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Abstract: Klebsiella pneumoniae is an important multi-
drug-resistant (MDR) pathogen that can cause a range
of infections in hospitalized patients. With the growing
use of antibiotics, MDR K. pneumoniae is more prevalent,
posing additional difficulties and obstacles in clinical therapy.
To provide a valuable reference to deeply understandK. pneu-
moniae, and also to provide the theoretical basis for clinical
prevention of such bacteria infections, the antibiotic resis-
tance and mechanism of K. pneumoniae are discussed in
this article. We conducted a literature review on antibiotic
resistance of K. pneumoniae. We ran a thorough literature
search of PubMed, Web of Science, and Scopus, among other
databases. We also thoroughly searched the literature listed
in the papers. We searched all antibiotic resistance mechan-
isms and genes of seven important antibiotics used to treat
K. pneumoniae infections. Antibiotics such as β-lactams,
aminoglycosides, and quinolones are used in the treat-
ment of K. pneumoniae infection. With both chromo-
somal and plasmid-encoded ARGs, this pathogen has
diverse resistance genes. Carbapenem resistance genes,
enlarged-spectrum β-lactamase genes, and AmpC genes
are the most often β-lactamase resistance genes. K. pneu-
moniae is a major contributor to antibiotic resistance
worldwide. Understanding K. pneumoniae antibiotic resis-
tance mechanisms and molecular characteristics will be

important for the design of targeted prevention and novel
control strategies against this pathogen.
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1 Introduction

The gram-negative bacterium Klebsiella pneumoniae is a
member of the family Enterobacteriaceae, closely related
to the well-known Salmonella enterica and Escherichia coli
pathogens [1]. K. pneumoniae can ferment lactose and has
capsular polysaccharides. K. pneumoniae is a common
hospital-acquired opportunistic pathogen, accounting for
about 30% of all gram-negative bacterial infections.

K. pneumoniae can be commensals in a range of
environments, including soil, water, a variety of plants,
insect species, birds, and animals. Typical K. pneumoniae
is widely distributed among human and animal mouth,
skin, respiratory tract, urogenital tract, and intestine
[2,3]. K. pneumoniae causes infections through gene or
plasmid horizontal transfer [4]. A large percentage of K.
pneumoniae infections occur in newborns, the elderly,
and those with compromised immune systems [2]. It
can infect the respiratory tract, the urinary tract, as well
as wounds or soft tissues. Even with appropriate anti-
biotic treatment, the mortality rate of hospital-acquired
pneumonia is still more than 50%. The incidence rate and
mortality of diseases caused by K. pneumoniae are very
high, especially for newborns, leukaemia patients, and
other immunodeficiency patients. With the growing use
of antibiotics, multidrug-resistant (MDR) K. pneumoniae has
becomemore common, posing greater difficulties and obsta-
cles in clinical treatment. The World Health Organization
recognizes extended-spectrum β-lactam (ESBL)-producing
and carbapenem-resistant K. pneumoniae (CRKP) as a cri-
tical public health threat [5]. Transmission of K. pneumoniae
is shown in Figure 1.

We deepened all antibiotic resistance mechanisms
and genes of seven important antibiotics used to treat
K. pneumoniae infections. We conducted a literature
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evaluation of antibiotic resistance in K. pneumoniae.
We ran a thorough literature search in PubMed, Web of
Science, and Scopus, among other databases. Keywords
such as antibiotics or antibiotic resistant or antimicrobial
resistant or drug resistant or drug-resistant were searched
in various databases, and literatures with keywords such as
K. pneumoniae or K. pneumoniaee were also included. It
also contains seven antibiotics, namely β-lactam, macro-
lide, aminoglycoside, lincomycin, chloramphenicol, pep-
tides, and other themes. We also thoroughly deepened
the literature listed in the papers.

2 Antibiotic resistance in
K. pneumoniae

Antibiotics such as aminoglycosides and cephalosporins
are commonly used to treat K. pneumoniae. The choice of
an antimicrobial agent is based on the patient’s health,
medical history, and disease severity [9,12]. For urinary
tract infections caused by MDR-resistant Klebsiella spe-
cies, a combination of amikacin and meropenem has

been suggested [6]. Klebsiella infections have caused
liver fistulas in patients with diabetes mellitus in Taiwan,
and third-generation carbapenems have been used to
treat them. For patients in clinical settings, antimicrobial
resistance (AMR) in MDR K. pneumoniae is a major public
health concern, restricting treatment options [7]. When com-
pared to individuals who received combination therapy,
those who received monotherapy had more treatment fail-
ures (49% vs 25%; p = 0.01) [8].

Combination therapy can delay the emergence of
resistance because the simultaneous use of multiple
mechanisms of action increases the pharmacodynamic
killing activity of antibiotics [9]. Combination therapy
with carbapenems, tetracyclines, polymyxins, and fos-
fomycin is suggested and frequently utilized due to the
increased degree of AMR in K. pneumoniae and the
rising incidence of CRKP. Repeated exposure to a large
range of antimicrobial compounds can trigger the emer-
gence of new MDR phenotypes. With the wide abuse of
β-lactam antibiotics and carbapenems in clinical prac-
tice, the detection rate of K. pneumoniae infection as an
opportunistic pathogen is gradually increasing in clin-
ical practice.

Figure 1: Transmission of K. pneumoniae.
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K. pneumoniae shows resistance against the main anti-
biotic classes: carbapenems, cephalosporins, aminoglycosides,
and fosfomycin, leading to the therapeutic failure of these
agents [10]. The development of antibiotic resistance in K.
pneumoniae has led to a decline in the effectiveness of tradi-
tional treatments against the pathogen. Resistance may occur
due to increased efflux, drug inactivation, or altered binding to
the target site. Many strains of K. pneumoniae produce ESBL or
form biofilms, further exacerbating resistance. The antibiotic
resistance of K. pneumoniae is mainly produced in the fol-
lowing five ways: (1) enzymatic antibiotic inactivation and
modification, (2) antibiotic target alteration, (3) porin loss and
mutation, (4) increased efflux pump expression of the anti-
biotic, and (5) biofilm formation [11,12]. The five mechanisms
conferring antibiotic resistance to K. pneumoniae are shown in
Figure 2 and Table 1.

3 Enzymatic antibiotic inactivation
and modification

Drug alteration is a major mechanism of resistance against
antibiotics in K. pneumoniae [13]. β-Lactamase is an impor-
tant resistance mechanism, which hydrolyses the β-loop
of β-lactam. β-Lactamases are divided into ultra-broad-

spectrum β-lactamases (ESBLs), cephalosporinases (AmpC),
and carbapenemases [14–17]. The expression of these
enzymes in K. pneumoniae renders it resistant to penicil-
lins, cephalosporins, and carbapenems. ESBLs include
SHV, TEM, OXA, CTX, and other types. AmpC is resistant
to cephalosporins, cephalomycin, and enzyme inhibitors
of the first to the third generation, which can be mediated
by chromosomes or plasmids. Up to now, there are more
than 40 genotypes of AmpC enzyme, which can spread
rapidly among strains by the plasmid. The production of
carbapenemases decreases the sensitivity of K. pneumo-
niae to carbapenems, and the emergence of CRKP makes
the treatment difficult. According to the Ambler classifica-
tion, carbapenemases can be classified into classes A, B,
and D [18].

4 Antibiotic targets alteration

Fluoroquinolone antibiotics target DNA topoisomerase
[19]. Aminoglycoside antibiotics target 16S rRNA. The
mechanism of resistance to polymyxin in K. pneumoniae
usually involves the modification of lipid A [20], and the
mechanism of resistance to fosfomycin involves the mod-
ification targeting MurA [21]. K. pneumoniae causes drug

Figure 2: Various mechanisms conferring antibiotic resistance to K. pneumoniae.
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resistance by mutating the target gene or methylating
some bases so that the corresponding antimicrobial agents
cannot bind to the target site.

5 Porin loss and mutation

K. pneumoniae develops resistance by reducing the entry
of antimicrobial agents into the bacteria by reducing the
outer membrane pore protein. Outer membrane proteins
(OMPs) or porins are trimeric transmembrane proteins that
are abundantly expressed on the outermembranes of Gram-
negative bacteria [22–24]. In K. pneumoniae, OmpK35 and
OmpK36 are the two major nonspecific porins associated
with AMR. LamB, OmpK26, PhoE, and KpnO porins also
contribute to intrinsic resistance [25,26].

6 Increased efflux pump
expression of the antibiotic

Efflux pumps are membrane proteins involved in substance
expulsion that reduce intracellular drug concentrations by
releasing antimicrobial cells outside the cell, thereby redu-
cing susceptibility to multiple antibiotics [27,28]. The active
efflux system AcrAB-TolC can exocytosis many kinds of
antibiotics, including β-lactam, macrolides, fluoroquino-
lones, and tetracycline, which is an important reason for
the MDR K. pneumoniae [29,30].

7 Biofilm formation

K. pneumoniae is prone to form biofilms, and structures
such as capsular and pili play an important role in the
formation of biofilms [31]. Biofilms have osmotic barrier

properties and are resistant to antimicrobial agents, and
one study showed that K. pneumoniae biofilms reduced
sensitivity to gentamicin, ampicillin, and ciprofloxacin
[32]. Colistin resistance has also been linked to biofilm
formation [33].

8 Resistance mechanisms and
genes

β-Lactam antibiotics are frequently used to treat K. pneu-
moniae infections. When patients are infected with K.
pneumoniae that is MDR or extended drug-resistant, they
have no choice but to use other antibiotics (aminoglyco-
sides, quinolones, polymyxins, tigecycline, etc.). However,
when these antibiotics are used in clinical settings, they
can lead to drug resistance. Antibiotic resistance-related
genes were carefully summarized, and their functions in K.
pneumoniae are systematically presented in Table 2.

9 β-Lactamase Resistance Genes

β-Lactamase produced by K. pneumoniae hydrolyses the
β-lactam ring in antibiotics, resulting in resistance to β-
lactam antibiotics. K. pneumoniae is naturally resistant to
numerous β-lactamase genes attributed to the prevalence
of the SHV β-lactamase in the genome sequence, and
ampicillin resistance is a defining trait of the organism.

10 ESBLs

ESBLs are plasmid-based antibiotic resistance pathways
identified in the accessory genome. In Germany [35], the
blaSHV-2 (ESBL) gene in K. pneumoniaewas found for the

Table 1: Resistant strategies in K. pneumoniae

Resistant strategies in K.
pneumoniae

Key findings References

Enzymatic antibiotic inactivation
and modification

β-Lactamase is an important resistance mechanism, which is divided into ESBLs,
AmpC, and carbapenemases

[13,18]

Antibiotic targets alteration K. pneumoniae causes drug resistance by mutating the target gene or methylating
some bases

[19–21]

Porin loss and mutation K. pneumoniae develops resistance by reducing the entry of antimicrobial agents
into the bacteria by reducing the outer membrane pore protein

[25,26]

Increased efflux pump expression of
the antibiotic

Efflux pumps reduce intracellular drug concentrations by releasing antimicrobial
cells outside the cell, thereby reducing susceptibility to multiple antibiotics

[29]

Biofilm formation Biofilms have osmotic barrier properties and are resistant to antimicrobial agents [31–33]
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first time. Soon after, blaTEM-3, a viral vector ESBL mutant
gene, was found in France [64]. The enlarged-spectrum
action of ESBL genes against β-lactams, including third-gen-
eration carbapenems, is inhibited by clavulanic acid [65].

K. pneumoniae that produces ESBL has become a pre-
valent pathogen in hospital infection outbreaks. CTX-M
gradually superseded TEM and SHV as the main genotype
of ESBLs owing to the accessibility of plasmids and trans-
posons generating blaCTX-M-type ESBLs [36]. Other ESBL
genotypes were also transmitted to K. pneumoniae by hor-
izontal gene transfer, including blaOXA type ESBLs [38] and
the uncommon genes bla GES, bla SFO [37], or bla PER, bla
TLA, bla VEB [40], and bla KLUC-5 [39]. K. pneumoniae that
produces ESBL is becoming more common over the world,
with endemic rates of up to 50% in some areas [39]. Carba-
penems have traditionally been the treatment of choice for
treating ESBL-producing bacterial infections.

11 Carbapenem resistance genes

Carbapenem use has increased significantly as a result of
the MDR phenotypic characteristics of ESBL-producing K.
pneumoniae strains. Carbapenem resistance has evolved,
possibly as a result of the selective pressure of carbapenems
treatment, and K. pneumoniae has emerged as the most pre-
valent carbapenem-resistant Enterobacteriaceae (CRE).

The carbapenem enzymes regulated by plasmids are
still the most concerned pathway of multidrug resistance.
KPC is a serine-based class β-lactamase that is the most
common and damaging carbapenemase in K. pneumoniae.
Clonal group 258 (CG258) is linked to KPCs [66,67]. ST258

(ST258) is found in Europe, America, and Asia, while ST11
is prevalent in Asia [68–72]. bla KPC genes are discovered
in a specific Tn4401 transposition form and are incorpo-
rated onto plasmids of several plasmid types in addition to
clonal dissemination [73], making it easier to spread the
gene to others [74]. Bla NDM, blaVIM, blaIMP, and bla OXA
are other carbapenemase genes found in K. pneumoniae
[41]. Ripabelli et al. evaluated resistance to 19 antibiotics
in Italy by disk diffusion and agar dilution method. The
highly pathogenic variant of NDM-1 was screened for the
first time in their study [75]. Such resistance genes can
cause a large number of carbapenemase-producing Enter-
obacteriaceae (CPE) to be resistant to many commonly
used clinical antibiotics, resulting in the difficult clinical
treatment of CPE and high mortality. KPCs are generally
resistant to conventional β-lactamase inhibitors, creating a
therapeutic issue [76]. These resistances are virtually
impossible to regulate due to the translocation of carba-
penemase-encoding genes from K. pneumoniae plasmids
onto the chromosome [41]. In the lack of the carbapene-
mase gene, K. pneumoniae can become carbapenem-resis-
tant, owing to the loss of porin, increased effluent pump,
and excessive production of β-lactamases such as ESBL
and AmpC. Clinically, CRKP infection is a tough problem
in the clinic [77].

12 Plasmid-mediated AmpC Genes

Plasmid-mediated AmpC-like cephalosporins evolved and
dispersed in these species due to K. pneumoniae’s excep-
tional versatility in adding β-lactamase genes onto

Table 2: Antibiotic resistance-related genes in K. pneumoniae

Characteristic Gene name Gene functions References

β-Lactam blaSHV, blaTEM, blaCTX ESBLs [34–36]
blaGES, blaSFO, blaPER, blaTLA, blaVEB, blaKLUC-5 Lateral gene transfer [37–40]
bla KPC Bla NDM, bla VIM, bla IMP, and bla OXA Carbapenemase [41,42]
blaCMY, blaDHA, blaFOX, blaMOX AmpC plasmids [43,44]

Aminoglycoside aac, ant, aph gene,16S rRNA methylase Plasmid-encoded [45–48]
AcrAB-TolC, kpnEF, KpnO Efflux pump systems [49]

Quinolone DNA gyrase, topoisomerase IV Quinolone-binding targets [50]
OmpK36, acrAB, kdeA, OqxAB, aa(6’)-Ib-cr PMQR [51–54]

Polymyxin phoPQ, pmrA, pmrD, and mgrB Regulative gene [55–57]
mcr-1 Via plasmid [58–60]

Tigecycline AcrAB-TolC, OqxAB Efflux pump systems [61]
RarA, RamA, RamR, and AcrR Regulators of efflux pumps [61]
rpsJ Encoding ribosome [62]
tetA Efflux pump systems [61]

Fosfomycin fos Via plasmid [63]

Characteristics of antibiotic resistance mechanisms  5



transportable plasmids that facilitate the dissemination
[43,44]. The bla AmpC gene sequences bla CMY, DHA,
FOX, and MOX are most frequent in K. pneumoniae. K.
pneumoniae had better β-lactam resistance owing to the
presence of bla AmpC coupled with gene encoding losses
or enhanced efflux, similar to blaACT-1. Plasmid genes can
be readily abundantly expressed on plasmids due to the
increase of many copies or promoter strength, resulting in
carbapenem resistance [44].

Multiple-lactamase genes, including AmpC, KPC, SHV,
and β-lactamase inhibitors, may be present in some K. pneu-
moniae strains. Multiple-resistant genes carried by the same
strain have synergistic effects. For instance, while NDM,
Vim, and IMP are not resistant to monocyclic antibiotics
like aztreonam, they may develop resistance to aztreonam
if ESBL or AmpC is present.

13 Aminoglycoside resistance
genes

Aminoglycosides were commonly used in antibacterial
chemotherapy from 1940 to 1980 until third-generation cepha-
losporins, carbapenems, and fluoroquinolones replaced them
[78]. K. pneumoniae acquired the primary antibiotic resistance
mechanisms during this time, including drug-modifying
enzymes with varied functions, such as adenylation, acet-
ylation, or phosphorylation as well as all transposon resis-
tance genes from the aac, aph, and ant gene families [45].

The use of aminoglycosides was limited, which slowed
down the emergence of novel resistance genes till the
armA gene family expressed 16S rRNA methylase [46]. In
K. pneumoniae, these genes are plasmid-encoded, and
while drug-modifying enzymes inhibit activity [48], 16S
rRNAmethylase is resistant to almost all aminoglycosides,
including plazomicin and newly discovered aminoglyco-
sides [47].

Genes on chromosomes also have a role in the K. pneu-
moniae resistance to aminoglycoside antibiotics, which
modify cell permeability through changes in the AcrAB-
TolC and KpnEF efflux pump systems, as well as the loss of
the putative porin KpnO. The AcrAB-TolC and KpnEF efflux
pump systems changed throughout time, resulting in variable
levels of resistance to different aminoglycoside antibiotics.
Tobramycin and gentamicin resistance was predominant in
the former, whereas tobramycin and vancomycin resistance
was predominant in the latter, with gentamicin and strepto-
mycin resistance being minor. This implies that various ami-
noglycosides correspond to various cell channels. Resistance

to tobramycin, streptomycin, and spectinomycin was linked
to the loss of the pore protein KpnO [49].

14 Quinolone resistance genes

Quinolone antibiotics function by inhibiting topoisome-
rases, which hinder DNA replication in bacteria. Mutations
in the target gene increased MDR efflux production, and
mutations to enzymes and proteins all contribute to K.
pneumoniae’s tolerance to fluoroquinolones [79]. Topoi-
somerase IV and DNA gyrase are quinolone-binding tar-
gets with chromosomal resistance mechanisms. ParC and
gyrA K. pneumoniaemutations were found earlier and also
more frequently [50]. Changes in cell permeability in K.
pneumoniae were linked to drug-resistant strains.

Among themost common are the deficiency of OmpK36
[51], overexpression of the gene acrAB [52], and nonaltera-
tion production of kdeA [53]. OqxAB is found in many bac-
teria and has been linked to plasmid-mediated quinolone
resistance (PMQR) [80]. K. pneumoniae quinolone resis-
tance has also been linked to efflux pump regulators [81].

The PMQR determinant, which is found in K. pneu-
moniae and other Enterobacteriaceae species, is another
type of quinolone resistance gene. These genes encode a
protein family that protects DNA gyrase and topoisome-
rase IV from quinolones. In K. pneumoniae [82], aa(6’)-Ib-
cr, another PMQR gene, is thought to be the only one
involved in quinolone modification. It can inactivate lim-
ited quinolones that contain the enzyme’s substrate, as
well as other antibiotics. It was recently discovered on
chromosomes as well. PMQR gene expression provides
mechanisms for low or moderate quinolone resistance,
but it also creates favourable conditions for chromosomal
genetic changes to emerge [83].

15 Polymyxin resistance gene

The recent appearance of CRE has necessitated a reintro-
duction of polymyxins as a last-line treatment [84]. Poly-
myxin resistance in K. pneumoniae is typically induced by
alterations in regulative genes, for instance, mgrB, which
regularizes the changes of bacterial lipid A, a target of
polymyxin antibiotics, lowering polymyxin interac-
tion [55–57].

In 2016, the mcr-1 gene conferred colistin resistance
via plasmid in an E. coli strain from China [85]. This study
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illustrates that easily transmissible genes potentially result
in pan-resistance. In China, mcr-1 is rarely discovered in K.
pneumoniae BSI isolates and is more commonly seen in E.
coli. The first mcr-1 case was discovered in America in
2016. A pan-resistant isolate of K. pneumoniae was discov-
ered in September 2016, although colistin resistance was
not mediated by mcr-1 in this isolate [58–60].

16 Tigecycline resistance genes

Tigecycline, as a new tetracycline antibiotic, has a broad-
spectrum activity against ESBL-producing strains [86]. It
has been accustomed to healing K. pneumoniae infection
since 2005 and the tigecycline resistance in K. pneumo-
niae was reported shortly after its first use. It is known
that the resistance gene of this antibiotic is located on the
chromosome, and the mechanism includes the modifica-
tion of 30S and 16S ribosomal targets of antibiotics and
the alteration of cell permeability [61]. The mechanism of
antibiotic resistance is mainly related to the Ade-ABC
efflux pump, Oqx-AB efflux pump, KpgABC efflux pump,
Tet (A) mutant, and ribosomal protein.

Active efflux pump widely exists in the genome of K.
pneumoniae. It can selectively or nonselectively pump the
drugs or substrates in the bacteria out of the body,
resulting in the decrease of antibacterial drug concentra-
tion in the body and drug resistance. The efflux pump
transport systems involved in the resistance of K. pneu-
moniae to tigecycline are the AcrAB-TolC efflux pump,
OqxAB efflux pump, KpgABC efflux pump, and Tet (A)
efflux pump variants. Among them, the AcrAB TolC efflux
pump, OqxAB efflux pump, and KpgABC efflux pump
belong to the resistance nodule cell division family, and
Tet (A) efflux pump variant belongs to the major facili-
tator super superfamily.

Ribosomal protein S10 is encoded by the rpsJ gene
and is a component of the ribosomal 30S subunit. It is
located near the main binding site of tetracycline and
tigecycline in the ribosomal 30S subunit. Villa et al.
[62] obtained three K. pneumoniae-resistant strains of
tigecycline. One strain indicated that the coding gene
rpsJ of S10 ribosomal protein adjacent to the target of
tigecycline in the ribosomal 30S subunit had a point
mutation. The reps mutation alone could confer tigecy-
cline resistance to Enterococcus faecalis and conducted an
adaptability test on six common clinical pathogens [87].
Therefore, the structural change of ribosomal protein S10
is also a potential new mechanism, which deserves atten-
tion in the follow-up research. Lupien et al. [88] show that

in addition to S10, ribosomal proteins S3 and S13 are also
located near the binding domain between tetracycline and
ribosomal subunit, and S3 has been proved to have the
function of maintaining the structural integrity of the tet-
racycline-binding site. Similarly, it is inferred that the
structural mutation of the S3 protein may also result in
tigecycline resistance. Studies have shown that without
the involvement of efflux pump, rpsJ gene mutation can
lead to specific resistance to tigecycline.

17 Fosfomycin resistance genes

Fosfomycin was discovered in 1969 and has a wide range
of bactericidal activities [89]. Although fosfomycin is an
old antibiotic, it has received renewed interest and is
increasingly being used to treat infections caused by
MDR bacteria [90]. However, with the increasing use of
fosfomycin, resistant strains are being reported [91,92].
Resistance mechanisms of fosfomycin have been reported,
including amino acid replacement or overexpression of the
fosfomycin target protein MurA, deficient or reduced
expression of two transporters (GlpT and UhpT), and the
presence of the fos gene encoding a fosfomycin-modified
enzyme that inactivates fosfomycin by activating glu-
tathione S-transferase activity [93]. Liu et al. reported
that the fosA3 gene is the main mechanism of the resis-
tance of CRKP to fosfomycin, which can be transmitted by
plasmid in hospitals. Fosfomycin target protein MurA and
glpT transporter mutations were found in fosA3-negative
CRKP with fosfomycin resistance [63].

18 Other mechanisms

Tolerance and persistence have long been recognized as
helping bacteria survive antibiotic exposure [94]. Pers-
ister cells (persistence phenotype)with an epigenetic fea-
ture that allows them to be resistant to antibiotics while
remaining latent and metabolically inactive [95].

Changes in the number of certain proteins, metabo-
lites, and signal transduction, such as toxic chemical
modules, adenosine triphosphate, and guanosine (penta)
tetraphosphate, have been associated with the creation of
persister formation. Despite contradicting changes in pro-
teins, metabolites, and signal transduction, persistent bac-
teria form as a result of sluggish growth alone, according
to Pontes and Groisman [96]. Persister cells have been
seen in bacterial populations before antibiotics were

Characteristics of antibiotic resistance mechanisms  7



introduced, sluggish growing or quiescent due to pheno-
typic switching [97,98]. After the antibiotics are removed,
the surviving persisters regenerate into a new heteroge-
neous population with tolerant and sensitive subpopula-
tions, much like the initial culture [99]. Increased antibiotic
concentrations and longer antibiotic treatment reduced K.
pneumoniae persistence [100]. In the fight against MDR,
understanding the molecular processes governing bacterial
tolerance and persistence phenotypes is critical, as it will
enable the identification of new targets for creating novel
anti-infective treatments.

19 Conclusions

In this study, the antibiotic resistance status, antibiotic
resistance mechanism, and resistance genes of K. pneumo-
niae were described. In the resistance mechanism, ESBLs,
carbapenemase, or AmpC targets alteration, porin loss and
mutation, efflux pump overexpression, and horizontal dis-
semination of mobile gene elements were also studied in
many fields. Up to now, the mechanism of antibiotic resis-
tance of K. pneumoniae has not been thoroughly studied in
many aspects, such as how biofilm formation regulates
antibiotic resistance. Addressing the escalating prevalence
of AMR, antibacterial drug therapy effect weakened, clin-
ical treatment of severe problems such as no cure, the new
drug-resistant bacteria drugs research and development
work is imminent.

Novel therapies like phage therapy, nanoparticles,
phytotherapy, photodynamic therapy, and antimicrobial
peptides are being used to overcome resistance in K.
pneumoniae infections [101–105]. The mechanisms of
antibiotic resistance of K. pneumoniae are complex and
diverse. We should provide insights into useful strategies
to combat this important pathogen. How to prevent and to
treat infection has become an urgent problem to be solved.
It is important to determine the main antibiotic resistance
genotypes for the rational use of antibiotics. Understanding
K. pneumoniae antibiotic resistance mechanisms and mole-
cular characteristics will be important for the design of
targeted prevention and novel control strategies against
this pathogen. At the same time, to effectively reduce
and control the generation and spread of MDR bacteria,
we should actively carry out antibiotic resistance moni-
toring and timely grasp the mechanism and characteristics
of antibiotic resistance.
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