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Abstract 

Background  Rather low vaccination rates for Human papillomavirus (HPV) and pre-existing cervical cancer patients 
with limited therapeutic strategies ask for more precise prognostic model development. On the other side, the clinical 
significance of circadian clock signatures in cervical cancer lacks investigation.

Methods  Subtypes classification based upon eight circadian clock core genes were implemented in TCGA-CESC 
through k-means clustering methods. Afterwards, KEGG, GO and GSEA analysis were conducted upon differentially 
expressed genes (DEGs) between high and low-risk groups, and tumor microenvironment (TME) investigation by 
CIBERSORT and ESTIMATE. Furthermore, a prognostic model was developed by cox and lasso regression methods, and 
verified in GSE44001 by time-dependent receiver-operating characteristic curve (ROC) analysis. Lastly, FISH and IHC 
were used for validation of CCL20 expression in patients’ specimens and U14 subcutaneous tumor models were built 
for TME composition.

Results  We successfully classified cervical patients into high-risk and low-risk groups based upon circadian-oscil-
lation-signatures. Afterwards, we built a prognostic risk model composed of GJB2, CCL20 and KRT24 with excellent 
predictive value on patients’ overall survival (OS). We then proposed metabolism unbalance, especially for glycolysis, 
and immune related pathways to be major enriched signatures between the high-risk and low-risk groups. Then, we 
proposed an ‘immune-desert’-like suppressive myeloid cells infiltration pattern in high-risk group TME and verified its 
resistance to immunotherapies. Finally, CCL20 was proved positively correlated with real-world patients’ stages and 
induced significant less CD8+ T cells and more M2 macrophages infiltration in mouse model.

Conclusions  We unraveled a prognostic risk model based upon circadian oscillation and verified its solidity. Specifi-
cally, we unveiled distinct TME immune signatures in high-risk groups.
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Background
With advancement in HPV preventative vaccines devel-
opment, HPV positive cervical cancer (HPV+ CC), 
accounting for about 95% of CC, have been considered as 
preventable for HPV naïve young women [1]. However, 
HPV is not the only high-risk factor of CC, with approxi-
mately 5.5–11% CC HPV negative accompanied by poor 
prognosis [1]. Besides, HPV vaccines could not cover all 
HPV types, even for Gardasil-9 with expanded cover-
age to HPV types (6, 11, 16, 18, 31, 33, 45, 52, and 58) [2, 
3], and large amounts of older women with pre-existing 
HPV infections remain unsuitable for such vaccines since 
they are not therapeutic [4]. On the other hand, late-
stage CC diagnosed as distant or metastatic have limited 
treatment approaches and poor 5-year OS of only 20% 
[5]. Considering the rather low vaccination rates world-
wide and large potential risk groups with HPV infection, 
gene signatures with prognosis and predictive value are 
in urgent need for CC patients.

Circadian clock refers to an oscillation pattern of 
divergent gene networks that cooperate to adapt to 
environmental cycles and internal timing system on a 
24-h-basis. Its core regulators include an activator com-
prised of CLOCK and BMAL1 and a repressor com-
prised of Per1/2 and CRY1/2 [6]. Emerging evidence 
have indicated circadian rhythm as an indispensable fac-
tor for pathophysiological processes, such as in lifespan 
extension through caloric restriction and tumorigenesis. 
Recent literatures proved that chronic jetlag and chronic 
circadian disruption could accelerate breast tumor 
growth by creating an immune-suppressive TME [7]. 
Furthermore, CRY1/2-/- and Per1/2-/- knockout mice 
experienced enhanced hepatocarcinoma metastasis along 
with disrupted serum bile acids and glycogen metabolism 
[8]. On the other hand, CLOCK mutation mice exhibited 
resistance to carcinogen-induced skin carcinoma devel-
opment [9], and knockdown BMAL1 by shRNAs also 
interrupted the proliferation of leukemia stem cells [10]. 
Pan-cancer analysis of TCGA provided transcriptional-
level evidence of the heterogeneric effects of circadian 
clock related gene signatures in caner hallmarks as well. 
PER2 was found to be highly associated with activation of 
PI3K/AKT oncogenic pathway and cancer metabolism, 
while CLOCK was quite the opposite [11]. Although 
disruption of circadian rhythm has been proved to be 
strongly correlated with cancer hallmarks including 
uncontrolled proliferation, genome instability, deregula-
tion of metabolism and immune-suppressive TME, the 
translational value remained obscure until recently. Jiao 
Wang et  al. designed a time-restricted regimen, that is, 
giving combination therapy of metformin and trastu-
zumab at zeitgeber time (ZT) 6 rather than ZT18, which 
significantly suppressed breast tumor growth compared 

to trastuzumab alone in murine models [12]. To be 
noticed, such regimen failed to restrain tumor growth 
given at any other ZTs. They suggested that the under-
lying mechanism was that metformin-targeted HK2 fell 
into a circadian oscillation regulated by PPARγ and PER1 
and disruption of HK2 interfered with such circadian 
rhythm thus leading to reversion of trastuzumab [12].

Recently, another circadian clock core gene, TIMLESS 
was found to be over-expressed in ovarian cancer (OV) 
and was negatively correlated with B cells and DC cells 
infiltration in TCGA data analysis [13]. Knockdown of 
TIMELESS significantly slowed tumor growth in  vivo. 
While disruptions in circadian clock have been described 
in other gynecologic neoplasms, there have not been 
systematic bioinformatics analysis to date on circadian 
machinery of cervical cancer. Considering heterogeneity 
effects of circadian rhythm in cancer biology, knowledge 
of its functioning specifically in CC might benefit a lot.

Herein, to facilitate understanding into clinical rel-
evance of circadian clock related signature in cervical 
cancer and illuminate its impact upon cancer metabo-
lism and TME, we investigated TCGA-CESC dataset 
from the perspective of circadian oscillation thoroughly 
on a multi-omics level. Through K-means method, Cox 
regression and lasso analysis, we constructed a prognos-
tic risk model based upon circadian-oscillation-signature 
and confirmed its validity by time-dependent ROC anal-
ysis. Furthermore, we discovered an ‘immune-desert’-
like TME pattern in high-risk group by ESTIMATE and 
CIBERSORT analysis. Afterwards, to infer differences 
on genomic level, we conducted investigation upon SNP, 
CNV and TMB as well. With TIDE score and GDSC 
database, we then analyzed different drug sensitivity, 
including to immune checkpoints blockades (ICB), in 
high and low-risk groups. Then in combination with clin-
icopathological features, we built a risk prognostic model 
based upon independent prognostic factors and verified 
its solidity in GSE44001.Finally, through FISH and IHC 
analysis of our own real-world patients’ clinical surgery 
specimens, we validated CCL20 as an independent indi-
cator for worse stages, and overexpression of CCL20 in 
U14 cell lines could lead to significant more M2 mac-
rophages, Tregs and less M1 macrophages, in accordance 
with CIBERSORT analysis.

Methods
Data downloaded and arrangement
The cervical cancer dataset TCGA-CESC was obtained 
from the TCGA-GDC official website (https://​portal.​gdc.​
cancer.​gov/). Gene expression sequencing data (counts 
and FPKM values) (n = 307) were then transformed into 
TPM values separately. Clinical data of patients, including 
age, gender, TNM stage, survival time, and survival status, 

https://portal.gdc.cancer.gov/
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were downloaded. After excluding patients who lacked 
clinical information, 304 samples with clinical informa-
tion were retained. The clinical data of the patients can be 
found in Additional file 1: Table S1. Genomics sequenc-
ing data of CESC patients (n = 304) were downloaded 
from GDC, among which masked somatic mutation data 
were selected and visualized using the maftools R pack-
age. Validation data were obtained from GEO (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/) under the accession num-
ber GSE44001. Normal cervical tissue samples were also 
collected from GTEx, GSE173097, GSE55940, GSE9750, 
GSE127265 and GSE20167. For immunotherapy analysis, 
datasets in GSE78220, GSE91061, GSE93157, GSE94873, 
GSE111636, GSE123728, GSE165252 and GSE176307 
were analysed. In order to deal with the imbalance 
between normal(13) and tumor sample (304) numbers in 
TCGA, we adopted ROSE R package [14], which has been 
widely used, with ovun.sample function with parameters 
as follows: p = 0.5, method = "under". Chip platform was 
based on GPL14951 Illumina HumanHT-12 WG-DASL 
V4.0 R2 expression beadchip. Finally, 300 tumor samples 
were retained for inclusion in this study, and the chip 
data were standardized using the R limma [15] pack-
age. The circadian rhythm-related gene set was obtained 
from the previously published literature [1]. which con-
tains a total of 24 genes, including ARNTL, ARNTL2, 
CLOCK, CRY1, CRY2, PER1, PER2, PER3, TIMELESS, 
BHLHE41, BHLHE40, CSNK1D, CSNK1E, DBP, FBXL3, 
HLF, NFIL3, NPAS2, NR1D1, NR1D2, RORA, RORB, 
RORC, and TEF. The different expression genes (DEGs) 
between high-risk and low-risk groups were compared 
by Wilcoxon rank-sum test and visualized through the 
pheatmap R package.

Subtype classification and analysis based on circadian 
rhythm gene signatures
Based on circadian rhythm genes and TCGA-CESC 
expression data, an unsupervised cluster analysis was 
performed using the "K-means method" in the "Consen-
susClusterPlus" R package [16] with parameter distance 
of “Pearson” to identify circadian rhythm subtypes in cer-
vical cancer patients. The consensus clustering algorithm 
was used to determine the number of clusters, and the 
analysis included 1000 iterations to ensure the stability 
of the classification. Principal component analysis (PCA) 
was performed on subgroups to judge the differences 
between samples. Survival analysis was performed after 
grouping to determine impact of grouping on prognosis.

Differential and prognostic circadian rhythm‑related genes 
screening and risk model construction
The Wilcoxon rank-sum test and sleuth [17] R package 
was used to analyze the differences between different 

groups, genes with significant differences were defined 
as the absolute value of Log2 (Fold change) > 1.0 and 
adj.P-value < 0.05. in order to obtain differential circadian 
rhythm-related genes.To dig for the prognostic value of 
circadian rhythm-related genes in CESC patients, uni-
variate Cox analysis was first used to screen for prognos-
tic genes, with a threshold of P-value < 0.1. We used lasso 
and multivariate Cox proportional hazards regression 
model to identify independent prognostic factors further 
and establish a prognostic model. We then used tenfold 
cross-validation to test the model. The formula for calcu-
lating the risk score of the risk model is as follows:

Patients were divided into high-risk and low-risk 
groups based on risk scores. ROC curves for 1, 3, and 
5  years were plotted by time-dependent ROC curves to 
determine their accuracy. In addition, the model was 
tested using the external test set GSE44001 according to 
the regression coefficients of the genes in the model, and 
a time-dependent ROC curve was drawn for validation.

DEGs and functional enrichment analysis of circadian 
rhythm‑related signatures
To identify DEGs correlated with the circadian rhythm-
related-risk model built above, sleuth [17] and Wilcoxon 
rank-sum test was used to decipher DEGs between the 
separated groups. The significantly DEGs were defined 
as the absolute value of logFC > 1 and adj.P-value < 0.05.
Gene ontology (GO) analysis is a standard strategy for 
pathways enrichment studies, which include biological 
process (BP), molecular function (MF), and cellular com-
ponent (CC) [18]. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is a basic method adopted to induce 
enrichment pathways, such as those related to genomes, 
biological pathways, and drug metabolism [19]. Cluster-
Profiler package[20] was used to perform GO and KEGG 
analysis, and a cutoff value of FDR < 0.05 was considered 
statistically significant. To investigate the specific path-
way pattern between different groups, we performed 
GSEA (Gene Set Enrichment Analysis) analysis [21]. 
"C2.cp.v7.2.symbols.gmt" and "C5.all.v7.2.symbols" were 
downloaded from MSigDB [22] database (https://​www.​
gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp) for GSEA analy-
sis. FDR < 0.25 was considered to be included.

Protein interaction and regulatory network analysis
The STRING protein–protein interaction database was 
used to analyze the interaction between differential 
genes. The core hub genes were further explored through 
the CytoHubba plugin in Cytoscape [23]. The hub 
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gene-ceRNA regulation analysis was performed using 
the mirTarbsse database (mirtarbase.cuhk.edu.cn). The 
results were filtered based on the experimentally veri-
fied results in the luciferase reporter assay. Results were 
finally visualized by Cytoscape software.

Identification and correlation analysis of tumor infiltrating 
immune cells
The immune landscape of the tumor microenvironment 
(TME) was assessed using the R ESTIMATE package [24]. 
ESTIMATE analysis quantifies immune activity (level of 
immune cells infiltration) in tumor. Differences in infil-
tration characteristics were further compared between 
high and low-risk groups. Subsequently, to determine the 
specific level of immune cells subtypes infiltration, we 
deconvolved the transcriptome expression matrix using 
the CIBERSORT algorithm [25] (https://​ciber​sortx.​stanf​
ord.​edu) to estimate the composition and abundance of 
different immune cells. ggplot2 R package was used to 
show the distribution of 22 immune cell infiltrations in 
TCGA-CESC dataset.

Single nucleotide polymorphism (SNP) and copy number 
alteration (CNV) analysis
To analyze SNPs we used maftools package to analyze 
frequently mutated genes in patients in high and low-
risk groups. Subsequently, patients’ masked copy num-
ber segment data were downloaded through GDC and 
subjected to GISTIC 2.0 analysis [26] by GenePattern 
[27] with default parameters as follows: t_amp = 0.1, t_
del = 0.1, join_segment_size = 4,qv_thresh = 0.1,remove
_X = 1,res = 0.05,conf_evel = 0.75,do_gene_gistic = 0,do_
arbitration = 1,arm_peeloff = 0,sample_center = median.

Tumor mutation burden (TMB), microsatellite instability 
(MSI) and predictive analysis of tumor immunotherapy
We calculated TMB by maftools R package. The MSI-
Sensor data of CESC patients were obtained from the 
cBioportal database (https://​www.​cbiop​ortal.​org). In 
addition, we predicted the potential response of ICB 
through the Tumor Immune Dysfunction and Exclusion 
(TIDE) score (http://​tide.​dfci.​harva​rd.​edu) [28] between 
the high and low risk groups.

Drug sensitivity analysis
The Genomics of Drug Sensitivity in Cancer (GDSC) 
database (www.​cance​rrxge​ne.​org/) can be used to find 
tumor drug response data and sensitive markers [29]. 
We used the pRRophetic algorithm [30] to construct a 
ridge regression model based on gene expression profiles 
and predicted the sensitivities of high-risk and low-risk 

groups to common anticancer drugs through IC50 
values.

Construction of clinical prediction model based 
on circadian rhythm risk score
To demonstrate the independent predictive value, we 
used univariate Cox and multivariate Cox to analyze the 
predictive power of risk score combined with clinico-
pathological features of patients as regards to overall sur-
vival (OS). We constructed a clinical prediction model, 
resampling it with the bootstrap method for validation. 
According to the clinical significance and statistical value, 
the clinical prediction nomogram (Nomogram) was con-
structed. To quantify discriminative performance, time-
dependent ROC curves for 1, 3, and 5 years were plotted. 
A calibration curve was generated to assess the perfor-
mance of the nomogram by comparing the predicted val-
ues of the nomogram with the observed actual survival 
data.

Fluorescence in situ hybridization (FISH) analysis of 
formalin‑fixed, paraffin‑embedded (FFPE) tissue samples
22 patients’ cervical cancer surgery specimens were 
included in this study in the International Peace Mater-
nity and Child Health Hospital, School of Medicine affili-
ated to Shanghai Jiao Tong University. All patients had 
stage I/II CV without disease progression except for one 
patient. In  situ hybridization was carried out using the 
RNAscope fluorescent multiplex assay (Advanced Cell 
Diagnostics) After dehydration the sections were incu-
bated with pretreat 4 for 20  min at room temperature 
and hybridized with probes for CCL20 mRNAs for 2 h. 
CCL20 mRNA copy numbers were determined by quan-
tification of fluorescent spots using ImageJ software.

Immunohistochemistry (IHC) analysis of FFPE tissue 
samples
FFPE sections from the biopsies were subjected to IHC 
by using multiplex IHC kit (Panovue, Beijing, China, 
Cat No 0004100100). Briefly, primary antibodies were 
sequentially incubated followed by horseradish per-
oxidase (HRP)-conjugated secondary antibody and a 
tyramidefluorophore (Panovue), Nuclei were stained 
with 4`-6`-diamidino-2-phenylindole (DAPI) (SIGMA-
ALDRICH, MI, USA) before the observation.

Overexpression of ccl20 in U14 cell lines and flow 
cytometry analysis of subcutaneous mouse tumor model
U14 cells were purchased from the Shanghai Institute for 
Biological Sciences Chinese Academy of Sciences (Shang-
hai, China) and routinely maintained in DMEM with 10% 
fetal bovine serum (FBS) and 1% Penicillin–Streptomycin 

https://cibersortx.stanford.edu
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(Gibco, grand Island, US, Cat No 15140-122) at 37℃ with 
5% CO2. C57BL/6 mice (6–8 weeks old) were purchased 
from the Shanghai Laboratory Animal Center (Shang-
hai, China) and maintained under specific-pathogen-free 
(SPF) conditions in the animal facility of SJTU School of 
Medicine (SJTUSM). For the sake of animal ethics guid-
ance, the number of mice in each mouse cage did not 
exceed 5.In order to obtain reliable survival data of mice, 
up to 33 mice were breeded in multiple cages at differ-
ent floors of our animal centre. U14 were infected with 
lentivirus containing plasmid (pcSLenti-EF1-mCherry-
P2A-Puro-CMV-ccl20-3xFLAG-WPRE) at the multi-
plicity of infection (MOI) of 1:70 and 4 μg/mL polybrene 
(Hanbio, Cat No HB-PB-500) for 24  h. After 48  h, cells 
were cultured with 2 μg/mL puromycin (Sangon Biotech, 
Shanghai, China, Cat No A610593) for 14  days. After-
wards, monoclonal cell population was constructed by 
limited dilution within 21 days and chosen by qRT-PCR 
and western blot verification. Mice were subcutaneously 
injected with 0.5 × 106 U14 cells [31]. At day21, mice 
were euthanasia by Carbon dioxide (CO2) inhalation, 
and tumors were harvested and digested for flow cytom-
etry analysis with antibodies as follows: CD45-Apc-cy7 
(BD, cat:  557659), CD4-Bv786 (BD,  cat:  563331), CD3-
Bv496 (BD,  cat:  564661), CD8-Bv650 (BD,  cat:  563234), 
MHC-II- percp-cy5.5 (BD,  cat:  562363), CD11b-Af700 
(BD,  cat:  557960), F4/80-Bv605 (BD,  cat:  743281), live/
dead- Bv510 (BD,  cat:  564406), Foxp3-pe-cy7 (ebiosci-
ence, cat: 25-5773-82), CD25-pe-cf594 (BD, cat: 562694), 
CD206-Bv421 (Biolegend, cat:  141717), CD86 PE (BD, 
cat: 564198). 12 mice every independent experiment for 
three times were sacrificed. Single cells were acquired 
with a Fortessa flow cytometer (BD Biosciences). Data 
were analyzed by using FlowJo software 9.0 (FlowJo LLC, 
Treestar Inc., OR, USA). The protocols of animal experi-
ments were approved by the Animal Ethics Committee of 
SJTUSM, and performed under the Guide for the Care 
and Use of Laboratory Animals.

Statistical analysis
All data processing and analysis were implemented 
through R software (version 4.1.3). To compare two 
groups of continuous variables, the statistical signifi-
cance of normally distributed variables was estimated by 
the independent Student t-test. The differences among 
non-normally distributed variables were analyzed by the 
Mann–Whitney U test (i.e., the Wilcoxon rank-sum test). 
The Chi-square test or Fisher’s exact test was used to 
compare and analyze statistical significance between two 
groups of categorical variables. The survival R package 
was used for survival analysis. The log-rank test was used 
to evaluate the significance of the difference in survival 
time between the two groups. A time-dependent receiver 

operating characteristic (ROC) curve was drawn using 
the pROC package for R, and the area under the curve 
(AUC) was calculated to assess the accuracy of the risk 
model in predicting prognosis [18]. All statistical P values 
were two-sided, with P < 0.05 considered statistically sig-
nificant (Fig. 1).

Results
Integrated transcriptome and genome analysis of circadian 
rhythm genes in multiple databases revealed differences 
between tumor and normal cervical tissues
Since Youqiong Ye et  al. investigated circadian clock 
core genes expression and mutation landscape across 
pan-cancer TCGA database except for CESC, we firstly 
extracted 24 circadian rhythm genes from the RNA-seq 
data of TCGA-CESC and compared the expression dif-
ferences between normal and tumor groups. In compar-
ing the normal and tumor groups, eight circadian rhythm 
genes were differentially expressed, including HLF, TEF, 
FBXL3, CRY2, RORB, PER1, NFIL3, ARNTL23, and 
TIMELESS (Additional file  1: Fig. S1A, B). Since there 
were only 13 in TCGA-GTEx normal cervival tissues, 
we collected normal cervical tissues from different GEO 
databases, and compared these differentially expressed 
circadian genes between GEO-collected and GTEx nor-
mal tissues and there was no difference (Additional 
file 1: Fig. S1C upper). Then, we compated their expres-
sion between all normal tissues and TCGA tumor sam-
ples (Fig.  2A and Additional file  1: Fig. S1C lower) and 
use resampling methods only in TCGA-GTEx samples 
(Fig.  2B) separately, and the conclusion remained the 
same. Finally, we used GSE9750 as validation, and the 
expression differences were in accordance with analyses 
mentioned above (Additional file 1: Fig. S1D). For exam-
ple, CLOCK showed no difference between normal and 
tumor samples while ARNTL2 was significantly up-regu-
lated in tumor samples (Additional file 1: Fig. S1D). Then, 
we extracted the mutation information of 24 circadian 
rhythm gene and found that the circadian rhythm genes 
did not have obvious mutations in CESC patients based 
on the somatic mutation data of TCGA-CESC patients. 
The mutation frequency of most of these genes is less 
than 1%. The mutation frequency of PER3, TIMELESS, 
and CLOCK genes is only 2%, and they have not been 
reported to be associated with CESC (Fig. 2C). In addi-
tion, we analyzed the CNV alteration patterns of 24 genes 
(Fig.  2D), the details of which are shown in Additional 
file  1: Table  S2. Although amplification and deletion 
appeared frequently in TCGA-CESC, CNV pattern varies 
across different circadian clock core genes. For example, 
heterozygous amplification is dominant in RORC, while 
heterozygous deletion in PER1/2 (Fig. 2D).
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Due to the low mutation rate and heterogeneous CNV 
pattern of circadian clock genes in TCGA-CESC, we then 
focused on the differentially expressed circadian genes 
between tumor and normal mentioned above and used 
consensus clustering as the clustering strategy. Since 
k = 2 is sufficient for well-separated subgroups, we sepa-
rated patients into subgroup 1 and subgroup 2 (Fig. 2E), 
the apparent difference between which were implicated 
by PCA analysis as well (Fig. 2F).

Construction of circadian rhythm signature‑derived risk 
model uncovered GJB2, CCL20 and KRT24 as independent 
prognosis indicators
In order to dampen our understanding of these two 
subgroups, we used the DESeq2 package for differential 
analysis and finally got 86 differential genes (logFC abso-
lute value > 1, adj. P < 0.05) (Additional file  1: Fig. S1E, 
F). Then, we integrated these significantly differentially 
expressed circadian rhythm-related genes to construct a 
circadian rhythm-related risk scoring model to quantita-
tively evaluate the prognostic information of each CESC 
patient by risk score. First, a univariate Cox regression 
analysis was performed, and eight qualified genes were 
selected for further research (P < 0.05). Furthermore, 
through lasso analysis we found that when λ = 3, we could 

build the most solid model (Fig.  3A, B). Afterwards, by 
multivariate Cox regression analysis, we found that GJB2 
(P < 0.001), CCL20 (P = 0.002), and KRT24 (P = 0.004) 
were all independent prognostic factors separately 
(Fig. 3C).

GJB2 (Gap Junction Protein Beta 2) (also named CX26) 
encodes a member of the gap junction protein family. 
To be noticed, CX26 enhance the self-renewal potency 
of triple-negative breast cancer stem cells through for-
mation of protein complex with the pluripotency tran-
scription factor NANOG and focal adhesion kinase 
(FAK) [31]. CCL20 (C–C Motif Chemokine Ligand 20) 
is exclusively overexpressed by myeloid-derived sup-
pressive cells (MDSC). Since its major receptor CCR6 is 
highly expressed on T cells, researchers have illuminated 
its participation in suppressive TME [32]. KRT24 (Kera-
tin 24) belongs to the type I (acidic) keratin family, which 
involves in the intermediate filament (IF) formation. 
There still lacks research about KRT24 in cancer biology 
till now.

Afterwards, we checked their expression between nor-
mal and tumor samples, and found out that they were all 
significantly up-regulation in tumor (Fig. 3D). Besides, in 
line with the Cox regression analysis, GJB2 and CCL20 is 
indicative of worse overall survival rate (OS), and KRT24 

Fig. 1  Flow chart
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Fig. 2  Differences in circadian gene expression and subtype identification in CESC patients. A heat map of differential expression of circadian 
rhythm genes in normal group (number = 114) and tumor group (number = 304); B representative dotplot of differential expression of circadian 
rhythm genes in normal group (number = 13) and tumor group (number = 15) with resampling method in ROSE R package (described in methods 
in detail); C is the somatic mutational change of circadian rhythm genes in CESC patient group; D pie chart shows the CNVs of 24 circadian 
rhythm-related genes in CESC; E is the heat map of sample clustering when K = 2 using consistent clustering; F is the PCA map of subgroup 1 and 
subgroup 2

(See figure on next page.)
Fig. 3  Construction of a circadian rhythm-related risk scoring model. A–B are LASSO regression analysis, and the number of variables 
corresponding to the optimal λ value is 3. C is the result of multivariate Cox stepwise regression analysis, and finally found that all three genes are 
independent prognostic factors; D is the expression of KRT24, CCL20 and GJB2 in normal group (number = 114) and tumor group (number = 304); 
E–G are the survival curves of KRT24, CCL20 and GJB2 with Kaplan–Meier analysis in TCGA-CESC data (number = 304); H are time-dependent ROC 
curve analysis of KRT24 (left) and CCL20 (middle) in TCGA-CESC data, with the one on the right as the 1-year ROC curve of KRT24, CCL20 and GJB2; 
I is the prognostic nomogram of pathologic T, N stages and KRT24, CCL20, GJB2 in TCGA-CESC; J is the risk score distribution of CESC patients, the 
survival status of patients; K are time-dependent ROC curve analysis of the training set TCGA-CESC (left), and the right is the test set GSE44001; L is 
heat map of KRT24, CCL20 and GJB2 expression in high-risk (number = 124) and low-risk groups (number = 180)
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Fig. 3  (See legend on previous page.)
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is beneficial (Fig. 3E–G). To construct a multivariate cox 
regression-based risk model, we examined their saparate 
time-dependent ROC analysis firstly. GJB2 and CCL20 
were all excellent indicator for prognosis prediction while 
KRT24 alone was rather general for 1-year OS (Fig. 3H, 
I). On another way, we conducted time-dependent AUC 
analysis for KRT24, and found out that its protective 
value for survival was more obvious for 5-year OS (Addi-
tional file 1: Fig. S2A) and progression free survival (PFS) 
overall (Additional file  1: Fig. S2B, C). Considering its 
significant prognostic value and prediction value in PFS, 
we also included KRT24 in the riskscore model. Based on 
the penalty coefficients of feature genes derived in multi-
variate cox regression analysis, a risk score was calculated 
by cumulative sum of multiplication of gene expression 
with corresponding coefficients, and then risk score 
of each sample was calculated. Time-dependent ROC 
analysis showed that the risk score had good predictive 
power for OS in CESC patients, with the areas under the 
curve (AUC) for 1-, 3-, and 5-year OS of 0.795, 0.649, 
and 0.650, respectively (Fig.  3K left). For verification, 
we selected dataset GSE44001, normalized and further 
tested performance of the risk model. Time-dependent 

ROC analysis in verification dataset showed that AUC 
for 1-year, 3-year, and 5-year PFS was 0.693, 0.662, and 
0.737, respectively, indicating excellent reliability and sta-
bility of our risk model (Fig.  3K right). In addition, sig-
nificant worse prognosis of CESC patients was observed 
along with gradually rising risk score (Fig. 3J, Additional 
file  1: Fig. S3B). Finally, GJB2 and CCL20 showed sig-
nificant more expression in high-risk group which is in 
accordance with their prognosis value (Fig. 3L).

Immune and metabolism‑related pathways were enriched 
in DEGs analysis between high and low‑risk groups derived 
from circadian rhythm signature‑related risk model
In order to further explore the impact of circadian 
rhythm-related gene signatures on CESC, patients were 
divided into high-risk and low-risk groups based on the 
median expression risk scores. Subsequently, we per-
formed differential expression analysis and found 43 sig-
nificantly differentially expressed genes (DEGs), of which 
29 genes were significantly up-regulated and 14 genes 
were significantly down-regulated (Figs. 4A, B).

Afterwards, we performed functional enrichment 
analysis of 43 DEGs. GO analysis showed enrichment 

Fig. 4  Analysis of differentially expressed genes and functional enrichment based on circadian rhythm-related risk models. A–B are volcano 
plots and heat maps showing the expression of DEGs between high and low risk CESC patients in the TCGA dataset; C is GO analysis suggesting 
differential genes and response to lipopolysaccharide, response to molecule of bacterial origin, epithelial cell differentiation. It is related to 
biological processes such as antimicrobial humoral response, and is related to molecular functions such as RAGE receptor binding and fatty acid 
binding, and is related to cell composition such as extracellular region and extracellular region part; D is the result of KEGG analysis showing that 
these differentially expressed genes are involved in IL-17 signaling pathway, Drug metabolism–cytochrome P450 and other pathways. Pathways in 
C and D all have qvalues less than 0.05
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of biological processes such as response to lipopolysac-
charide, epithelial cell differentiation, and antimicrobial 
humoral response, and also molecular functions such as 
RAGE receptor binding, fatty acid-binding, and extra-
cellular region (Fig.  4C). Interestingly, the independent 
prognosis factors we discovered above, KRT24 and GBJ2, 
all participate in formation of cell junction and extra-
cellular matrix. Besides, KEGG analysis indicated that 
DEGs mainly enriched in IL-17 signaling pathway, drug 
metabolism-cytochrome P450, and Rheumatoid arthritis 
(Fig. 4D), together with GO analysis indicating potential 
immune participation.

Then we thoroughly went through GO and KEGG 
common results and unveiled a significant enrichment 
of pathways related to immunology, such as IL-17 sign-
aling pathway, chemokine signaling pathway, and also 
pathways correlated to metabolism, such as glutathione 
metabolism. Detailed GO and KEGG results can be 
found in Additional file 1: Tables S3 and S4.

To facilitate and verify GO and KEGG analysis, we con-
ducted GSEA analysis based upon DEGs. It appeared that 
NOD-like receptor signaling pathway, RIG -like signal-
ing pathway, fructose and mannose metabolism, pentose 
phosphate pathway, galactose metabolism, PPAR signal-
ing pathway, and other pathways are enriched in low-risk 
group (Fig.  5). The nucleotide oligomerization domain 
(NOD)-like receptors 1 and 2 (NOD1/2) are intracellular 
pattern-recognition proteins that activate innate immune 
signaling pathways [33], and RIG-like receptors cooper-
ate with Toll-like (TLR) receptors to impart innate and 
adaptive immune response as well [34, 35]. Apparently, 

GSEA analysis unveiled immune and metabolism cen-
tered pathways enrichment either, although specific 
pathways differ from GO and KEGG analysis. Detailed 
GSEA enrichment results are shown in Additional file 1: 
Table S5.

PPI network and non‑coding RNA analysis found 
CCL20‑centered hub_genes
With enrichment analysis pointing to immune and 
metabolism related pathways, to further narrow down 
our investigation of DEGs to a set of core hub genes, 
we used STRING database to analyze the protein inter-
action pattern (Additional file  1: Fig.S4). With confi-
dential threshold set to 0.4, the interaction pattern of 
DEGs could be further divided and clustered into four 
sub-interaction networks. To further concentrate on the 
core valuables in the PPI network, we chose the network 
with the most candidate proteins (Fig. 6A). The number 
of new PPI nodes (proteins) is 16, and there are 98 con-
necting lines (edges). The average connection degree of 
each node is 0.811, and the enrichment statistical P-value 
of the entire PPI is less than 1.0e-23. Since certain genes 
centered CCL20 having the most connecting edges, we 
set out to hypothesis that they might serve important 
functions.

Subsequently, we used the CytoHubba plugin in 
Cytoscape to further identify which interacting proteins 
could be core hub genes. After calculation, ten hub pro-
teins with the highest scores, including CCL20, CXCL1, 
S100A9, and CXCL8, were found (Fig. 6B). Next, we ana-
lyzed the miRNAs molecules and lncRNAs potentially 

Fig. 5  GSEA analysis. The main pathways enriched in patients are shown from the rank of low-risk to high-risk groups (left to right) according to the 
enrichment score NES value
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regulating these hub genes through the mirTarbase data-
base and used Cytoscape to construct a ceRNA regula-
tory network (Fig.  6C). Astonishingly, CCL20, CXCL8, 
S100A9, and IL1A are all tightly correlated with myeloid 
immune cells chemotaxis and functioning [32, 36–39], 
and long non-coding RNAs, HAGLR and FGD5-AS1 are 
related to suppressive immune TME either [40, 41]. To 
facilitate better understanding into this protein-non-cod-
ing RNAs interation network, we checked their prognos-
tic values in TCGA-CESC miRNA database, and found 

out that hsa-mir-302d and has-mir-196a in this network 
were indicative of worse prognosis (Fig. 6D).

Analysis of immune infiltration revealed a “cold” TME 
in high‑risk gorup
As a result, we assessed the effect of circadian rhythm-
related risk scores on the overall immune profile in 
TCGA-CESC patients. It could be noticed that distribu-
tion of immune cells in CESC patients is heterogeneous, 
reflecting the complexity of the TME (Fig. 7A). The cor-
relation analysis showed significant negative correlation 

Fig. 6  PPI and regulatory network analysis. A is the PPI control network that is re-analyzed from the most specific co-interacted network in Fig. S4A, 
which shows the node information, connecting line information and different sub-network information of the network in detail. B is the hub gene 
regulation network based on CytoHubba calculation. C is the miRNA-lncRNA-ceRNA regulatory network predicted by the mirTarbase database; D is 
the survival plot of patients with different expression of hsa-mir-302d and has-mir-196a, with the high group representing patients with high mean 
expression of hsa-mir-302d and has-mir-196a in TCGA-CESC (number = 304)
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between CD8 T cells, M0 macrophages (M0), activated 
mast cells and activated DCs (Fig. 7B). At the same time, 
CD8 T cells showed significant positive correlation with 
M1 macrophages (M1), activated memory CD4 T cells 
(activated CD4 Tm) and CD4 T follicular helper cells 
(CD4 Tfh). Afterwards, when comparing the infiltration 
of immune cells in the high-risk group versus the low-risk 
group, we also discovered significant more infiltration 

of CD8 T cells (P = 0.004) and an increasing trend of 
infiltration of activated CD4 Tm (P = 0.072) in low-risk 
group. Besides, high-risk group could be characterized as 
TME with significant more M0 (P = 0.013), more neutro-
phils (P = 0.02), more activated DCs (P = 0.026) and more 
activated mast cells (P < 0.01) (Fig.  7C), in accordance 
with correlation analysis. In conclusion, low-risk TME is 
tend to be one with ‘hot’ tumor features such as CD8 T 

Fig. 7  Association of circadian rhythm-related risk scores with different immune cell infiltrations. A–B are the panorama analysis and immune cell 
correlation analysis of immune cell infiltration in the whole CESC patients. C is the difference analysis of 22 different immune cell infiltration levels 
between the two groups (number in high-risk group = 124, in low-risk group = 180); D–F is the difference of Estimate score, stromal score and 
immune score in high and low risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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cells and activated CD4 Tm, while high-risk TME is more 
likely to be one with suppressive myeloid cells infiltration 
pattern such as M0 and neutrophils.

Furthermore, according to the ESTIMATE results, 
compared with the low-risk group, patients in the high-
risk group had significantly lower levels of cell infiltration 
abundance, fewer stromal cells and immune cells as well 
(Fig.  7D–F). Together with the correlation analysis and 
immune cells subtypes analysis, we suggested that high-
risk group has higher tumor purity and an ‘immune-
desert’-like TME with significant more suppressive 
myeloid cells infiltration than low-risk group.

Effect of circadian rhythm‑related risk score on genomic 
changes in CESC patients showed genome instability 
in high‑risk group
However, whether genome changes also participated in 
changes among high and low-risk groups remained to 
be solved. As has been indicated in 2.1, circadian clock 
genes themselves did not show significant genomic 
level changes between subgroups in CESC. We further 
assessed the effect of circadian rhythm-related risk scores 
on genomic level in CESC patients, including single 
nucleotide polymorphisms (SNP) and copy number vari-
ations (CNV). Analysis of SNPs in driver oncogene muta-
tions revealed that both groups of patients have similar 
alterations (Fig.  8A), while CNV of both amplification 
and deletion were more frequent in high-risk group 
(Fig.  8C, D). When it comes to TMB and MSI, we did 
not find substantial differences between high and low-
risk groups, suggesting that changes in the genomic level 
were not evident (Fig. 8E, F).

In addition, given the critical role of cancer immu-
notherapy, we evaluated sensitivity to immunotherapy 
by TIDE scores. Surprisingly, TIDE score was signifi-
cantly lower in high-risk group than in low-risk group, 
indicating worse responsiveness of immunotherapy 
of high-risk group, which was in accordance with its 
‘immune-desert’-like suppressive myeloid infiltrated 
TME mentioned above.

High‑risk group tended to be heterogeneous and have 
worse immunotherapy effects
Since TIDE score indicated worse immunotherapy out-
comes in high-risk group, we set out to examine the prog-
nosis value of our risk-model in different immunotherapy 
cohorts. Surprisingly, our circadian genes-derived model 
showed excellent prediction value in different immune 
cohorts (Fig. 9A), especially in melanoma (P = 0.014) and 
urathelial cohorts (P = 2.5e-05). Unfortunaly, we did not 
find any cervical cancer immunotherapy cohorts. How-
ever, considering activated DCs (aDCs) were actually 

enriched in high-risk group while they indicated a some-
what “hot” TME on the opposite and aDCs varied greatly 
inside the high-risk group, we further separated patients 
in TCGA according to their activated DCs enrichment 
score calculated by CIBERSORT, and analysed their 
immune enrichment pattern by ssGSEA and progno-
sis (Fig. 9B, C). Astonishingly, patients with fewer aDCs 
have significant more macrophages and neutrophils, 
while those with higher aDCs have more gamma-delta 
T cells and cytotoxic T cells. In the low-aDCs group, 
our risk model was still solid, while its prediction power 
extremely vanished in the high-aDCs group (Fig.  9C), 
indicating therapy stratagies targeting DCs might be a 
way to overcome the worse prognosis of immunotherapy 
in the high-risk group.

Since we have uncovered certain immunotherapy 
resistance in the high-risk group, we then set out to 
assess differences in susceptibility to common antitu-
mor drugs between high- and low-risk groups using the 
GDSC database (Fig.  9D). First, we use the GDSC data 
as the training set and the pRRophetic package to build a 
ridge regression model. Then, we input the TCGA-CESC 
dataset for testing. The test results found that among the 
138 input drugs, 41 drugs were detected to be statisti-
cally different between the two groups (Additional file 1: 
Table. S6). Astonishingly, EHT.1864, IPA.3 and AS601245 
are all more sensitive to low-risk groups, as these regi-
mens are related to ATP-related pathways’ inhibition or 
competition, suggesting possible metabolic unbalance in 
high-risk groups as aforementioned above (Fig. 9D).

Construction of a clinical prognostic model based 
on circadian rhythm‑related risk scores
Finally, to further explore the clinical value of circadian 
rhythm-related risk scores, we integrated patients’ clinical 
characteristics into our prognostic risk model. Although 
no difference was found in age (Fig.  10A), in terms of 
stage, the proportion of advanced patients (stage II, III and 
IV) in the high-risk group was significantly higher than 
that in the low-risk group (Fig. 10B). We then constructed 
a prognostic model based on the circadian rhythm-related 
risk score and clinicopathological characteristics (age and 
TNM stage) of CESC patients.We tested the model by 
resampling 1000 time (bootstrap method). It was found 
that 1-year, 3-year, and 5-year AUCs were 0.894, 0.689, 
and 0.688, respectively (Fig. 10C). We then visualized our 
model through nomogram, drew a calibration curve to 
evaluate the model’s accuracy, and found that its 1-, 3-, 
and 5-year OS estimates showed excellent consistency 
with the actual observations (Fig. 10D). Finally, except for 
KRT24, all features chosen showed significant values in 
the multivariate analysis both for OS and disease free sur-
vial (DSS) (Additional file 1: Fig. S3C, D).
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CCL20 as independent indicator for worse stages 
in real‑world patients and less functional CD8+ T cells 
with more M2 infiltration in mouse tumor models
Although the prognostic value separately for GJB2, 
KRT24 and CCL20 have been verified in our bioin-
formatics analysis of TCGA and GEO data, the exact 

biological and clinical value of them deserved further 
research. Through GSVA immune scores independently 
on GJB2, KRT24 and CCL20 (Fig.  11A), we found that 
role of GJB2 and KRT24 separately in CESC were rather 
obscure since they had ImmuneScore indicative of “hot” 
TME with cytotoxic immune cells and DC infiltration. 

Fig. 8  The effect of circadian rhythm-related risk grouping on genetic variation and immunotherapy in CESC patients. A–B are mutational profiles 
of common tumorigenesis driver genes in high- and low-risk groups of patients. Mutation information for each gene in each sample is shown in 
a waterfall plot, with various colors indicating different mutation types; subsections above the legend show mutational load; C–D are changes in 
copy number levels of different genes in patients in high and low risk groups, in which red is the gene with significantly increased copy number, 
and blue is the gene with significantly deleted copy number; E–F are the differences in TMB and MSI levels of patients in the high and low risk 
groups, respectively; G is the TIDE score calculated based on the TIDE database Differences in high and low risk groups
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Fig. 9  Immunotherapy prognosis and drug sensitivity analysis of circadian rhythm-related high- and low-risk groups. A are the survival plots of 
patients separated by the risk model in different immunotherapy cohorts; B is ssGSEA analysis of immune infiltration patterns of different patients 
separated by CIBERSORT scores of aDC expression (low and high by mean expression); C is survival plot of patients separated by CIBERSORT scores 
of aDC expression in TCGA-CESC (number = 304); D is according to the wilcox test comparing the drug IC50 of high and low risk groups, the top 
10 drugs with p value are MS.275, EHT.1864, IPA.3, AS601245, GW843682X, Elesclomol, Salubrinal, Rapamycin, JW7.52.1, AZ628. These drugs all 
showed higher sensitivity in the low-risk group than in the high-risk group. Statistical analyses in (D) were calculated by non-parametric student-t 
test analysis between low and high risk groups’ estimated IC50 values. *: P < 0.05; **: P < 0.01; ***: P < 0.001. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ns: no 
significance
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On the other way, CCL20 tended to favor a “cold” TME 
with significantly less CD8 T cells, more macrophages 
and more Tregs, has been deciphered through CIBER-
SORT analysis mentioned above (Fig.  7). Then we set 

out to investigate the exact expression levels of CCL20 
within real-world clinical patients’ data. We collected 
22 early stages (Ia1/IIa2, Ib1/2) CESC patients’ surgical 
specimens and performed FISH for RNA quantification 

Fig. 10  Analysis of the predictive power of circadian rhythm-related risk scores for prognosis in patients with CESC. A–B superimposed histograms 
show the proportion of age and stage of patients in high and low risk groups in the two groups. Age was similarly represented in both groups, with 
significantly more early-stage patients in the low-risk group than in the high-risk group. C is the time-dependent ROC curve of the riskscore-based 
clinical prediction model. D is the nomogram of the model. E is the calibration curve of the nomogram, using the bootstrap method and 
resampling 1000 times; the abscissa is the survival predicted by the nomogram, and the ordinate is the actual observed survival, repeated 1000 
times each time, the curve shows the model pair Patient outcomes at 1, 3 and 5 years had good predictive value

(See figure on next page.)
Fig. 11  CCL20 as an independent indicator for worse prognosis and capable of enhancing M2 macrophages infiltration. A GSVA score of different 
immune subtype cells infiltration seperately for GJB2, KRT24 and CCL20. B FISH analysis for CCL20, with different rows standing for different 
patients, as ccl20-007, ccl20-001 and ccl20-004 as three representative images. C IHC analysis for CCL20. D ImageJ quantitative analysis for FISH 
(up) and IHC (down). E is the survival plot of mice during observation of 55 days, with NC-CCL20 referring to mice inoculated with empty plasmid 
loaded lentivirus infected U14 cells as control and OE-CCL20 referring to mice inoculated with CCL20 overexpression U14 cells (mice in NC-CCL20 
are 14, and OE-CCL20 are 17, which were pooled together in separate cages, with each having less than 5 mice); F FC analysis for Tregs, M2/M1, 
CD8, CD107a and PD-1 in TME of U14 C57BL/6 J mouse model; G are representative FC gating graphs for CD8, CD107a expression of CD8, PD-1 
expression of CD8, and macrophages with CD86+ CD206− as M1 and CD86− CD206+ as M2; H is the tumor growth curve of mice with different 
treatments, with NC-PD-L1 referring to NC-CCL20 mice with PD-L1 blocking antibody(αPD-L1) treatments, OE-PD-L1 referring to OE-CCL20 mice 
with αPD-L1 treatments, NC-CCL20 and OE-CCL20 referring to mice with PBS treatments as control groups (mice in each group:NC-PD-L1: 6; 
OE-PD-L1:6; NC-CCL20:5; OE-CCL20: 5). The data were the representatives of at least three independent experiments as means ± S.E.M. Statistical 
analyses were calculated by non-parametric student-t test or two-sided ANOVA analysis. *: P < 0.05; **: P < 0.01; ***: P < 0.001. *: P < 0.05; **: P < 0.01; 
***: P < 0.001; ns: no significance. Scale bar in B: 100 μm; C: 200 μm
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(Fig.  11B). To be noticed, ccll20-007 is the only patient 
that has recurrence of disease within 5 years, and CCL20 
RNA was significantly up-regulated between ccl20-007 

and ccl20-001 and ccl20-004, the other two both showed 
no recurrence. Besides, through IHC analysis for CCL20 
protein expression (Fig.  11C), patients that has later 

Fig. 11  (See legend on previous page.)
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stages (Ib1/2, lower panel) had significant more CCL20 
expression compared to those at earlier stages (Ia1/IIa2). 
Quantification analysis of FISH and IHC (Fig. 11D). sup-
ported an enhanced CCL20 expression in later stages 
patients as well. Finally, we constructed lentivirus 
inducted stable overexpression of CCL20 in U14 (OE-
CCL20), and verified the successful overexpression by 
qRT-PCR, western blot, flow cytometry and IHC (Addi-
tional file  1: Figure S5).Then subcutaneous U14 tumor 
models were established in C57BL/6 mouse. Although 
we did not obsereved faster tumor growth in CCL20-OE 
mice (Fig. 11H), we did find out a significant worse sur-
vival in CCL20-OE mice (Fig.  10E). By flow cytometry 
analysis of TME, elevated ratio of M2/M1 was manifested 
in CCL20 overexpression (OE) group (Fig. 11E, F), along 
with less CD8+ T cells, less CD107a expression and more 
PD-1 expression of CD8+ T cells, with Tregs of no signifi-
cance, in accordance with CIBERSORT analysis (Fig. 10F, 
G).Finally, considering the significant worse prognosis in 
high-risk group in immunotherapy cohort, we conducted 
anti-PD-L1 therapy in CCL20-OE mice, and found the 
same immunotherapy resistance as well (Fig.  10H), fur-
ther supporting the same “immune-dessert” TME in 
mice characterized by less CD8+ T cells and more M2 
macrophages.

Discussion
Cervical cancer is the fourth most common female cancer 
worldwide [5]. Besides, overall low prophylactic vaccina-
tion rates among adolescents worldwide and preexisting 
infections in older women demonstrate the urgent need 
for developing state-of-the-art early diagnostic strategies 
and therapeutic regimens [42], for example, immuno-
therapies. Circadian disruption has been associated with 
tumorigenesis through effects on tumor proliferation, 
DNA repair and stemness, and combination therapies 
targeting circadian disorders with other regimens are 
emerging for GC [12], NSCLC [43], etc. However, little is 
known about its effects in tumor metabolism and TME, 
especially in cervical cancer, as well as its prognostic and 
therapeutic value [44]. In this research, we systematically 
investigated circadian rhythm related genes genomic 
and transcriptional level patterns in TCGA-CESC data-
set. We successfully divided CESC patients into low-risk 
and high-risk groups based upon their circadian clock 
gene signature expression modes. We further confirmed 
immune and metabolism related pathways enrichment of 
differentially expressed genes (DEGs) between high and 
low-risk groups, which includes response to lipopolysac-
charide, fructose and mannose metabolism, and IL-17 
signaling pathway. Furthermore, we also uncovered sig-
nificantly different immune infiltration patterns between 
them. Through lasso regression analysis of DEGs, we 

proposed a prognosis model composed of GJB2, CCL20 
and KRT24, all with independent prognostic value, and 
validated its predictive value on patients’ overall survival 
(OS) in dataset GSE44001. Finally, we illuminated that 
low-risk group was more sensitive to certain chemother-
apy regimens and immunotherapy, providing informa-
tional clues for application of circadian gene signatures in 
clinical settings.

Coincidentally, circadian oscillation plays an impor-
tant role in tumor-immune interaction, including antigen 
presentation, immunogenicity enhancement or loss and 
TME biology, during which these pathways might expe-
rience upregulation or downregulation depending on 
tumor type as well. When it comes to melanoma, higher 
CTL infiltration along with higher PD-1/L1 expression 
was found to be correlated with higher BMAL1 during 
anti-PD-1 immunotherapy clinical settings [45]. While 
in KIRC and breast cancer, upregulation of CLOCK, 
ARNTL and PER3 promotes TME inflammation via 
modulating macrophages and neutrophils infiltration, 
which leads to worse prognosis [46, 47]. However, the 
specific mechanisms under this myeloid-induced inflam-
mation have not been demonstrated yet. In our research, 
high-risk patients’ TME is characterized as an immune-
suppressed TME with more infiltration of macrophages, 
neutrophils, activated mast cells and activated DCs, while 
TME in low-risk groups has more CD8 T cells, activated 
CD4 Tm and rested masted cells, indicating a myeloid-
dominated signature in high-risk group with worse prog-
nosis as well. To be noticed, reasons behind this might be 
attributed to enhanced expression of ICs. For example, 
RORγ agonists, which can activate BMAL1 transcrip-
tion [48], attenuate the expression of PD-1 receptors, 
and LYC-55716, a RORy inhibitor, is currently under a 
Phase 1 trial used in combination with pembrolizumab 
for NSCLC (NCT03396497). Nevertheless, direct and 
indirect circadian control over specific immune cells sub-
types should be investigated thoroughly for their poten-
tial translational clinical applications.

Besides, PPI interaction built upon hub genes (CCL20, 
KRT16, GJB2) in our analysis pointed to interaction net-
work among IL1A, CXCL1, CXCL8, S100A7 and S100A9, 
which are important mediators of myeloid immune cells 
function. The chemokine CCL20 is notably overex-
pressed by myeloid cells, as is its cognate CCR6 receptor 
on T cells. Disruption of the CCL20-CCR6 axis in mice 
restores CTL activity and significantly prolongs survival 
[32]. CXCL8 functions as a chemotactic factor by guid-
ing the neutrophils to the site of infection [37]. IL1A is 
produced by monocytes and macrophages as a propro-
tein, which is proteolytically processed and released 
in response to cell injury, and thus induces apoptosis. 
Upregulated S100A7 could promote tumor proliferation 
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through paracrine interaction with RAGE receptors [39]. 
To be noticed, through KEGG analysis we also uncovered 
RAGE receptor pathways enrichment in DEGs between 
high and low-risk groups. In addition, exocrine S100A7 
could promote M2 macrophage infiltration in esophageal 
squamous carcinoma (ESCC) [36, 39]. SY Lim et al. dem-
onstrated that monocytes/macrophages in the metastatic 
liver microenvironment induce S100A8 and S100A9 
in cancer cells, and that these proteins are essential for 
tumor cell migration and invasion [36].

Another major cancer hallmark, metabolism disorder, 
is indispensable for cancer cells proliferation require-
ments under TME selection pressure as well. Consti-
tutive activation of the PI3K/PDK1/AKT pathway and 
HIF1a pathway under low level of oxygen contribute to 
increased glycolysis in tumor [49]. Circadian clock has 
been proved to be essential regulators of glycolysis and 
oxidative phosphorylation through AKT and HIF1a path-
ways either [50]. Conversely, hypoxia and HIF1α affect 
circadian rhythms through regulation of the circadian 
clock genes CRYs, RORα, Per2, and Cry1 [51]. We also 
discovered enhanced expression pattern of fructose and 
mannose metabolism through KEGG analysis, as well 
as pentose phosphate and galactose metabolism path-
ways through GSEA analysis in high-risk groups of cer-
vical cancer patients, further proving the potential link 
of glycolysis and circadian rhythm in cancer. Besides, 
PPAR signaling pathway and FA metabolism were also 
enriched in high-risk group, indicating regulation of FA 
metabolism by circadian oscillation as well. Recently, T 
Fedchenko et al. found that PPAR-γ agonist given to mice 
orally induced disruption of PER1/2 and BMAL1 expres-
sion in liver through regulation of NFKB and IL-6 path-
ways [52]. At the same time, PPAR signaling pathway is 
the center of de novo synthesis of fatty acids. Sai Ma et al. 
characterized a mutual activation loop between PPARγ 
and esophageal adenocarcinoma-specific master regula-
tor transcription factors (MRTF) in upregulation of syn-
thesis of phospholipids [53]. However, whether circadian 
clock signature could manipulate FA metabolism through 
PPAR pathways in cancer still lacks research till now.

Circadian rhythm interference has been attributed to 
uncontrolled proliferation and dampened DNA dam-
age response, which are further linked to TMB and MSI. 
Emerging evidence have proved effects of circadian signa-
ture upon TMB and MSI, such as the positive regulation 
of growth promoter SERPINE1 via BMAL2, which pro-
motes MSI [54]. Bioinformatics analysis of TCGA discov-
ered an index of core circadian genes (PER1/2/3, CRY1/2, 
CLOCK and BMAL1) that is negatively related to MMR 
pathway [55]. However, we did not recognize significant 
TMB and MSI changes between high-risk and low-risk 
groups based upon circadian signature classification 

model in TCGA-CESC. Indeed, cancer heterogeneity and 
tissue origin specificity could make regulation of circa-
dian clock even more complicated, indicating necessity 
for thorough investigation of circadian rhythm in differ-
ent cancer type separately.

CCL20 was indicated as inducer of dampened anti-
tumor ability of CTL when it was secreted by mac-
rophages. We not only uncovered connection between 
expression of CCL20 and worse stage in clinical settings, 
but also uncovered disrupted CD8+ T cells function with 
exhaustion phenotype and M2 infiltration triggered by 
ccl20 overexpression in U14 cancer cell lines in immune-
competent murine tumor model. Although Hirotaka 
et  al. found that dietary consumption of Lactobacillus-
derived exopolysaccharide induced CCR6+ CD8+ T cells 
by CCL20-secreting tumor cells [56], Wang et  al. also 
uncovered FOXO1 promoted the migration of M2 mac-
rophages via CCL20 secretion in esophageal squamous 
cell carcinoma [57]. Besides, resently Liu et al.revealed a 
specific M2-like macrophages subtype with high CCL20 
expression, which is associated with worse prognosis by 
single-cell analysis in CESC [58]. Besides, they proposed 
that CCL20+ macrrophges also expressed high levels of 
CXCL8, which is in accordance with our PPI analysis 
in TCGA-CESC as well [59]. All in all, the regulation of 
CCL20 on the tumor immune microenvironment is cur-
rently controversial, our research might have shed light 
upon an indispensable role for M2 macrophages as well 
in cervical cancer.

Despite the critical role of CCL20 in our circadian-
based risk model, KRT24, an OS-favorable protective 
marker in CESC has also been included into our model. 
KRT24 has also been proved to be a potential tumor 
suppressor. Désirée. et  al. described suppression of via-
bility and proliferation induced by KRT24 upon human 
HNSCC cell lines and mouse xenograft model [60]. How-
ever, the impact of KRT24 upon TME in CESC still lacks 
certain research. Based upon a significant up-regulated 
immune-score calculated by ssGSEA with more KRT24 
expression (Fig. 11A), we proposed that in-depth profil-
ing of impacts of KRT24 upon TME in CESC, as well as 
its correlation with CCL20 is in urgent need.

To our knowledge, this is the first comprehensive bio-
informatics analysis of circadian rhythm signatures in 
cervical cancer. Through multi-omics analysis of TCGA-
CESC dataset and using GSE44001 as verification, we 
successfully constructed a prognostic risk model based 
upon circadian rhythm signature and discovered three 
independent prognostic factors, GJB2, CCL20 and 
KRT24, with hints upon metabolism features and sup-
pressive myeloid cells enriched TME as poor prognostic 
indicators. However, due to intrinsic nature of data-min-
ing, the underlying mechanism of impacts of circadian 
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clocks upon macrophages and neutrophils infiltration as 
well as PPAR signaling pathways and glycolysis-related 
pathways enrichment still need to be thoroughly veri-
fied by molecular and cell biology experiments further. 
Nevertheless, we believed that our research could facili-
tate understanding of clinical value of circadian rhythm 
in cervical cancer, and unleash probability of digging into 
the prognostic value and even targetable features of cir-
cadian clock gene sets in cancer biology.

Conclusions
Circadian clock disruption has been proved to relate to 
cancer progression. However, its relevant significance 
in cervical cancer still lacks thorough research. Through 
multi-omics analysis of TCGA and GEO publicly avail-
able data, we built up a circadian-clock signature based 
prognostic model, with GJB2, CCL20 and KRT24 as inde-
pendent-significant prognostic factor. Further through 
CIBERSORT analysis, FISH and IHC analysis of clinical 
specimens and flow cytometry analysis of subcutaneous 
mouse tumor model, CCL20 was identified as inducer of 
desert-like TME with more M2 macrophages infiltration 
and as indicator of worse clinical stages.
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