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Deep learning has become an effective tool for classifying biological sex based on functional magnetic resonance imaging (fMRI).
However, research on what features within the brain are most relevant to this classification is still lacking. Model interpretability has
become a powerful way to understand “black box” deep-learning models, and select features within the input data that are most relevant
to the correct classification. However, very little work has been done employing these methods to understand the relationship between
the temporal dimension of functional imaging signals and the classification of biological sex. Consequently, less attention has been
paid to rectifying problems and limitations associated with feature explanation models, e.g. underspecification and instability. In this
work, we first provide a methodology to limit the impact of underspecification on the stability of the measured feature importance.
Then, using intrinsic connectivity networks from fMRI data, we provide a deep exploration of sex differences among functional brain
networks. We report numerous conclusions, including activity differences in the visual and cognitive domains and major connectivity
differences.
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Introduction
Deep learning is an effective tool for both classification of biolog-
ical sex and understanding the features relevant to such classi-
fication (Abrol et al. 2021, Arslan et al. 2018, Liu et al. December
2015, Long et al. 2021). However, it suffers from two critical flaws
from the standpoint of model interpretability: underspecification
and instability of the relevant features. Underspecified (D’Amour
et al. 2020) models can have many local minima, or possible
functions, which produce the same mapping between the input
and the output under different parameters. This is particularly
problematic for feature attribution methods such as saliency
(Simonyan et al. 2013), which are very sensitive to changes in
model architecture, even to initialization within a given architec-
ture. Although saliency methods can be informative about the
data, this sensitivity to small perturbations in the initial state
or architecture make the models unstable. This instability is
particularly pronounced for deep classification models applied to
small datasets. A secondary flaw is specific to sequential/recur-
rent models, such as long short-term memory models (LSTMs).
In this case, saliency methods become ineffective due to a phe-
nomenon known as vanishing saliency (Ismail et al. 2019), which
significantly reduces the magnitude of the salient gradients as
the model backpropagates through time, providing inaccurate
saliency maps.

In recent decades, functional magnetic resonance imaging
(fMRI) has significantly extended our understanding of the
human brain (Bandettini 2012). We have witnessed great strides

in analyzing fMRI data, particularly through independent
component analysis (ICA) to extract intrinsic connectivity
networks (ICNs) (Calhoun and Adali 2012). These ICNs and their
associated timecourses have become central to fMRI research,
including research into brain activation patterns and biological
sex. Although there is now a wealth of information about
sex differences among brain signals, there is still a long way
to go before we truly understand how brain signals relate to
biological sex (Spets and Slotnick 2021, Iraji et al. 2022). One of
the more promising avenues for fMRI research is the analysis
of complex brain disorders such as schizophrenia, Alzheimer’s,
and autism. As a great deal of research has found sex differences
relating to these disorders (Häfner 2003, Kirkovski et al. 2013,
Stites et al. 2021), it is imperative to better understand the
relationship between sex and fMRI signals as a whole. With a
deeper understanding of this relationship, researchers may better
grasp how best to treat these disorders based on sex. This can
include medications, dosage, and behavioral treatments.

This paper presents a methodology to mitigate instability in
feature importance assessments using state-of-the-art, nonlinear
models and feature attribution methods. We then apply this
methodology to elucidate the relationship between biological sex
and mesoscale brain dynamics. Specifically, using an LSTM model
coupled with a specific saliency method known as integrated gra-
dients (IG), we take a deep dive into understanding sex differences
among functional networks estimated from fMRI data. LSTMs are
important for this work because they can capture the dynamics
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of fMRI temporal signals. Lastly, we present evidence that deep
learning can be usefully employed as a “feature explainer” or a
tool that highlights aspects of the brain function most relevant to
sex differences.

With the power of novel deep learning methods, we take an
in-depth look at sex differences among fMRI ICN timecourses.
These timecourses represent interpretable functional networks,
making quantitative analysis of our results relatively easy. We
use a large sample size, from the UK Biobank (UKB) repository,
which aids in model stability. Our approach to investigating these
networks is a novel adaptation of simple feature explanation
techniques that fix several key problems, primarily the instability
of the feature maps and an LSTM-specific issue, a phenomenon
known as vanishing saliency. We then validate our methodology
with synthetic data in which the most relevant features are known
beforehand. While showing visual representations of our maps,
we also quantitatively compare our proposed methodology with
an existing methodology, the input-cell attention (Ismail et al.
2019). We performed these analyses to ground our work and
show quantitatively that our methods can discover data-relevant
signals. After this validation, we provide a broad set of post hoc
analyses, showing both the validity of our model and novel results,
further expanding biological sex analysis based on fMRI data.
Pointedly, after comparing with static functional network connec-
tivity, we find considerable sex-specific results within relation-
ships between the individual ICNs, and in particular, differences
within key functional domains, including the visual (VIS) and
default mode network (DMN).

Data and Methods
FMRI data and preprocessing
The data, a total of 11 754 resting-state fMRI scans, was sourced
from 22 sites within the United Kingdom between 2006 and
2018. Data processing and quality control were previously per-
formed in (Hassanzadeh et al. 2022), where over 11 000 subjects
were selected from the entire UKB dataset. After processing the
data, this study showed that pair-wise relationships between ICNs
(using Pearson correlation) could be highly predictive of individu-
als with a neural network. We use the same ICNs that this work
computed. However, we removed subjects with inconclusive sex,
meaning any subject where the documented genetic sex is not
consistent with the self-reported sex at the time of the study, or
subjects missing either field, which gives us the final 11 461 (5821
women and 5640 men) subjects. Of the 293 subjects removed from
the final set, 157 self-reported as female but had inconclusive
genetic sex, and 129 of the self-reported males had inconclu-
sive genetic sex. 3 subjects self-reported as male with a female
reported genetic sex, and 4 subjects self-reported as female with
a genetic test that resulted in male. Participants were between 45
and 80 years of age (Alfaro-Almagro et al. 2018, Baecker et al. 2021)
with an average age of 62.55. All participants were self-reported
as being healthy. The data acquisition protocol follows: 39ms echo
time, a 0.735 s repetition time (TR), 52◦ flip angle, and a multiband
factor of 8 using 3T Siemens machines. The T2 signal was both
linearly and nonlinearly warped to MNI152 space. Each volume
was resampled to 3mm3 for a final image size of 53 × 63 × 46
mm3, and 160 time steps using the statistical parametric mapping
(SPM12, http://www.fil.ion.ucl.ac.uk/spm/) MATLAB package.

After the preprocessing pipeline, the ICNs were extracted using
spatially constrained ICA with the GIFT package (Li and Adali
2010) via the Neuromark pipeline (Yuhui et al. 2020) for MATLAB.
ICA is a robust and evidence-based method to capture regions

of functional activity (Calhoun et al. 2001). Since our goal is
to analyze functional brain activity, we require clean and data-
driven representations of this activity. We also want to compare
the functional relationships measured with our methods with
other connectivity metrics. Logically, we need the network time-
courses so we can compare our analyses of the relationships
between networks with other robust connectivity estimations.
This pipeline provides a fully automated approach to compute ICA
(both spatial components and timecourses) and output labeled
and ordered components. Overall, 53 networks covered 7 domains:
Subcortical (SC), auditory (AUD), sensorimotor (SM), VIS, cognitive
control (CC), the DMN, and the cerebellum (CB).

Static Functional Network Connectivity
Static functional network connectivity (sFNC) is the functional
relationships or connections between ICNs. It contrasts with func-
tional connectivity (FC) in that it is a connectivity map for esti-
mated networks within the brain rather than voxels or neurons.
We estimate the sFNC as the pair-wise correlation (specifically
Pearson correlation) between each network timecourse.

Our Model
A key aspect of our model that mitigates vanishing saliency is
an additive attention mechanism (Bahdanau et al. 2014) which
creates a direct gradient flow path from the classification to the
input via the attention parameters (Lewis et al. 2021). A diagram
of our model can be seen in Fig. 1. A bi-directional LSTM (Schuster
and Paliwal 1997) was chosen because we do not consider stream-
ing data, the additional parameters aid training, and the extra
directional flow for gradients may also improve the quality of the
saliency maps.

The attention mechanism (Bahdanau et al. 2014) is a powerful
way to amalgamate temporal information and “attend” only to the
most important steps in the LSTM output by assigning a weight
to each step. To parameterize the attention mechanism, we pass
the LSTM output at each step through an attention network of
two feed-forward layers to create a single, per-step weight value.
The weight values from all time steps are jointly softmaxed and
used to adjust the LSTM output at the individual time steps. As the
model is bi-directional, we use the output from both the forward
and backward directions concatenated into a single vector as our
context for the attention mechanism. In other words, h_backwardT

is concatenated with h_forwardT and passed through the attention
mechanism to give us the respective attention weight for that time
step. Once the hidden outputs have been individually weighted by
the attention scalar, they are summed along the time dimension
and pushed through a linear transform for classification.

Gradient-based Feature Attribution
Gradient-based feature attribution methods, commonly known
as saliency, are model interpretability methods that leverage the
gradients of a trained model to better understand why the model
makes its predictions. It is defined as the gradients of the predic-

tion of the correct class w.r.t. the input, or Sc(x) =
∣
∣
∣ ∂Yc

∂x

∣
∣
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With this paradigm of using calculated gradients to interpret
and understand the input data, there are numerous methods
to compute the gradients as Sc(x) =

∣
∣
∣ ∂Yc

∂x

∣
∣
∣. For our purposes,

we choose a method called IG (Sundararajan et al. 2017). IG is
defined, for any model, F as IG(xi) = ∫

( dF(x′+α∗(x−x′))
dxi

dα), where xi

is feature i for a given input sample, x, and x′ is defined as a
baseline sample, which, for our purposes we use a zero-valued
“blank” sample. Associated with the baseline is an interpolation

http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 1. A diagram of our model. The data pass through an LSTM, from which the hidden states parameterize the attention model. The attention weights
scale the hidden states, which are summed over all states (i.e. step in the LSTM), and is finally fed through a classification layer.

constant, α. Essentially, for each feature, we interpolate between
the baseline and the given input sample with a constant interpo-
lation factor, α. For each interpolation step, we pass this modified
input through the model, F, and then compute the gradients of the
correct class with respect to input feature i. An example of these
maps can be seen in Fig. 4. Finally, we integrate over the entire set
of gradient maps from these interpolated steps. One thing to note
about our implementation of IGs is that we do not multiply our
gradient maps with the input element-wise, unlike the original
formulation. We do this to ensure no information from the input
is enforced upon the gradient maps, meaning the attribution
assignments from our maps are separate from the input itself. We
argue that, based on (Kindermans et al. 2019) and (Adebayo et al.
2018), the element-wise multiplication can negatively impact the
resulting maps. This element-wise multiplication can essentially

act as an edge detector. All of our feature attribution calculations
come from the Captum python library (Kokhlikyan et al. 2020).

Our Approach
Using 10-fold cross-validation, from the trained model of each
fold, we calculate the IG maps (aka saliency maps) for each
test sample. This accumulates to one map for each subject
when the subject was used as a test sample. This methodology
ensures that none of the maps were from training subjects,
which could bias the resulting maps. These saliency maps
highlight the features that the prediction likelihood of the
correct class is the most sensitive to. However, we observe that
the maps are rarely stable and vary widely with the initial
randomization. To correct for this, we train multiple models
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Fig. 2. Flowchart describing our pipeline for analyzing the ICA timecourses. For all other datasets, we use only the first 4 steps to calculate the finalized
maps. Step 1: we train 300 separate models (each with the same architecture) using different random initializations for each model on the same set of
ICA timecourses. Step 2: we calculate the saliency maps for each sample from all 300 models. Step 3: We calculate the average saliency map for each
sample over all 300 models. Step 4: We select the per-model set of maps with the lowest Euclidean distance to the average over all models, resulting in a
stable saliency map for each input sample. This distance is weighted by the loss of that subject/model pair, giving more importance (shorter distances)
to more accurate model/subject pairs.

(keeping the hyperparameter settings the same) with different
random initializations and calculate saliency maps from each
model (for all experiments, we train 300 total models). We
select the map closest to the average map from all models for
each input sample using Euclidean distance (the distances are
weighted by the loss for that subject/model pair to give more
importance to better performing models). Then, the selected maps
are normalized by the sum. A diagram of our methodological flow
is in Fig. 2.

Synthetic Data
We purposefully engineered the data so that the relevant infor-
mation within the data was quantifiable and interpretable. In this
work, we use two sets of synthetic data. These synthetic datasets
consist of interpretable, ground-truth input in which the location
of the relevant information was specified during its generation.
In the first dataset of 30,000 samples, each sample is generated
as random Gaussian noise with a sequence length of 200 and 30
channels, then randomly assigned a class label of either 0 or 1,
with a 50% chance for either label to create a balanced dataset.
For each sample, a window of 15 time steps is randomly chosen,
within which a portion of the input data is perturbed based on
the assigned label. If the label is 0, the first 15 channels in each
of the 15 time steps are perturbed, and if the label is 1. The last
15 channels are perturbed. Each target feature is perturbed by
adding randomly generated Gaussian noise, effectively changing
the distribution in these perturbed areas from (μ = 0, σ = 1) to
(μ = 0, σ = 2). This creates a pattern of “boxes” for the dataset,
an example of which can be seen in Fig. 3. In essence, only the
channels are predictive of the class label instead of temporal
patterns. This box dataset, a trivial example, is a way to show
the effectiveness of our methodology in a vacuum with very few
confounding variables.

A second synthetic experiment shows that the saliency
maps are still accurate when the relevant information is
based on dynamic patterns. As with the first experiment, each
sample begins as a Gaussian noise (μ=0, σ=1). However, vector
autoregression (VAR) is used to control the underlying dynamics
of each sample. VAR explains the evolution of a variable over
time with the generalized equation: xt = c + A1xt−1 + A2xt−2 +
... + Apx(y − p) + et. For all samples, the VAR is computed

using a positive semi-definite matrix, A. Then, 15 successive
steps are randomly chosen to be perturbed with new dynamic
information. Or, two more positive semi-definite matrices, B
and C, are created, and VAR is again used to compute 15 new
steps using Gaussian noise and either matrix B or C, depending
on the class label of the sample. These new steps, x′

t:t+15 are
added to the sample at a randomly selected interval (xt:(t+15)),
with an interpolation variable, α resulting in the equation:
αx′

t:(t+15) + (1 − α)xt:(t+15). Examples of these data are seen in
Fig. 5. This VAR dataset is again built specifically to show,
without a doubt, the efficacy of the methodology. However, in
this case, as it is specifically engineered to highlight dynamical
information, we argue that it is somewhat representative of
fMRI data, where dynamical patterns are prevalent and highly
influential.

Saliency Quality Metrics
Since the relevant information of the synthetic datasets is
easily quantifiable, we can use basic similarity scores between
the saliency maps and proper representations of the input to
understand the quality of the maps. We compare our map quality
on holdout samples with those of an input-cell attention model.
Firstly, as the input data are noisy, we need a reasonable repre-
sentation of each sample. For both experiments, we represent
each sample as a binary matrix in which only the elements
within the perturbed regions are ones, and all other elements
are zero. In the first experiment, the randomly selected window
of 15x15 elements is set to one, and in the second experiment,
the 15x30 window perturbed with added dynamics is our non-
null region. Additionally, for the saliency maps from both our
method and input-cell attention, we pass each sample through an
absolute function (Bruce et al. 2015). To conduct a fair comparison
with (Ismail et al. 2019), we use both of the similarity metrics
therein: Euclidean distance and weighted Jaccard similarity.
We also use a third metric, referred to as “overlapping values”,
which is the sum of all salient values within the window over
the sum of the entire saliency map. These overlapping values
show the percentage of the total saliency map within the relevant
areas.

To ensure an unbiased sampling of the timecourses with our
model, we separate the data into 27,000 training samples and
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Fig. 3. (a-c) The results from the analysis of the boxes dataset. Four examples of resulting maps from both (a) LSTM+attention and (b) input-cell attention,
where the green rectangle is a mask representing the truly relevant information (i.e., box location). (c) Boxplots of the overlapping-values metric over all
3,000 samples for both models. The overlap is defined as the percentage of the total sum of the maps that are within the relevant area seen in the top
figures. (d-f) Results from the analysis of the VAR dataset. The figures are organized the same as the figures for the boxes results. (d) LSTM+attention and
(e) input-cell attention are four examples of the maps, where the green rectangles are the ground-truth relevancies (i.e. where the auto-regressive signal
changes). Each baseline image has a certain underlying transition matrix, as computed by VAR. Each sample is interpolated with one of two different
transition matrices, depending on the class label (the label along the y-axis) within the area demarcated by the green rectangles. (f) Boxplots of the
overlapping-values metric over 3,000 held-out samples for both models. Both experiments represent two separate ideas or class-relevant patterns. The
boxes data contains a feature specific pattern that aligns certain rows (e.g. components) with the classification label, but also disregard any temporal
information. The VAR data contains connectivity patterns (estimated by the transition matrices), or how the interactions between rows/components
relates to the classification label.

3,000 test samples. We train 300 models on the non-holdout
set and generate the maps for every sample. Then, we select
the saliency maps using the selection criteria described in our
approach section and generate the saliency maps for the holdout
set. We chose 300 due to computational restrictions, as each
model can take some time to train. These maps are then fed
through either a rectified linear unit (ReLU) function or an abso-
lute function (depending on the experiment) to avoid relying on
both positive and negative derivatives to find the relevant infor-
mation. Recent research has shown that removing negative values
entirely from saliency can be beneficial (Selvaraju et al. 2019).

Salient Networks
With the selected saliency maps, we sum along the temporal axis
for each subject, resulting in a vector of size 53 for each subject.
We then compute the group-wise sex differences for each compo-
nent using Cohen’s D (Cohen 2013). We select Cohen’s D because,
due to the large sample size of our data, we prefer an effect size
measure agnostic to sample size. We chose a cutoff threshold of
one. This analysis highlights which networks (and brain regions)
are significantly more important for correctly classifying men vs.
women.

Co-Saliency
To better understand the sex differences within the ICA TCs,
we computed the pairwise correlation of the processed saliency
maps, which we call ”co-saliency”, using Pearson correlation.
These correlation matrices describe the relationships between
the relevancy of time-varying values of the ICA components.
Notably, they capture relationships similar to those found in fMRI
connectivity, as shown in Fig. 5.

Results
Synthetic Verification
Results from synthetic data show that our method effectively
finds genuinely relevant information. Tables 1 and 2 compare the
saliency quality metric results between our method and Input-
Cell Attention for the boxes and VAR datasets, respectively. The
weighted Jaccard and Euclidean distance showed vast improve-
ment for our method over a current state-of-the-art method,
input-cell attention for both the boxes dataset (in Fig. 3) and the
more dynamic, VAR-induced dataset (in Fig. 5). The VAR dataset
is especially significant as it shows that our method can properly
capture non-stationary information. It is also important to note
that our method and the input-cell attention model got 99%
accuracy on holdout data from the boxes dataset. However, our
model achieved much higher accuracy (92%) on holdout data from
the VAR dataset than input-cell attention (81%).

Performance Evaluation
To verify that our model is learning discriminatory patterns, we
used stratified 10-fold cross-validation across the entire dataset
and found that all models’ average overall validation accuracy
was 91.3%. Using 10-fold cross-validation, we accumulated the
predictions for each subject when they were used as a test sam-
ple for each model. In the end, we had 3,438,300 predictions
(300 models * 11,461 subjects). 90.5% of women were correctly
predicted, and 91.8% of men were correctly predicted. A confusion
matrix is shown in Table 3.

Our model performed well compared with other fMRI bio-
logical sex classification studies that we are aware of(Billmeyer
and Parhi 2021, Leming and Suckling 2021, Sen and Parhi 2019),
reporting between 85% and 88% accuracy, while at least one
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Fig. 4. Two ICA components (a), the middle temporal gyrus (top), which is most significant for men, and the hippocampus, which is most significant for
women (bottom). Bar graph (b) shows the effect size of the most significantly different components between men and women. The blue components
are directed toward men, and components in red are directed toward women. And (c) saliency maps (rows labeled “saliency”) with associated ICA
timecourses (rows labeled data) from four subjects (both women and men).

Table 1. Table comparing the LSTM+attention with the input-cell attention methodology on the boxes datasets. Within each cell is the
average and standard deviation of the metric over 3,000 test samples, and the p-value comparing the two methodologies using a
2-sample t-test.

Boxes Dataset

Euclidean Distance Overlapping Values Weighted Jaccard

LSTM + Attention μ=1.24, σ=.23, p <.0001 μ=.33, σ=.07, p <.0001 μ=.22, σ=.04, p <.0001
Input-Cell Attention μ=2.35, σ=.45, p <.0001 μ=.15, σ=.05, p <.0001 μ=.07, σ=.02, p <.0001

Table 2. Table comparing the LSTM+attention with the input-cell attention methodology on the VAR datasets. Within each cell is the
average and standard deviation of the metric over 3,000 test samples, and the p-value comparing the two methodologies using a
2-sample t-test.

VAR Dataset

Euclidean Distance Overlapping Values Weighted Jaccard

LSTM + Attention μ=4.57, σ=1.16, p <.0001 μ=.56, σ=.31, p <.0001 μ=.10, σ=.05, p <.0001
Input-Cell Attention μ=5.34, σ=1.42, p <.0001 μ=.17, σ=.14, p <.0001 μ=.05, σ=.03, p <.0001
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Fig. 5. Heatmaps for the co-saliency (left): T-values masked by the FDR corrected significance, where α = .01 (top), the average co-saliency for men
(middle), and the average co-saliency for women (bottom). The corresponding sFNCs are on the right side. We compared the co-saliency and the sFNC
with show the relationships captured within the relevant information compared with relationships in the data (sFNC). The similarities between the two
are striking, suggesting that the model does rely on some of these relationships. We also see that the model relies on relationships in different ways
for both men and women. For example, we see that the model relies on connections within the AUD domain for men and relationships within the VIS
domain for women. All of these relationships are seen in the raw data.
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Table 3. The confusion matrix over the average of all models and
folds (3,000 in total) for the UKB classification accuracies using
our modality. The values are normalized to percentages.

Predict Female Predict Male

True Female .905 .095
True Male .082 .918

(Sen and Parhi 2021) performed better than our model with 94%.
We suggest that this validates the trustworthiness of our model.
The model’s performance, which is not the primary focus of this
work, is relevant because if we are to trust the explanations from
the model, we must trust the model’s performance.

Other studies focusing on structural MRI data have found
much higher performance, between 95% and 99% accuracy
(Abrol et al. 2021, Luo et al. 2019) suggesting sMRI is much more
informative than fMRI. However, it should be noted that while
whole-brain sMRI data can have tens of thousands of features,
and the models can have millions of parameters, our model had
just under 700,000 parameters, much fewer than in the sMRI
studies we have found.

Sex-Relevant functional Activity
Figure 4 shows the components with the largest Cohen’s D effect
size between groups based on the per-component relevancy
averaged over time, where the red networks are more salient for
women and the blue networks are more salient for men. We find
that the AUD domain is particularly relevant for women (Jaušovec
and Jaušovec 2009). The SC and VIS domains also appear to be
highly relevant for male classification, with the highest biological
sex differences within the VIS domain. Finally, the SM domain
is highly relevant, with different networks signaling for the
two sexes. Of the remaining 35 non-significant components, we
found that 10 components from the CC domain had an absolute
effect size between 0.5 and 1. 9 VIS components had effect sizes
between 0.38 and 0.52. There were also 2 AUD components, 5 SC
components, and 9 SM components with effect sizes between 0.02
and 0.5.

Co-Saliency Analysis
From the co-saliency heatmaps, Fig. 6, we find that the differences
are almost “orthogonal,” showing that the saliency method starkly
separates the two sexes by focusing on network-specific time-
points that are intercorrelated in functionally structured ways.
The co-saliencies indicate that temporal patterning of network-
specific saliencies in women is significantly more strongly corre-
lated than in men, as can be seen in the connectivity matrices in
Fig. 5. This significance is shown by the top row’s t-test results.
We use a t-test as we wish only to compare the means between
men and women for both the co-saliency heatmaps and sFNC
matrices. This strong co-saliency for women suggests that the
model identifies timepoints in which networks are more tightly
aligned when correctly classifying women, with networks in less
tight temporal alignment at salient timepoints for the correct
classification of men. Fig. 5 highlights the co-saliency differences
in comparison to the differences among static connectivity. This is
further elucidated in Fig. 6, highlighting our sex difference results
in a connectome. Primarily, we see that both co-saliency and sFNC
show sex differences in the VIS, CC, and DMN domains.

We capture this modularity with greedy graph modularity
estimations using the Clauset–Newman–Moore greedy algorithm

(CNM) (Aaron et al. 2004). Because modularity computation is
scale variant, we z-score all matrices along pairs. Although there
are many community detection algorithms, we chose the CNM
algorithm because it is a very well-studied and widely accepted
approach, which is vital for our work, as our methodology is
novel and needs to be robustly validated. In Fig. 7, we can see the
estimated communities of the two sexes with CNM. From these
communities, we computed the overall modularity of each sex
(Newman 2011), giving us a final modularity score of 0.345 for
women and 0.246 for men. The modularity for the sFNCs was 0.31
for women and 0.359 for men. The sFNC and co-saliency matrices
organized by community are also found in Fig. 7.

We can see two primary results. The first highlighted difference
is which biological sex is most modular. In co-saliency, the women
are now more modular, and their higher modularity value shows
that certain groups of pairs are structurally dissimilar to the other
pairs. Three of the four communities for women also have a very
high correlation, meaning that these three groups of pairs are
more distinctive than the communities for men, which also have a
lower average correlation. We see a dissimilar result for the sFNC,
where men are more modular. This suggests that the networks
for women are most relevant to the LSTM when they are tightly
coupled over time, even though most communities in the raw data
are not modular for women.

Secondly, the absolute modularity difference between men and
women is more prominent in the co-saliency. This is expected as
the co-saliency is specifically wired to separate between sexes.
It is, in our opinion, interesting that one of the pronounced
separating signals is the communities among the most prediction-
relevant components.

Discussion
After validating our methodology on synthetic data (Lewis et al.
2021), we extract classification-relevant sex differences within the
ICA timecourses. Overall, the saliency maps and post hoc analyses
capture several patterns found within the data. The ICN differ-
ences from the saliency maps show that at least four domains
are key for sex classification, with many of these differences being
backed by previous literature. The similarities between our results
and past research are important, as these results are values for
the ICNs averaged over time, which makes them more general-
ized, and presumptively more representative of global, high-level
differences.

Figure 4 highlights the ICN and domain differences. The high
effect size of the difference between men and women in the AUD
domain shows that this domain is particularly relevant for the
model’s classification of women. Our results are supported by pre-
vious research (Hofer et al. 2006), which shows major differences
between the two sexes in the AUD domain. The SM domain is
also highly relevant for women, supported by (Brun et al. 2009).
These findings are quite interesting, as they are the only domains
that are primarily more relevant for women than men. A striking
aspect of our findings is that the VIS seems very relevant to how
the model classifies and understands biological sex. We also see
that 12 networks are significantly relevant for male classification,
whereas only six are significantly relevant for female classifica-
tion. This is important because, as each saliency map is normal-
ized to be a probability map, this suggests that the relevant infor-
mation for female classification is more concentrated in fewer
networks than in male classification. In other words, compared
with male-classified maps, a smaller number of networks from
the female-classified maps have a higher percentage of the total
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Fig. 6. A connectome highlighting the component pairs from the saliency maps that are most significantly different between men and women. The
locations within the brain of the associated ICNs are also visualized. The colors of the edges define the level of significance and which group is
significantly higher. The blue edges indicate pairs that are significantly higher for men, and red edges indicate pairs that are higher for women. The
color of the component number indicates the domain, each of which is defined in the legend.

relevancy. In addition to VIS, the SC domain is primarily relevant
for the correct classification of males. Currently, there is a wealth
of research connecting the SC to differences between men and
women, from both MRI and functional MRI studies (Wang et al.
2018). Specifically, (Herron et al. 2015) has found sex differences
in the gyrus, thus supporting our findings about differences in
the SC domain. Another study by (Luders et al. 2004) showed
differences in complexity, or the spatial frequency of the brain
surface gyrification in the parietal lobe, a part of the SC domain,
highlighting our findings that this particular domain shows sex-
based differences.

Our co-saliency analysis, elucidated in Figs. 5 and 6 provide
a wealth of information; explanations of these and their rela-
tionship to current research are in the discussion section of this
paper. The areas of consistency offer an indirect validation of the
relatively new method presented here, which is still being devel-
oped and refined. One important finding is that the dynamics of
the networks within the CC domain, in relation to networks both

within and outside the CC domain, figure strongly in the model’s
ability to differentiate male and female subjects. The connections
between CC networks and the AUD, DMN, and SC domains
significantly inform the model’s decisions. Six networks within
the CC domain also play a major and statistically significant
role in model classification. We see a split where some networks
are highly relevant for male classification while others are highly
relevant for female classification. Specifically, connections within
and between the inferior and middle-frontal gyrus and the
hippocampal networks are primarily relevant for men. The
left inferior parietal lobule, the middle cingulate cortex, and
the superior frontal gyrus have especially salient connectivity
patterns for women. These two domains, CC and VIS also show
stark coherency differences, which can be visible in the co-
saliency maps, and quantified in the community detection
and graph-modularity computation seen in Fig. 7. However,
the differences weighted toward men appear de-modularized
compared with the sFNCs. It is also interesting to note that
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Fig. 7. The co-saliency (top) and sFNC (bottom) matrices organized by communities (black bounding boxes) for women (left) and men (right). This
illustrates how the community structure and modularity differ between the co-saliency and sFNC. As the modularity is much lower for the co-saliency,
we see that the components in the co-saliency are much more uniformly connected, suggesting that the model finds relatively similar relationships
over all components.

the most significant VIS co-saliency pairs are entirely within
the domain and female-centric. These patterns also appear in
previous connectivity work (Ritchie et al. 2018, Tomasi and Volkow
2012). The co-saliency maps seem to show these patterns, but
with much more contrast than in the raw data. This contrast
enhancement highlights subtle differences that are only weakly
evident in the raw data, differences that look negligible under a
linear, univariate lens but prove highly relevant to biological sex
when employed in a multivariate nonlinear classification model.
Our results also show several key findings that are missed by
nonlinear analysis. Specifically, we see substantial differences in
how certain domains are organized. We find that VIS and DMN
domains and part of the CC are prominently modular for women.
The community and general graph analyses also show an overall
lack of modularity and even coherence for men. Fig. 7 highlights
our community/graph analysis results, which show the overall
modularity differences. The findings we report are complex and
do not admit straightforward interpretations framed by previous
results. They suggest that our understanding of biological sex
has been limited by the ubiquitous use of linear univariate
models. Expanding the traditional model space could help better
realize the scientific promise of noninvasive functional brain
imaging.

The fundamental goal of our work is to build upon previous
research and expand on the scientific community’s understand-
ing of sex differences in the brain. As described in previous work
(Häfner 2003, Kirkovski et al. 2013, Stites et al. 2021, Wang et al.
2018), these understandings can help future researchers better

understand how certain disorders vary based on biological sex.
In the future, this work could lead to clinical advancements such
as new treatments or medication.

The field of model interpretability is still young and rapidly
evolving. While this work aims to introduce approaches to sta-
bilize and quantify deep-learning interpretability methods for
analyzing brain imaging data, new and more effective methods
may emerge, revealing different information. As we highlight in
this paper, recurrent models are architecturally challenging to
interpret using gradient-based approaches. Although we suggest
that our methods mitigate the gradient bias against distal time-
points and model instability across initializations, the computed
saliencies remain sensitive to changes in hyperparameters and
architecture. Overall, they can still be underspecified.

Another impediment to model interpretability is the com-
plexity of the data itself. Although we have many carefully
crafted and effective methods for quantifying information
from ICN timecourses, these timecourses are highly processed
dimensional reductions of the original scan data. This adds
another layer of complexity to understanding brain functionality
through the lens of saliency maps, increasing the possibility of
erroneous interpretation of the findings. These flaws can be
mitigated in due time. As more researchers focus on these topics,
specifically neuroimaging and general, we will find more robust
and effectively interpretable maps. We also suggest that new
methods to analyze the maps (such as co-saliency) will become
more prominent, opening the door for a better understanding of
intricate datasets, especially neuroimaging.
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