2  1.00015  1.00251  1.00547  1.00578  1.00854 
Configuration 3  1.00020  1.00287  1.00831  1.00853  1.03425 
Configuration 4  –  –  1.00743  1.02897  1.04045 
Configuration 5  –  –  1.00433  –  –  
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the precautions from the disease. Nevertheless, we will definitely try to 
put into practice the developed model for any one of the above 
mentioned real time applications. 

7. Conclusion 

This work has presented a new cough detection framework by using 
the optimized ensemble learning approach. To experiment the model, 
the input audio signals were gathered from the datasets. Further, the 
input signal was decomposed by using the EMCD, which was further fed 
into the feature extraction process. Here, the MFCC features, spectral 
and statistical features were used to determine the informative features 
and fused together. Consequently, the fused features were upgraded into 
optimal weighted feature selection, where the weight was optimized by 
using the MCMBO algorithm. Then, these weighted features were given 
into the novel ODEC model, where the three classifiers as, LSTM, DNN, 
and RBF, were utilized to determine the average value of the final 
classified outcome. The parameters were optimally tuned by the 
MCMBO algorithm to provide optimal results. The analysis was made 
with various metrics and compared over classical approaches. While 
using dataset 2, the accuracy of the proposed model has achieved at 
8.7% for CNN, 5.6% for DNN and LSTM, 2.8% for RBF, and 2.5% for 
Ensemble, which was inferior to the novel methodology. Thus, the 
empirical results have declared that it has improved the detection per-
formance regarding diverse parameters. 
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