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Multi-omics delineation of cytokine-induced
endothelial inflammatory states
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Vascular endothelial cells (ECs) form a dynamic interface between blood and tissue and play

a crucial role in the progression of vascular inflammation. Here, we aim to dissect the system-

wide molecular mechanisms of inflammatory endothelial-cytokine responses. Applying an

unbiased cytokine library, we determined that TNFα and IFNγ induced the largest EC

response resulting in distinct proteomic inflammatory signatures. Notably, combined

TNFα+ IFNγ stimulation induced an additional synergetic inflammatory signature.

We employed a multi-omics approach to dissect these inflammatory states, combining

(phospho-) proteome, transcriptome and secretome and found, depending on the stimulus, a

wide-array of altered immune-modulating processes, including complement proteins, MHC

complexes and distinct secretory cytokines. Synergy resulted in cooperative activation of

transcript induction. This resource describes the intricate molecular mechanisms that are at

the basis of endothelial inflammation and supports the adaptive immunomodulatory role of

the endothelium in host defense and vascular inflammation.

https://doi.org/10.1038/s42003-023-04897-w OPEN

1 Department of Molecular Hematology, Sanquin Research, Amsterdam 1066 CX, The Netherlands. 2 Department of Biomolecular Mass Spectrometry and
Proteomics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CS, The Netherlands. 3These authors contributed equally:
Arie J. Hoogendijk, Maartje van den Biggelaar. ✉email: m.vandenbiggelaar@sanquin.nl

COMMUNICATIONS BIOLOGY |           (2023) 6:525 | https://doi.org/10.1038/s42003-023-04897-w |www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04897-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04897-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04897-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04897-w&domain=pdf
http://orcid.org/0000-0001-6500-3673
http://orcid.org/0000-0001-6500-3673
http://orcid.org/0000-0001-6500-3673
http://orcid.org/0000-0001-6500-3673
http://orcid.org/0000-0001-6500-3673
http://orcid.org/0000-0002-3082-2289
http://orcid.org/0000-0002-3082-2289
http://orcid.org/0000-0002-3082-2289
http://orcid.org/0000-0002-3082-2289
http://orcid.org/0000-0002-3082-2289
http://orcid.org/0000-0001-6970-5496
http://orcid.org/0000-0001-6970-5496
http://orcid.org/0000-0001-6970-5496
http://orcid.org/0000-0001-6970-5496
http://orcid.org/0000-0001-6970-5496
mailto:m.vandenbiggelaar@sanquin.nl
www.nature.com/commsbio
www.nature.com/commsbio


Endothelial cells (ECs) line the inside of our blood vessels and
form a dynamic interface between blood and surrounding
tissues. Apart from facilitating oxygen, nutrient, and waste

product exchange, ECs control hemostasis by attracting platelets
to seal breaches in the vascular walls during primary hemostasis1.
Moreover, ECs are crucial gatekeepers controlling the trafficking
of immune cells into and out of tissues during inflammation. For
their role in this adaptive synapse, ECs are well-equipped to sense
environmental cues, such as mechanical stress, hormones (e.g.,
vasopressin, histamine), cells (e.g., neutrophils, monocytes, pla-
telets) and other external stimuli (e.g., thrombin, cytokines)2–5. In
addition to the transmigration of immune cells, ECs have several
immunomodulatory capacities such as antigen presentation and
cytokine secretion5,6. However, although ECs carry these
immune-modulating properties and are among the first cells to
come into contact with pathogens, they are rarely mentioned in
immune cell networks7–9.

Deregulation of EC homeostasis can result in over-
inflammatory or hyper-coagulation states of the endothelium.
This endothelial dysfunction is implicated in several multi-
facetted inflammatory diseases, including transfusion related
acute lung injury, sepsis, rheumatoid arthritis, acute respiratory
distress syndrome (ARDS), eye vasculopathies, chronic kidney
disease and COVID-1910–19.

Although both endothelial homeostasis and cytokines are
deregulated in these diseases, the molecular basis which orches-
trates adaptive endothelial-cytokine interactions is mostly con-
fined to research on tumor necrosis factor-alpha (TNFα).
Moreover, synergism between cytokines such as TNFα and
interferon-gamma (IFNy) has been observed in ECs and linked to
detrimental effects in inflammatory disorders20–23. Although
underlying mechanisms have been proposed, a system-wide EC
response has not been characterized.

Therefore, in this study, we set out to dissect the molecular
signatures of endothelial-cytokine responses, employing blood
outgrowth endothelial cells (BOECs), also known as endothelial
colony forming cells, as our source of ECs because of their
extensive, robust expansion, expression of mature vascular EC
markers and ability to be isolated from adult donors24,25.

We show that ECs express the receptor-repertoire to facilitate
various cytokine signals. However, upon stimulation with an
unbiased cytokine library, we observed predominantly unique
inflammatory states for TNFα and IFNγ. Moreover, combined
stimulation of TNFα and IFNγ resulted in a synergetic EC
response. Combining multiple omics levels, we dissected the

molecular basis of these inflammatory states from signaling
(phosphoproteome) to mRNA transcription (transcriptome),
protein regulation (proteome) and protein secretion (secretome).
This study reveals system-wide adaptive EC inflammatory states,
emphasizing the role of EC-cytokine interactions in inflammatory
pathogenesis and reiterating ECs as an adaptive player in
inflammation.

Results
Mapping cytokine-endothelial interactions. Although vascular
inflammation is orchestrated by cytokines that activate the
endothelium, knowledge on endothelial-cytokine interactions at
the system level is limited. To review established interactions, we
used immuneXpresso, a text mining engine that extracts direc-
tional cell-cytokine interactions from PubMed abstracts26. Of the
143 cytokines present in this database, 65 were identified to
interact with ECs. Most studies report the interaction with
cytokine TNFα and fibroblast growth factor 2 (FGF2) (Fig. 1a).
To determine whether this is due to a confirmation bias in lit-
erature or whether ECs do not express the receptors to interact
with other cytokines, we performed an in-depth proteomic ana-
lysis of BOECs to determine the receptor-repertoire. Out of 6848
quantified proteins, we found 166 receptors with known ligand
interactions8 (Fig. 1b and Supplementary Fig. 1a), showing that
ECs possess a wide array of receptors that can interact with
ligands present in their microenvironment.

Proteome response profiling of EC-cytokine interactions. Next,
we profiled EC responses to different cytokines and stimulated
BOECs with a library of 92 signaling proteins based on commercial
availability. This library contained 46 proteins from the Immu-
neXpresso search including both TNFα and FGF2 (Supplementary
Table 1). BOECs were stimulated for 24 h and proteomics
responses were analyzed using high-resolution label-free quanti-
tative (LFQ) MS. We quantified a total of 4790 proteins with an
overall median Pearson correlation coefficient of 0.96 (Supple-
mentary Fig. 2). Of the 92 signaling proteins, 47 had an impact on
the proteome and in total 293 proteins were differentially abundant
(Fig. 2a). TNFα stimulation induced the strongest response, fol-
lowed by IFNγ, IL1β and IL1α. To visualize response similarities
between stimuli, we constructed a network of the number of dif-
ferentially abundant proteins and overlap per stimulus (Fig. 2b and
Supplementary Fig. 3a). This revealed TNFα as a central “knot”
overlapping with 7 other cytokines. The highest similarity was
observed between TNFα, IL1α and IL1β. We also observed an
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Fig. 1 Knowledge-based mapping of cytokine-endothelial interactions. a Bar plot based on immuneXpresso data mining showing the number of papers
describing interactions between the cytokines and endothelial cells (# papers > 5). b Cytoscape interaction network of receptors and potential ligands (red
dots: receptors, yellow dots: ligands, purple dots: proteins fulfilling both receptor and ligand criteria), edges represent STRING-DB scores. Inserts show
zooms of example cytokine-receptor interactions; for network with labels, see Supplementary Fig. 1b.
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overlap between IL-33-TNFα, IL-33-Oncostatin and IL-11-MIP3.
Co-expression-based clustering delineated 5 dominant EC
response types (Fig. 2c). These consisted of two modules with
increased proteins abundances (Modules 1 and 2: IFNγ and TNFα/
IL1α/IL1β responses) and three reduced protein abundance mod-
ules (Modules 3-5, representing TNFα/IL1α/IL1β, MIP5/NAP2
and MIP3/MIP3B/MIP3A/Osteopontin/PF4). Proteins with high
module memberships, highlighted hallmark IFNγ and TNFα
responsive proteins Signal transducer and activator of transcription
1-alpha/beta (STAT1) and E-selectin (SELE) for modules 1 and 2
(Fig. 2d). Gene Ontology (GO) enrichment and pathway analysis27

revealed that module 1 enriched for “response to IFNγ” and “IFNγ
signaling” as expected, while module 2 consisted of “response to
LPS” and NF-κB signaling. Module 3 enriched for extracellular
component “collagen-containing extracellular matrix” and module
5 for “Kit receptor signaling pathway”. There was no significant
enrichment for module 4 (Fig. 2e and Supplementary Fig. 3b, c).

Combined TNFα and IFNγ stimulation induces synergetic EC
effects. As TNFα and IFNγ induced the highest, predominantly
upregulated, responses and synergism between TNFα and IFNγ
has been reported, we assessed the effects of combining both
cytokines. Initially, we studied EC morphology, and as expected,
TNFα-stimulated cells shifted from a cobblestone round-like
morphology to an elongated shape (Fig. 3a). Although IFNγ did
not induce observable changes, the combination of both stimuli
resulted in an amplified TNFα morphology, in which all ECs
changed to an elongated shape and a more contracted monolayer.
Guided by these observations, we tested whether the proteome
was impacted similarly using LFQ MS. Initially, we performed a
concentration range of TNFα and IFNγ separately and observed
similar proteomic profiles for stimulation at 10 and 100 ng/ml
(Supplementary Fig. 4). Stimulation with TNFα, IFNγ and in
combination resulted in three distinct signatures (Fig. 3b).
Compared between each other, TNFα and IFNγ induced 74
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Fig. 2 Proteome response profiling of EC-cytokine interactions. a Bar plot showing the amount of differentially regulated proteins for the stimuli that
altered the BOEC proteome after 24 h of stimulation (moderated t-test, Benjamini–Hochberg (BH) adjusted p value < 0.05 and log2 fold change > 1).
b Summarizing network of differentially abundant proteins between stimuli. Node labels show cytokine stimuli. Node size represents amount of statistically
significant proteins. Edges show overlap between proteomes, color intensities (white to black) of edges indicate amount of overlapping proteins as a ratio
of the smaller node. See Supplementary Fig. 3 for non-summarized network. c Profile plots of modules describing cytokine proteomic responses with
cytokine annotation. Gradient scale indicated z-scores of median LFQ-score of genes in a module per stimulus, Yellow: cytokines related to an increased
abundance response profile; purple: cytokine(s) related to a decreased protein abundance response, cytokines which contribute to the module regulation
are highlighted. Replicates have been summarized to medians for visualization, modules are indicated by color, M1 (pink), M2 (blue), M3 (green), M4 (red)
and M5 (yellow). d Proteins with high modules membership scores plotted as median label-free intensities (LFQ). e Enriched GO terms and Wikipathways
per module. MF molecular function, CC cellular component, BP biological process.
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versus 48 unique proteins, respectively, while combined stimu-
lation induced 111 unique altered protein abundances (Fig. 3c).
Unique proteins per stimulus included transcription factors
NFKB2 and STAT1 for TNFα and IFNγ respectively and che-
mokine CCL5 for combined stimulation (Fig. 3d).

Temporal dynamics of TNFα and IFNγ stimulation on phos-
phoproteome, transcriptome and proteome reveal systemwide
inflammation states. Prompted by the distinct proteomic sig-
natures of TNFα, IFNγ and combined stimulation and the notion
that these cytokines are an object of extensive study in ECs, we
aimed to dissect the molecular basis of the observed inflammatory
states. To this end we employed several omics levels (phospho-
proteome, transcriptome and proteome) in a time-resolved
experiment to delineate the cytokine responses (Fig. 4a). To
accurately quantify phosphopeptide levels we utilized a SILAC-
MS workflow. Phosphoproteomes and proteomes were acquired
from the same sample, whereas transcriptomic data were
obtained from parallel stimulations. We quantified 4171 proteins,
6144 phosphosites and 60,664 transcripts. On all levels,
TNFα+ IFNy stimulation increased the number of significant
events, compared to single stimuli (Fig. 4b). Transcript levels had
the largest increase in events after combined stimulation com-
pared to single stimuli (3.7-fold), while proteomic events
increased less (2.3-fold). To visualize the regulatory dynamics
between different omics levels, we evaluated the timing of these
events. In line with the type 1–2 EC activation paradigm28,
phosphoregulation occurred first (0–30 m), followed by tran-
scriptomic (4–12 h) and proteomic events (8–24 h) (Fig. 4c).
Furthermore, this analysis showed different dynamics between
stimuli. The number of TNFα-induced transcriptomic events
decreased after 12 h, while for IFNγ, this number remained stable.
Next, we performed GO-term enrichment analyses and compared
enriched terms between omics levels and stimulations. Early
responses, characterized by changes in phosphosites, reflected

mostly mechanical changes (e.g., cadherin binding and focal
adhesion) and were shared between all stimulations (Fig. 4d).
Enrichment of differentially regulated mRNAs included GO-
terms “ECM organization” and “growth factor binding”, while
proteome enriched for antigen presentation processes such as
“MHC protein complex”, “peptide antigen binding” and the
generic term “response to IFNy”. To show the temporal nature of
the omics levels, we plotted examples of each: phosphosite
ARHGEF10 S379, and the transcript and protein levels of ICAM1
(Fig. 4e). The ARHGEF10 phosphosite was dephosphorylated
within 2 min, while mRNA levels of ICAM1 peaked from 30min
to 4 h and approached baseline after 24 h. This pattern was fol-
lowed by a steady increase in protein level reaching its peak at
24 h. To assess how the steady-state repertoire of BOECs com-
pared to other EC types, we compared our RNAseq data to three
published studies on various cultured primary ECs within the
endoDB29–35. Principal component analysis showed high overlap
with HUVECs in Rombouts et al.32,34 and BOECs and pulmonary
ECs in Long et al.31,35 (Supplementary Fig. 5a). However, the
correlation of transcriptome signatures also highlighted study-
induced variation (Supplementary Fig. 5b). Relative expression
levels of key EC genes as well as TNFα and IFNγ receptors were
similar between the majority of EC types (Supplementary Fig. 5c).

Visualizing endothelial inflammatory states. To visualize the
processes that are driven by either TNFα, IFNγ or combined
stimulation, we generated a map of EC responses. First, we
classified all differentially regulated phosphosites, transcripts and
proteins as “TNFα”, “IFNγ”, “common”, “TNFα+ IFNγ” or “not
classified”, based on effect sizes and dynamic behavior in time
(Fig. 5a). For phosphosites most hits were classified as “common”,
while for both mRNA and protein “IFNy” was the most prevalent
classifier (1850 transcripts and 60 proteins), followed by
“TNFα+ IFNγ” (1235 and 45) and “TNFα” (948 and 34)
(Fig. 5b). As an example of each classification, we plotted highly

Fig. 3 Synergistic proteomics response of TNFα and IFNγ in ECs. a Brightfield images of unstimulated ECs (Ctrl, pink) or ECs stimulated with TNFα
(green), IFNγ (blue) or TNFα+ IFNγ (red) for 24 h. b Principal component analysis (PCA) of proteomes of ECs stimulated with TNFα, IFNγ and
TNFα+ IFNγ. c Euler plot of total amount of unique and overlapping differentially regulated proteins per stimulus (moderated t-test, BH-adjusted p < 0.05
and log2 fold change > 1). d LFQ intensities of hallmark proteins per stimulation.
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correlating transcripts NFKBIE (“TNFα”), SECTM1 (“IFNγ”),
PARP10 (“common”) and CCL8 (“TNFα+ IFNγ”) (Fig. 5c).
Next, we connected regulated features by querying the STRING
database for high confidence (>0.95) interactions. This resulted in
a network containing 2306 interactions, revealing 9 high-density
hubs summarized in biological processes: “Viral sensors”, “Cyto-
kines”, “Complement factors”, “JAK/STAT signaling”, “Cell cycle”,
“NFKB signaling”, “Proteasome”, “NFKB complex” and “Antigen
presentation” (Fig. 5d and Supplementary Fig. 6). Plotting the
ratio of response classifications per hub, only two were majorly
TNFα induced: NF-κB complex proteins (47% TNFα) and cyto-
kines (44% TNFα), while all others were primarily IFNγ-induced.
Especially the hubs, “Complement factors”, “Viral sensors”,

“Proteasome” and “Antigen presentation” were predominantly
IFNγ-induced (>75%). None of the hubs were majorly synergis-
tically induced, suggesting synergy is confined to specific proteins
and not entire biological processes.

IFNγ-induced immune repertoire of ECs. To delineate biolo-
gical processes from this multi-omics integration, we dissected
the IFNγ induced processes, as these covered mostly immune
mediating processes. The “viral sensors” hub contains innate
antiviral proteins IFIT2, IFIT3, IFIH1, DDX58 and GPB1 and
GBP2 which were all induced by IFNγ (Fig. 6a). Interestingly,
although protein changes generally occur at later timepoints and
induced lower log-fold changes than mRNA, DDX58 is an
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example of limited fold changes in transcripts (max. 1-fold), while
protein increases over 3-fold. Complement factors were another
strongly induced IFNγ hub, especially C1R and C1S showed
drastically increased upregulation of transcripts (>5-fold)
(Fig. 6b). C3, crucial in the activation of the alternative pathway,
is the only uniquely TNFα-induced transcript in this hub.
However, whether transcript expression translated to protein
increases is unclear as corresponding proteins were not detected.
IFNγ also induced a strong antigen-presenting hub (Fig. 6c). We
previously reported TNFα induces MHCI proteins, including
HLA-A, HLA-B and HLA-C, which we observed here too36.

However, these MHCI complex proteins as well as immunopro-
teasome (PSMB8, PSMB9 and PSMB10) and immunoproteasome
regulator subunits (PSME1 and PSME2), peptide loading proteins
(TAP1, TAP2, ERAP1 and ERAP2)37,38 and immune checkpoint
protein Programmed death- ligand 1 (CD274) were higher
induced by IFNγ compared to TNFα. Moreover, IFNγ also
induced MHCII complexes required for exogenous antigen pre-
sentation. HLA-DR, HLA-DQ and HLA-DP transcripts were
upregulated 4–7-fold at 12–24 h of IFNγ stimulation. Interest-
ingly, in contrast to MHCI proteins, which were detected abun-
dantly on the protein level, we were only able to detect HLA-DRA
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and HLA-DRB in separate LFQ workflow experiments (Supple-
mentary Fig. 7a). To visualize the discrepancy between MHCI
and MHCII protein expression, we stained BOECs for HLA-A/B/
C or HLA-DR after stimulation of TNFα, IFNγ or combined
stimulation. MHCI showed a clear distribution over the cell
membrane, also in steady-state condition (Supplementary Fig. 7b)
and in line with both transcriptome and protein data, HLA-DR
was only observed in IFNγ stimulated conditions. However, in
contrast to the membrane distribution of HLA-A/B/C, HLA-DR
was mostly localized to compartments inside the cell (Fig. 6d).

Transcription factor networks at the basis of inflammatory
states. Next, we investigated whether regulation between the two
main signaling axes, NF-κB and JAK/STAT, could be at the basis of
the observed inflammatory states. As expected, members of the
NKFB complex such as NFKB2 (P100), NFKB1 (P40) and RELB
were classified as “TNFα”, while key mediators of the JAK/STAT
pathway, JAK1, JAK2, STAT1, STAT2 and STAT3 all classified as
“IFNγ” (Fig. 7a). Interestingly, transcripts of IFNγ receptors IFNGR1
and IFNGR2 were induced by TNFα, while the TNFα receptors

TNFR1 and TNFR2 in the NF-κB signaling axis were induced by
IFNγ. Plotting the effect size of each stimulus as a ratio of the total
observed combinatorial response reveals both signaling cascades
showed diverse response classifications and transcripts were not
exclusively regulated by one cytokine (Fig. 7b).

In a range of transcripts, the cumulative effect size of TNFα
and IFNγ was not equal to the total response of combined
stimulation, indicating a synergistic relation. Among these were
transcription factors RELA, STAT5A and STAT6, JAK3, a central
kinase in IFN signal transduction39, and LCP2, involved in T-cell
antigen receptor-mediated signaling40 (Fig. 7c). We also observed
synergetic downregulation of PECAM1, a crucial molecule in
maintaining EC cell junctions41. The synergetic regulation of
transcripts did not translate to the same extent into protein levels.
Only at the 24 h timepoint did correlating protein abundances in
the TNFα+ IFNγ condition exceed the cumulative abundance of
both cytokine stimuli separately.

Endothelial inflammatory states induce distinct secretomes.
Cytokine release by ECs is a direct avenue of immune modulation

Fig. 6 IFNγ induces regulation of viral sensors, complement factors and antigen presentation in ECs. a Overview of regulated innate immune sensors in
the “Viral Sensors” hub, b the “Complement factors” hub and c the “Antigen presentation” hub. Bar plots of highlighted transcripts/proteins indicate
median transcript level (VST) or protein SILAC ratio per stimulus and timepoint (n= 3 biological replicates). Colors indicate stimulus: TNFα (green), IFNγ
(blue), TNFα+ IFNγ (red). Node fill indicates response classification of transcript: TNFα (green), IFNγ (blue), TNFα+ IFNγ (red), common (orange) and no
classification (gray). d Confocal images of HLA-DR immunostaining in unstimulated ECs (Ctrl, pink) and stimulated with TNFα, IFNγ, and TNFα+ IFNγ.
HLA-DR staining is depicted in green, Hoechst staining in cyan. Representative experiment shown (n= 3 biologically independent experiments). Upper
limit of the display range were adjusted equally across images for visualization purposes.
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by interacting with different immune cells and both TNFα and
IFNγ induced distinct cytokine transcripts and synergetic
increases. However, the majority of cytokines was not detected on
the protein level, potentially because of the low abundance and
secretory nature of cytokines42. Therefore, we performed secre-
tomics experiments, following the workflow as described by
Deshmukh et al.43. Both secretomes and cell lysates were analyzed
using high-resolution LFQ MS (Fig. 8a). Time-dependent changes
were most apparent in the secretome as proteins were excreted

into the supernatant over time (Supplementary Fig. 8) and we
observed limited protein changes due to stimulation at early
timepoints (30 m and 4 h). However, after 24 h both TNFα and
IFNγ induced 29 and 54 significant proteins, respectively, and
this effect was amplified in the combined condition (177 proteins)
(Fig. 8b). Generating a STRING interaction network of upregu-
lated proteins in the combined stimulation revealed 6 protein
hubs enriching for extracellular proteins, such as extracellular
matrix, complement proteins and cytokines/chemokines (Fig. 8c).
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Fig. 8 Secretome analysis of ECs after TNFα, IFNγ and TNFα+ IFNγ stimulation. a Schematic overview of secretomics workflow. b Bar plot of number of
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Two hubs contained intracellular proteins namely ribosomal
units and mitochondrial proteins, indicating increased cell death.
Next, we used the ImmPort Cytokine Registry to create an
overview of all secreted cytokines in this experiment (n= 44) and
plotted the intracellular protein abundance and transcriptome
data (Fig. 8d). In line with the above-described inflammatory
signatures, we observed distinct cytokines secreted per stimulus
(13 for TNFα and 3 for IFNγ), cytokines excreted equally by both
stimuli (CSF1 and CXCL10) and 21 cytokines unaffected by a
stimulus and constitutively expressed (e.g., PDGFB). The syner-
gistic induction of CCL5, CCL8, CXCL9 and IL6 transcripts
translated to increased secreted protein levels, but the fold-
changes were less pronounced in the latter. Interestingly, whereas
IL6 showed minor mRNA increases it was abundantly present in
the secretome. To gain an insight into the putative-affected cell
types, we employed the ImmunXpresso text mining database and
plotted the number of citations describing cytokine-cell interac-
tions per released cytokine subset. For TNFα induced cytokines
most citations described interactions with neutrophils (n= 566),
followed by macrophages and T-cells, while IFNy-released cyto-
kines were cited mostly for macrophages (n= 140), bone (mar-
row) cells and T-cells (Fig. 8e). Synergistically released cytokines
(CCL5, CCL8, CXCL9 and IL6) enriched for papers on T-cells
(n= 153), B-cells and bone (marrow) cell interactions, suggesting
that each EC inflammatory state favors interactions with different
immune cell types.

Discussion
ECs are at the crossroads of inflammation and hemostasis and are
increasingly recognized for their immunomodulatory role. We
demonstrate TNFα and IFNγ induce system-wide adaptive EC
inflammatory states. Moreover, the combination of TNFα and
IFNγ induced a synergistic EC response. This study provides an
in-depth molecular mapping on multiple regulatory levels and
offers an extensive resource on the underlying regulation of
endothelial inflammation.

As is well established, ECs contribute to immune cell migration
directly through TNFα induced upregulation of VCAM1, ICAM1
and SELE28,36,44. Here, we show that ECs, in addition to TNFα,
can sense a plethora of cytokines and react on the proteome level,
but the response remains limited for most. Moreover, we observe
a large overlap between different stimuli, especially the TNFα
cluster shared responses with both IL1-α and IL1-β, in accor-
dance with previous reports36,45. The two other overlapping
clusters contained mainly chemokines which could explain the
relatively limited proteomic response. Some of these, such as
MIP3a (CCL20) and MIP5 (CCL15), have been implicated in
transmigratory processes of monocytes and dendritic cells46,47,
which could indicate these chemokines affect specific transmi-
gratory processes instead of inducing cell-wide proteomic
changes.

IFNγ stimulation resulted in the second-highest response,
which did not overlap with any of the other cytokines and
highlighted the immunomodulating capacities of ECs. IFNγ
induced a strong upregulation of antiviral proteins and comple-
ment proteins. Of the latter, we observed C1R, C1S and CFB
secretion into the extracellular matrix, showing the contribution
of ECs to the regulation of the complement cascade. As expected,
IFNγ also induced a strong increase of MHCII complex proteins.
ECs are implicated as modulatory antigen-presenting cells, reg-
ulating CD8+ and CD4+ T cell tolerance and transmigration and
play a role in allograft rejection48–50. Interestingly, although
MHCII is constituently expressed in vivo, our confocal analysis
revealed that after 24 h of simulation, HLA-DR proteins were not
expressed at the cell surface but were mostly confined to

intracellular compartments. This could be an artifact of in vitro
culturing ablating the transport of HLA-DR proteins to the cell
surface and potentially longer stimulation windows or a sec-
ondary trigger is necessary to facilitate cell surface expression51,52.
In addition to the internal molecular mechanisms, another ave-
nue of endothelial immunomodulation is through extracellular
communication in the form of released signaling proteins. In line
with intracellular processes, different proteins were secreted
depending on the stimulus. TNFα is well studied in the context of
neutrophil transmigration and cytokines released after TNFα
stimulation did indeed enrich mostly for papers on neutrophil
interactions. IFNγ stimulation induced secretion of CXCL9,
CXCL10 and CXCL11, which all signal via the CXCR3 receptor
that is mostly present on monocytes, T-cells, NK-cells, and
dendritic cells53,54. However, TNFα does not exclusively induce
granulocyte attractants (e.g., CCL20 and CX3CL1) and most
chemokines have chemoattractant properties for multiple
leukocytes55. Combined TNFα and IFNγ synergistically increased
CCL5, CCL8, CXCL9 and IL6 levels, further nuancing which
immune cells are favored by the endothelium. Moreover, IL6 is
associated with inflammatory disorders and implicated as a
marker for disease severity in for example ARDS and COVID-
1956,57.

Comparing the temporal nature of TNFα and IFNγ responses
showcased different dynamics between mRNA and proteome,
while both cytokines induced a similar immediate phospho-
signaling response. On the transcriptome level, TNFα induced a
more immediate response which generally decreased within 24 h.
Interestingly, TNFα-induced expression of surface adhesion
molecules such as VCAM1, can last for several days, indicating a
small induction can induce lasting protein expression58,59. On the
contrary, IFNγ induced mRNA expression increases steadily over
time reaching peak transcript levels at 24 h, the endpoint in this
study. Whether the IFNγ response is sustained remains to be
elucidated, but studies have shown a lasting proteome response
for 48 h after short-term (3 h) IFNγ simulation windows60.

The synergetic effects of combined TNFα and IFNγ stimulation
in ECs have been observed in previous reports21–23 and in line
with these observations, combining both TNFα and IFNγ resulted
in system-wide cooperative regulation as well. However, protein
induction was generally less pronounced compared to synergetic
mRNA increases and changes in protein abundance occurred
mainly between 12 and 24 h, which could indicate synergy in the
proteome is more apparent at later timepoints. The molecular
basis of the synergetic interplay can be multifold. One mechanism
could be an increased mRNA expression by both cytokines. For
example, CXCL10 is reported to have two transcription factor
binding regions, one for NF-κB and one for interferon sensitive
response element22,61 and we indeed observe combined stimu-
lation to be a summation of both separate stimuli. Other studies
have described altered mRNA half-life times through cytokine
stimulation62. For example, CCL5 mRNA can be stabilized
through IFNγ stimulation, and we indeed observe a synergetic
increase in mRNA levels when combined with TNFα even though
IFNγ alone does not induce transcript expression63,64. In con-
trast, the synergetic decrease of PECAM1 transcripts could be
explained by cytokine-induced mRNA destabilization65. More-
over, these mechanisms are specifically regulated per protein. For
example, CCL5 and CCL8, both synergistically induced proteins,
show opposite induction patterns: for CCL5 TNFα induces, and
IFNy stabilizes mRNA, while for CCL8 these roles are reversed.

The activation of different NF-κB and STAT transcription
factors seems to underly the different inflammatory states and we
observe crosstalk in the two main activation pathways of these
transcription factors. Especially synergetic induction of key
mediators of these signaling axes such as NF-κB complex protein
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RELA and JAK3 and STAT5A/6 suggests the differential activa-
tion of transcription programs through combined stimulation.
Considering interactions between transcription factors such as
NF-κB, interferon regulatory factors and STATs22,66, this dras-
tically increases the complexity of regulation driving inflamma-
tory states. When putting our findings in the context of in vivo
regulation we should consider the limitations of this study. We
employ BOECs as our in vitro model, which are less well-
characterized than other used EC models such as HUVECs.
However, BOECs have been shown to express mature EC markers
over multiple passages, are preferred for metabolic labeling stra-
tegies due to their extensive proliferative ability and can be
directly derived from adult donors and patients24,25,67–69.
Variability in donor-to-donor responses is a point of concern as
well70,71, but throughout this study, we employed BOECs derived
from 19 different donors (Supplementary Table 2) and observed
consistent inflammatory signatures throughout. Growth condi-
tions of cultured ECs such as used matrix, 3D culturing, or flow
could also affect inflammatory outcome. However, although ECs
alter their cellular organization and phenotypical characteristics,
proteins induced upon inflammatory triggers seem conserved
between culture conditions, suggesting these additions nuance the
inflammatory response instead of alternating the activated
processes72,73. Ideally, an in vitro model combining flow and 3D
culturing would be employed, but these models often lack
robustness and throughput. ECs are also heterogenous between
different organs and vessel-types74 and it is unclear how
inflammatory processes are regulated throughout ECs from dif-
ferent vascular beds. An important distinction considering vas-
cular inflammatory disorders, is that between the micro- and
microvasculature. Although studies have shown ECs derived from
the macro- or microvasculature retain their specific differences in
culture75, it is difficult to assess whether BOECs take on a macro-
or micro-like vessel type as they differentiate within the in vitro
microenvironment. Comparing steady-state mRNA data high-
lighted the challenges of assessing EC variation over multiple
studies. We did observe overall similar relative expression levels
of EC markers and TNFα and IFNγ receptors, suggesting the
observed cytokine responses could potentially be translated to
other EC types as well30–32. To assess whether these inflammatory
states are conserved between different vascular beds is a crucial
step in future studies to understand tissue-specific EC inflam-
mation. In conclusion, this study provides a detailed insight of the
inflammatory states of the endothelium which is regulated
through intricate transcriptional and translational control.
Uncovering these molecular mechanisms is vital in understanding
the paths that lead to endothelial dysfunction and its contribution
to vascular inflammation.

Methods
Cell culture. BOECs were isolated from healthy donors as described by Ramirez
et al.24. For all experiments, except the multi-omics and secretome experiments,
three different pools of three unique BOEC donors (mixed sexes and ages) were
used (Supplementary Table 2). For the multi-omics and secretome experiments,
BOECs from three different donors (mixed sexes and ages) were pooled. Culture
flasks and dishes were coated with collagen type I (50 µg/ml, BD biosciences) for
1 h prior to use. Cells were cultured in EC basal medium (Lonza) supplemented
with 18% FCS (Bodinco) and EGM bulletkit (Lonza) unless stated otherwise. For
SILAC labeling, BOECs were maintained for 5 passages as described by Beguin
et al.36 in custom-made EGM medium (Lonza), containing EBM2 medium (not
containing Arganine and Lysine) (Lonza), EGM bulletkit (Lonza) and 18% FCS for
passages 1–3 and in 18% 1 kDa dialyzed FCS for passages 4–5. Cells were SILAC
labeled by the addition of isotope-labeled amino acids during all passages (light:
Arg0 and Lys0, medium: Arg6 and Lys4, heavy: Arg10 and Lys8, Cambridge Iso-
topes). After five passage incorporation of labeled amino acids reached >95% in the
total proteome.

Stimulation. All recombinant human cytokines used for stimulations were
obtained from Peprotech (Supplementary Table 1). ECs were stimulated in three

biological replicates with 10 ng/ml per cytokine for indicated timepoints, with the
exception of dose-response experiments, in which cells were stimulated at 1, 10 and
100 ng/ml. Prior to stimulation, cells were washed 3× with PBS and stimulations
were performed in endothelial basal medium (Lonza) supplemented with 18% FCS
(Bodinco) and EGM bulletkit (Lonza), with the exception of SILAC BOECs and
secretome experiments. SILAC BOECs were serum starved for 2 h prior to sti-
mulation and stimulated in endothelial basal medium (Lonza) without additions.
Stimulations in secretome experiments were performed in phenol-red-free endo-
thelial basal medium (Promocell) without any additions.

Immunofluorescence staining. BOECs were grown to confluence on collagen-
coated glass coverslips. After 4 days, cells were either not stimulated or stimulated
with, TNFα, IFNγ or TNFα+ IFNγ as described above. Cells were fixed using 4%
PFA (Thermo Scientific), washed 3x with PBS and quenched with 50 mM
ammonium chloride (Sigma-Aldrich). Antibody staining steps were performed in
1% BSA (Serva), 0.1% Saponin (Sigma-Aldrich) to permeabilize cells. MHCI was
stained using pan-HLA monoclonal W6/32 mouse antibody generated from
hybridoma (ATCC, HB-95), HLA-DR was stained with monoclonal L243 anti-
human/monkey antibody (InVivoMAb, BE0306), both at 10 µg/ml. Alexa Fluor
488 chicken-anti-mouse conjugated secondary antibody (2 µg/ml) was used for
both stainings (Invitrogen, #A21200). Slides were fixed in Mowiol 4-88 (Poly-
sciences). Pictures were taken on an SP8 Confocal Laser Scanning Microscope
(Leica) with a 40×/1.30 oil objective (Leica, 11506359) at 1024 × 1024 resolution.
Images were processed using Fiji76. Immunostaining was performed three times in
independent experiments.

RNA sequencing. Cells used for RNAseq analysis were lysed in RLT buffer
(QIAGEN) according to the manufacturer’s protocol. RNA sequencing was per-
formed by GeneWiz (Azenta life sciences), including RNA isolation, library pre-
paration, strand-specific RNAseq with PolyA selection and Illumina paired-end
150 bp sequencing. After quality control with FastQC, sequences were aligned to
the human ChGR38.104 genome reference using STAR 2.7.8a and reads were
summarized using featureCounts 2.0.1. Differential expression analysis was per-
formed using DESeq277, applying a significance threshold of a
Benjamini–Hochberg (BH) multiple testing corrected p value of <0.05 and log2 fold
change of >1.

Mass spectrometric analysis. For mass spectrometry analysis of EC proteomes,
cells were lysed in 1% sodium deoxycholate (Bioworld), 10 mM TCEP (Thermo
Scientific), 40 mM chloroacetamide (Sigma-Aldrich), 100 mM Tris-HCl pH 8.0
(Gibco) supplemented with 1× HALT protease/phosphatase inhibitor (Thermo
Scientific). Lysates were incubated for 5 min at 95 °C and sonicated for 10 min in a
sonifier bath (Branson model 2510), after which trypsin (Promega) was added in a
1:50 (w/w) protein ratio. Peptides were desalted with C18 cartridges (Agilent)
according to manufacturers’ instructions and where applicable phosphopeptide
enrichment was performed using Fe(III)-IMAC cartridges (Agilent) as described by
Post et al.78 on an AssayMAP BRAVO (Agilent). For the deep proteome protein
was first cleaned with HyperSep C18 Cartridges (Thermo Scientific) and HyperSep
Hypercarb SPE Cartridges (Thermo Scientific). Then, samples were fractionated
with the Pierce High pH reversed-phase peptide fractionation kit (Thermo Sci-
entific) and fractions desalted with Empore C18 STAGE tips (Supelco). Fractio-
nation was performed in triplo and obtained fractions were measured separately.
For secretome analysis, samples were worked up as described in Deshmukh et al.43

using minor adjustments. First, supernatants were collected and filtered using a
0.2-μm filter (Whatman). Collected supernatants were spun down at 5000 g to
remove cell debris and stored at –80 °C before further use. Samples were acetone
(1:4 ratio, Biosolve) precipitated overnight at –20 °C, before precipitates were lysed
with Urea (6 M, Invitrogen) + ThioUrea (2 M, Sigma-Aldrich), reduced with
10 mM DTT (40min, Thermo Scientific), and alkylated with 55 mM IAA (Thermo
Scientific) in the dark (40 min). Samples were subsequently digested with 0.5 ug
LysC/Trypsin (Thermo Scientific) overnight and desalted on Empore C18 STAGE
tips (Supelco).

Peptides were separated by nanoscale C18 reverse chromatography coupled
online to an Orbitrap Fusion Lumos Tribrid mass spectrometer or Orbitrap Fusion
Tribrid mass spectrometer (Thermo Fisher Scientific) via a nanoelectrospray ion
source at 2.15 kV. Buffer A was composed of 0.1% formic acid and buffer B of 0.1%
formic acid and 80% acetonitrile. For label-free analysis, peptides were loaded for
17 min at 300 nl/min at 5% buffer B, equilibrated for 5 min at 5% buffer B
(17–22 min) and eluted by increasing buffer B from 5 to 27.5% (22–122 min) and
27.5 to 40% (122–132 min), followed by a 5 min wash to 95% and a 6 min
regeneration to 5%. Survey scans of peptide precursors from 375 to 1500 m/z were
performed at 120,000 resolution (at 200 m/z) with a 4 × 105 ion count target.
Tandem mass spectrometry was performed by isolation with the quadrupole, with
isolation window 0.7, higher energy collisional dissociation (HCD) fragmentation
with normalized collision energy of 30 and rapid scan mass spectrometry analysis
in the ion trap. The tandem mass spectrometry (MS2) ion count target was set to
3 × 104, and the max injection time was 20 ms. Only those precursors with charge
state 2–7 were sampled for MS2. The dynamic exclusion duration was set to 30 s
with a 10 ppm tolerance around the selected precursor and its isotopes.
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Monoisotopic precursor selection was turned on. The instrument was run in top
speed mode with 3 s cycles. All data were acquired with Xcalibur software (Thermo
Fisher Scientific).

For phosphoproteomics acquisition of SILAC labeled samples, tryptic peptides were
loaded for 17min at 300 nl/min at 5% buffer B, equilibrated for 5min at 5% buffer B
(17–22min) and eluted by increasing buffer B from 5 to 15% (22–87min) and 15 to
38% (87–147min), followed by a 10min wash to 90% and a 5min regeneration to 5%.
Survey scans of peptide precursors from 350 to 1750m/z were performed at 240 K
resolution (at 200m/z) with a 2 × 105 ion count target. Tandem mass spectrometry was
performed by isolation with the quadrupole with isolation window 1.6, HCD
fragmentation with normalized collision energy of 30, and rapid scan mass
spectrometry analysis in the orbitrap. The MS2 ion count target was set to 105 and the
max injection time was 60ms. Only those precursors with charge state 2–7 were
sampled for MS2. The dynamic exclusion duration was set to 60 s with a 10-ppm
tolerance around the selected precursor and its isotopes. Monoisotopic precursor
selection was turned on. The instrument was run in top N mode. For SILAC proteome
samples a slightly adjusted protocol was used: peptides were loaded for 17min at 300 nl/
min at 5% buffer B, equilibrated for 5min at 5% buffer B (17–22min) and eluted by
increasing buffer B from 5 to 28% (22–80min) and 28 to 40% (80–85min), followed by
a 5min wash to 95% and a 5min regeneration to 5%. Survey scan was set to 240 K with
a 1 × 106 ion count target. Tandem mass spectrometry was performed on the 10 most
intense ions by isolation using the quadrupole and analysis in the ion trap at a
resolution of 30 K. The MS2 ion count target was set to 5 × 104 with a maximum
injection time of 60ms. The instrument was run in top speed mode with 3 s cycles. All
data were acquired with Xcalibur software.

Mass spectrometry data analysis. The RAW mass spectrometry files were
processed with the MaxQuant computational platform, 1.6.2.10. Proteins and
peptides were identified using the Andromeda search engine by querying the
human Uniprot database (release 2019). Standard settings with the additional
options match between runs, LFQ, IBAQ, and unique peptides for quantification
were selected. For SILAC samples, multiplicity was set to 3 (for Arg0 and Lys0,
Arg6 and Lys4 and Arg10 and Lys8) and the re-quantify option was enabled, where
applicable Phospho STY was set as a dynamic modification. Data were analyzed
using R 3.5.2/RStudio 1.1.456. For label-free data, “reverse”, “potential con-
taminants” and “only identified by site” peptides were filtered out. Proteins and
phosphosites were filtered for at least 100% valid values per experimental group.
LFQ values were transformed in log2 scale. Missing values were imputed by a
normal distribution (width = 0.3, shift = 1.8), assuming these proteins were close
to the detection limit. Batch effects were corrected for using ComBat in the sva
package. Label-free statistical analyses were performed using LIMMA79. For SILAC
data analysis, statistical analysis was performed using a linear model without
intercepting non-imputed data. For clustering purposes, missing values were
imputed by linear approximation using the Amelia package. For both label-free and
SILAC data, moderated t-tests were used to determine differentially abundant
proteins80. A BH-adjusted p < 0.05 and log2 fold change > 1 was considered sig-
nificant and relevant. For label-free secretomics data, a BH-adjusted p < 0.01 and
log2 fold change > 1 was used as the significance threshold.

Mapping cytokine-endothelial interactions. Receptor and ligand definition was
performed as described by Rieckmann et al.8. In brief, “extracellular“ keywords or
“GPI-anchor” topology domain based on the Uniprot knowledge base annotations
were used to define receptor proteins. STRING-DB interactions with known
interacting proteins (combined scores >0.4) were selected and annotated for
Uniprot “secreted” and “signal” keywords or GO:CC “extracellular space” and
“extracellular region” terms to define receptor ligands. Connections between
receptors and ligands were visualized in Cytoscape 3.8.0.

Response classification and inflammation map construction. RNA, protein and
phosphosite responses in the TNFα+ IFNγ stimulation were classified based on a
combined assessment of Pearson correlation with single TNFα and IFNγ condi-
tions and effect size by determining areas under the curves using the flux packages.
First dynamics were categorized as either S1-TNFα shape (correlation coefficient
>0.7 with TNFα and <0.7 with IFNγ stimulation); S2-IFNγ shape (correlation
coefficient <0.7 with TNFα and >0.7 with IFNγ stimulation); S3-common shape
(correlation coefficient >0.7 with TNFα and >0.7 with IFNγ stimulation) or S4-
TNFα+ IFNγ shape (correlation coefficient <0.3 with TNFα and <0.3 with IFNγ
stimulation). Effect sizes were categorized as E1-TNFα effect (AUC ratios
TNFα+ IFNγ stimulation/TNFα stimulation <2 and TNFα+ IFNγ stimulation/
IFNγ stimulation >2); E2-IFNγ effect (AUC ratios TNFα+ IFNγ stimulation/
TNFα stimulation >2 and TNFα+ IFNγ stimulation/IFNγ stimulation <2), and
E3-TNFα+ IFNγ effect (AUC ratios TNFα+ IFNγ stimulation/TNFα stimulation
>2 and TNFα+ IFNγ stimulation/IFNγ stimulation >2). Classifications were set to
common if S3 but not E3 criteria were fulfilled; TNFα classification: S1 or S3+ E1;
IFNγ classification: S2 or S3+ E2; TNFα+ IFNγ classification: S3 or E3 classifi-
cations were fulfilled. If not fulfilling any shape or effect size cutoffs, classification
was set to “not classified”.

To construct an inflammation map, all transcript, proteins and phosphosites
that were statically significant in the TNFα+ IFNγ stimulation were selected and

collapsed to gene names. Based on STRING-DB interaction scores >0.9 gene names
were connected with edges. Edges between phosphosites, corresponding proteins
and transcript were manually appended to the network. This network was
visualized in Cytoscape 3.8.0. We first obtained the “EdgeBetweenness” using the
“Analyse Network” function, after which we used “Edge-weighted Spring
Embedded Layout” to visualize the network. We highlighted interaction hubs based
on closeness of nodes, overall regulation levels and biological overlap.

Co-expression, term enrichment and EC comparative analyses. Co-expression
analysis was performed using the WGCNA package81 using a signed network and a
soft power of 4, minClusterSize was set to 10. GO term enrichment and pathway
analyses were performed using clusterPofiler27 and rWikiPathways82 packages,
enrichments with a BH-adjusted p value <0.05 were considered significant. For the
comparative EC analyses, we selected three studies with various primary cultured
ECs. To compare datasets, batch effects were removed and normalized using the
Limma package79.

Statistics and reproducibility. Statistical tests are employed and significance cut-
off values are indicated per experiment in the methods section. For reproducibility,
ECs from 19 different donors were randomly combined in different pools of three
donors (Supplementary Table 2). All stimulations were performed in at least three
biological replicates, as indicated in per experiment.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE83 partner repository with the dataset identifier PXD036582.
The mRNA sequencing data have been deposited in NCBI’s Gene Expression Omnibus84

and are accessible through GE Series accession number (GSE213111). Source data used
for all figures in this study can be found in Supplementary Data 1–5. Any remaining
information can be obtained from the corresponding author upon reasonable request.

Code availability
In-house written scripts are available from the corresponding author upon reasonable
request.
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