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Abstract

Species persistence can be influenced by the amount, type, and distribution of diversity across the 

genome, suggesting a potential relationship between historical demography and resilience. Here, 

we surveyed genetic variation across single genomes of 240 mammals comprising the Zoonomia 

alignment to evaluate how historical effective population size (Ne) impacts heterozygosity and 

deleterious genetic load and how these factors may contribute to extinction risk. We find that 

species with smaller historical Ne carry a proportionally larger burden of deleterious alleles due 

to long-term accumulation and fixation of genetic load, and have higher risk of extinction. This 

suggests that historical demography can inform contemporary resilience. Models that included 
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genomic data were predictive of species’ conservation status, suggesting that, in the absence of 

adequate census or ecological data, genomic information may provide an initial risk assessment.

One-Sentence Summary:

Genomic data from 240 species show that information encoded within a single genome can 

provide a conservation risk assessment.

The current rate of biodiversity loss amounts to a sixth mass extinction(1) and is 

compounded by substantial population declines across nearly one third of vertebrate 

species(2). Many species need immediate conservation intervention, a process that is 

especially challenging for the more than 20,000 species currently listed as “Data Deficient” 

by the International Union for Conservation of Nature (IUCN). Fortunately, genomic 

data, which are increasingly available for a broad taxonomic range of species, may hold 

promise for helping to identify at-risk species by providing readily accessible information 

on demography and fitness-relevant genetic variation(3, 4). It remains poorly explored, 

however, to what extent genomic data on their own are sufficient to help triage endangered 

species for conservation intervention.

Population genetic diversity and individual heterozygosity are long recognized correlates 

of fitness-relevant functional variation(5, 6). Our previous analysis of 124 placental 

mammalian genomes showed that lower heterozygosity and stretches of homozygosity are 

more common in species in threatened IUCN Red List categories(7). However, functional 

diversity, including estimates of adaptive variation and genetic load, may also be useful 

correlates of population resiliency. Such measures are increasingly accessible with emerging 

genomic tools(8) and comparative genomics resources such as the Zoonomia alignment 

of placental mammalian genomes (table S1)(7). The Zoonomia alignment provides high-

resolution constraint scores and reconstructed ancestral sequences that can help to identify 

deleterious alleles at functionally important sites(7, 9).

Here, we surveyed the distribution of neutral and functional genetic variation across 240 

species in the Zoonomia alignment to determine how historical effective population sizes 

(Ne) have influenced heterozygosity and deleterious genetic load (fig. S1). We test the value 

of genomic data to more precisely target species for conservation efforts by comparing 

the outcome of predictive models of conservation status that use ecological data, genomic 

data, or both. While we acknowledge the limitations of assuming that single genomes 

are representative of a species, our approach capitalizes on the unique resource provided 

by the Zoonomia consortium to explore whether genomic data can provide initial risk 

assessments that may be useful to triage data-deficient species and guide resource allocation 

for conservation intervention.

Historical population size is relevant to contemporary extinction risk

Species with historically small Ne tend to be classified in threatened IUCN Red 

List categories (Fig. 1). Species classified as Near Threatened (NT), Vulnerable (VU), 

Endangered (EN) or Critically Endangered (CR) had significantly smaller harmonic 
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mean Ne (meanthreatened=18,950) compared to non-threatened species (Least Concern 

(LC); meannon-threatened=27,839; p<3.3e-5 when accounting for relationships across the 

phylogeny; Fig. 1B; figs. S2). Ne was also significantly smaller in threatened compared 

to non-threatened species within two of three taxonomic orders with sufficient numbers of 

species to test (Cetartiodactyla: meanthreatened=18,336, meannon-threatened=22,648, p=0.023; 

and Carnivora: meanthreatened=9,636, meannon-threatened=26,195, p=2.4e-5; but not Primates: 

meanthreatened=22,508, meannonthreatened=24,373, p=0.31; fig. S3). Within these two orders 

in particular, large-bodied herbivores and carnivores have declined in both geographic range 

and population size during the Anthropocene(10, 11). Smaller populations are expected 

to have higher extinction risk, yet these historical Ne estimates reflect periods more than 

10,000 years in the past, suggesting that long-term characteristics of ancestral populations 

can be informative about population size and extinction risk today. These results support 

the utility of metrics of genome-wide diversity in conservation assessments, a topic that is 

currently debated(12, 13).

Estimates of historical Ne can also identify previously large populations that have 

experienced contemporary declines. Specifically, if the estimate of historical Ne is large 

while Nc is small, this inflates the Ne/Nc ratio. In a study of pinnipeds, for example, most 

species that had undergone recent declines had smaller population census sizes (Nc) than 

expected based on their historical Ne (14). To test this across the taxonomic range of the 

Zoonomia alignment, we examined the ratio of deep historical Ne to contemporary Nc 

for 89 species with population census information available in PanTHERIA(15). Species 

in threatened IUCN categories had larger Ne/Nc ratios, i.e. smaller contemporary Nc 

relative to historical Ne (meanthreatened=1.07e-3; meannon-threatened=4.29e-4; p=0.012; Fig. 

1C). The relationship was also significant within Primates (phylolm, meanthreatened=3.46e-3; 

meannon-threatened=1.11e-3; p=0.029), the only order with available Ne/Nc estimates and 

sufficient numbers of taxa in the two threat categories, indicating that the pattern holds 

among species with similar life-history traits. Across taxa, the largest Ne/Nc ratios included 

American bison (Bison bison), giant panda (Ailuropoda melanoleuca), and hirola (Beatragus 
hunteri), all of which have declined due to recent human activities(16–18).

Historically smaller populations carry proportionally larger burdens of 

genetic load

Historical Ne is correlated with the proportion of deleterious substitutions in mammalian 

genomes, reflecting the accumulation and fixation of genetic load over long evolutionary 

time periods. We called derived, single nucleotide substitutions for each species relative 

to the reconstructed sequence of the nearest ancestral phylogenetic node and called 

heterozygous sites from resequencing data mapped to the focal genome. We inferred the 

impacts of derived substitutions and heterozygous variants assuming that mutations at 

sites that are conserved across taxa (phyloP>2.27)(9) and nonsynonymous mutations are 

predominantly deleterious (fig. S1)(19). Assuming most substitutions are fixed and mutation 

rates are similar across the phylogeny (20)(21), the proportion of substitutions that are 

deleterious should be correlated with the total number of fixed deleterious mutations in 

the genome. Deleterious substitutions should therefore largely reflect fixed drift load that 
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reduces the mean fitness of the population, whereas heterozygous deleterious variants reflect 

segregating mutational load(22).

We found that species with smaller Ne had proportionally more substitutions at 

evolutionarily conserved sites genome-wide (phylolm, p=9.65e-3) and proportionally more 

missense substitutions in genes (phylolm, p=7.76e-5; fig. S4). Phylop kurtosis, which 

describes the extreme phyloP outliers in the tail of the distribution across substitutions, 

was positively correlated with Ne (phylolm, p=0.014). This means that species with smaller 

Ne had smaller right tails and therefore fewer substitutions at extremely conserved sites. To 

further parse potential fitness impacts of mutations in protein-coding regions, we examined 

genes with associated viability phenotypes in single-gene knockout mouse lines classified by 

the International Mouse Phenotyping Consortium (IMPC), assuming that, when aggregated 

across many genes, viability classifications are correlated to their fitness impacts in other 

species(23). Species with smaller Ne had proportionally more missense mutations relative 

to coding mutations in nearly all categories (phylolm, p<3.00e-5; Fig. 2; figs. S5–S6). We 

observed proportionally fewer missense mutations in IMPC lethal genes relative to IMPC 

viable genes (ANOVA, p<4.42e-9; fig. S7), reflecting stronger purifying selection in the 

lethal gene class, but the negative correlation was nonetheless consistent for both lethal and 

viable categories (Fig. 2). This relationship supports both theoretical predictions that smaller 

populations experiencing strong drift accumulate and fix weakly and moderately deleterious 

alleles (drift load)(12, 24) and empirical studies involving fewer or single taxa(25–27).

The correlations between Ne and conservation status and between Ne and drift load 

suggests that historical demography may influence contemporary extinction risk by shaping 

genome-wide diversity and genetic load. We found inconsistent relationships, however, 

between a species’ proportional genetic load and its odds of being threatened. Species 

with proportionally more missense substitutions were more likely to be threatened when 

considering all genes (phyloglm, p=0.002; fig. S4D), as well as genes in lethal and viable 

IMPC categories (phyloglm, p<0.023; fig. S6), as observed in other taxa(28). Drift load 

estimated from evolutionary constraint across the genome, however, showed the opposite 

pattern: species with proportionally fewer substitutions at evolutionarily conserved sites 

were more likely to be threatened (phyloglm, p=1.38e-05; fig. S4C). This latter result 

contrasts with expectations, given that threatened species have smaller Ne on average (Fig 

1) and smaller Ne is associated with proportionally more substitutions at conserved sites 

(phylolm, p=9.6e-3; fig. S4A). Interestingly, a previous study of 100 mammal genomes also 

found that threatened species had lower mean conservation scores across mutations(29). 

They suggested that the pattern may reflect fewer recessive deleterious alleles due to purging 

or the loss of these rare alleles to drift. The conflicting relationships between conservation 

status and metrics of drift load thus do not provide strong support for a mechanistic link 

between fixed drift load as measured in this study and species’ resilience against extinction.

Genomic information can help predict extinction risk

Historical Ne was the most consistent genomic predictor of conservation status across 

regression models, while the predictive value of genetic load metrics varied with 

phylogenetic context (Fig. 3, tables S2–S3). Ordinal and logistic regression models 
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incorporating genomic variables with taxonomic order and dietary trophic level showed 

that the effect of Ne varied by ecological context. For example, an herbivore with a 

given Ne was more likely to be threatened than a carnivore or omnivore with the same 

Ne (Fig. 3B), supporting findings of elevated extinction risk in herbivores despite larger 

populations(30). Similarly, Carnivora and Primates both had increased risk with lower levels 

of severely deleterious genetic load. However, the specific metric of load that predicted 

conservation status differed among taxonomic orders, perhaps reflecting differences in 

natural history or ecological flexibility (figs. S8–S10). Principal components (PC) regression 

of demographic and genetic load variables showed that, overall, threatened species tended 

to have proportionally more deleterious mutations in coding regions, lower heterozygosity, 

and smaller Ne (PC1; p=0.0038), as well as proportionally more missense substitutions 

(PC3; p=5.6e-4; Fig. 3A, table S3). Although no single genomic variable unambiguously 

discriminated threatened from non-threatened species (fig. S2), many have predictive value, 

which will be particularly relevant for species lacking adequate ecological or census data.

Although ecological data were more powerful than genomic data to predict extinction risk in 

our predictive models, models using only information from single genomes nonetheless 

identified species at risk of being threatened. We generated random forest models to 

predict conservation status from ecological traits(31, 32) and genomic features, using area 

under the receiver operating characteristic (AUROC) to evaluate performance. A model 

with AUROC of 0.5 has no predictive ability, whereas a model with AUROC of 1.0 has 

perfect predictive performance. We selected predictive variables from among 13 genome-

wide summary statistics including demographic history, genetic diversity, and genetic 

load variables, ~57,000 window-based metrics per genome, and 39 ecological variables 

from PanTHERIA(15) including physiological, life-history, and behavioral variables (table 

S4). Models including only genomic features and no ecological variables (17 models; 

AUROC ranged from 0.69–0.82) performed worse than models including only ecological 

variables (1 model; AUROC 0.88) and similarly to models including both genomic and 

ecological variables (17 models; AUROC range 0.68–0.83; table S5). Models with only 

genomic features were, however, consistently better able to distinguish threatened from non-

threatened species (tables S5–S6; fig. S11–13) compared to random chance (i.e. AUROC 

of 0.5). Models including only genomic variables performed similarly to other studies that 

predicted IUCN status from ecological or morphological data with comparable sample sizes 

(e.g. AUC ranging from 0.67–0.90 for n=171–430 species) (33–35).

The number of species with values for ecological, genome-wide summary statistics, and 

window-based metrics differed, which may affect model performance. To compare the 

predictive value of genomic and ecological features directly, we next tested models in a set 

of 210 species for which both data types were available (tables S4 and S6). Again, the model 

with genome-wide summary statistics alone was predictive of threatened status (AUROC 

0.71), but performed more poorly than the model with ecological variables (AUROC 

0.83). Combining genomic summary statistics with ecological variables led to a modest 

improvement in distinguishing threatened from non-threatened species (AUROC=0.85) 

compared to genomic variables alone, with Ne as the fourth most important predictor 

in the model after weaning age, age at first birth, and age of sexual maturity (fig. 

S14). Models including genomic window-based features never outperformed models with 
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ecological variables alone (table S6), suggesting that complementary information provided 

by genomic versus ecological data may be better captured by summary or transformed 

variables (e.g. principal components) than by numerous weakly informative window features 

that may overwhelm the predictive models. Overall, our evaluation suggests that while 

genomic information from a single individual is not better than ecological data for predicting 

threatened status, these data do have predictive value, especially when ecological variables 

are unavailable.

As a demonstration of their utility, we applied our regression and random forest models to 

predict the status of three species considered “Data Deficient” by the IUCN (Fig. 3D). The 

models suggest the Upper Galilee Mountains blind mole rat (Nannospalax galili), which 

lacks ecological data, is least likely to be threatened (11–44% probability), whereas the 

killer whale (Orcinus orca), for which both ecological and genomic data are available, is 

more likely to be threatened (35–68% probability), consistent with the identification of 

some at-risk populations(36). Predictions for the Java lesser chevrotain (Tragulus javanicus) 

depend on model specifications, with the highest threat prediction from the within-order 

regression model (67% probability), and other models suggesting it is less likely to be 

threatened (24–49% probability). The results indicate that, among the three species, the 

killer whale should be prioritized for further study, and demonstrate how genomic data can 

provide a rapid and inexpensive initial conservation assessment.

Discussion

Our results provide empirical support for theoretical predictions that small populations 

accumulate and fix weakly and moderately deleterious alleles, and demonstrate a correlation 

between historical effective population size and contemporary extinction risk. We found 

little evidence, however, that species with historically small effective population sizes have 

higher risks of extinction because of elevated drift load. Alternatively, historically small 

populations may have elevated extinction risk simply because these populations are small 

and thus more vulnerable to other threats such as habitat loss or change, the introduction 

of infectious disease, competition with invasive species, and new hunting or predation 

pressures.

Despite the limitations of assuming that a single genome is representative of the diversity 

within a species, our comparative genomics approach allowed us to maximize the number 

of species analyzed to explore the power to detect genomic correlates of endangerment. 

Empirical studies suggest a single individual can represent a species for characteristics 

shaped by long-term evolutionary history; variation in the proportion of deleterious 

mutations is typically smaller within species than between(37, 29), and historical Ne 

estimates are consistent across conspecifics(38, 39). The analysis of multiple resequenced 

individuals per species, however, will increase accuracy and resolution by capturing 

intraspecific variation in genetic diversity, heterozygosity, and inbreeding (especially 

for species with strong population structure), enabling estimation of allele frequencies, 

improving inference of more recent demographic history, and allowing better detection 

of rare and segregating variants(e.g. inbreeding load; 22). The latter may be particularly 

important for estimating extinction risk, as segregating variants tend to be enriched 
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for deleterious alleles(40, 41) and may disproportionately impact extinction risk from 

population bottlenecks(12). In the future, larger data sets comprising multiple individuals 

per species may shed light on long-standing questions about the relative impact on fitness of 

many weakly deleterious alleles versus a few strongly deleterious alleles(22, 25, 37, 42, 43).

Inferring real-world fitness from genomic data includes caveats. Evolutionary constraint 

may, for example, reflect past selection on loci that no longer impact fitness(44). Loci that 

seem functionally important in model species may be irrelevant to the species of interest, 

compensatory mutations may ameliorate the impact of deleterious mutations, and factors 

such as dominance, epistasis, pleiotropy, and purging may also complicate the relationship 

between genetic load and fitness. Finally, local differences in habitat may mean that the 

impact of deleterious mutations differs among individuals or populations(25, 45, 46). For 

these reasons, the impact of the observed proportionally higher load in smaller populations 

will be challenging to know in the absence of direct fitness data, such as reproductive 

success and the frequencies of genetic diseases and congenital abnormalities(26, 43, 47).

As additional genomes and population resequencing data become available(48), the power 

and accuracy of predictions of extinction risk from genomes will improve(8). Our analyses 

of the genomes of single individuals, which can be generated rapidly and inexpensively(49), 

demonstrate the potential for using genomic estimates of demography, diversity, and genetic 

load to triage species in need of immediate management intervention, and we join in the 

calls for including genomics into conservation status assessments(50–53).

Materials and Methods

We provide a summary of our materials and methods below; refer to the Supplemental 

Materials and Methods for further detail.

Mammal genomes and metadata

We examined genomic variation in 240 species represented by 241 reference genomes in 

the Zoonomia multispecies alignment. The genome assemblies varied in quality, with contig 

N50 values ranging from 1 KB to 56 MB (table S1). Short-read sequence data, usually from 

the reference individual, were used to estimate metrics related to historical demography, 

heterozygosity, and heterozygous deleterious variants from single genomes. Homozygous 

deleterious genetic load was estimated relative to reconstructed ancestral sequences from the 

multispecies alignment (fig. S1). We tested correlations between all genomic metrics, and 

between genomic metrics and extinction risk, using a statistical framework that accounts for 

phylogenetic relationships across species. Using regression and machine learning models, 

we tested the potential for genomic data to predict the conservation status of species.

For all species, we compiled metadata on conservation status, diet, and generation time 

(table S1). We assigned a conservation status (Least Concern (LC), Near Threatened (NT), 

Vulnerable (VU), Endangered (EN) or Critically Endangered (CR)) to the lowest known 

taxonomic level of the sequenced sample, using the IUCN Red List of Threatened Species 

(IUCN Red List API v. 3) as a proxy for extinction risk. We classified each species as 

carnivore, herbivore, or omnivore based on(54), using information for the genus when 
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species-specific information was unavailable. From available metadata, we categorized the 

sample used for both the reference genome and short-read data as a wild, captive, or 

domesticated individual.

Tests for correlations between variables were conducted with phylogenetic linear regression 

or phylogenetic logistic regression in the R package phylolm(55), incorporating the 

phylogenetic tree with branch lengths(56) to account for non-independence.

Estimating historical effective population sizes and genome-wide heterozygosity

We called heterozygous positions in all genomes with short-read data using the GATK best 

practices pipeline as described previously(7). Briefly, we mapped paired-end sequencing 

data to the respective genome assemblies using BWA mem (version 0.7.15)(57), marked 

and removed optical duplicates, and called heterozygous variants using the HaplotypeCaller 

module of the GATK software suite (version 3.6)(58).

We inferred the history of effective population sizes (Ne) for each species using PSMC 

(version 0.6.5-r67)(59). We called variants in each genome from scaffolds >50KB in 

length, filtered for sequence read coverage and base quality score, and used these as 

input for PSMC. We rescaled the PSMC output using species-specific generation times(60) 

and a mammalian mutation rate(21) and calculated the harmonic mean across temporal 

estimates from periods >10 kya. To compare contemporary population sizes to historical 

Ne, we obtained census population estimates (Nc) for 89 species from the PanTHERIA 

database(15), estimating Nc as the product of population density and geographic area from 

census data(15, 61).

To identify runs of homozygosity (RoH), we used our previously described method(7). 

For every assembly, we calculated the ratio of heterozygous to callable positions in non-

overlapping, 50-kb windows, and fit a 2-component Gaussian Mixture Model to the joint 

distribution, which is expected to be bimodal with a peak at the lower tail of the distribution 

corresponding to runs of homozygosity (fig. S1B). Windows were then assigned as RoH or 

non-RoH and used to calculate the proportion of the genome in RoH (fRoH), genome-wide 

heterozygosity, and outbred heterozygosity (i.e. heterozygosity in non-RoH regions; figs. S2 

and S15).

Deleterious genetic load

We called heterozygous variants from single sample, short-read data mapped to the reference 

genome of each species. Homozygous substitutions were estimated from each reference 

genome relative to the closest reconstructed ancestral sequence in the phylogeny using the 

halBranchMutations tool in the Comparative Genomics Toolkit(62). Because new alleles 

become fixed or lost on the order of <4Ne generations(63), most homozygous substitutions 

between species are likely fixed. We assessed the potential functional impact of mutations 

by 1) evolutionary conservation of the site (phyloP), and 2) the estimated impact of the 

mutation on protein-coding genes. Mutations at evolutionarily conserved sites (phyloP>2.27;

(9)), and those that cause nonsynonymous changes in protein-coding genes, were assumed 

to be predominantly harmful(19). Variant sites in each genome were assigned human-based 

phyloP scores estimated from the multispecies alignment(9). To infer functional impacts 
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on protein-coding genes, each genome was annotated with human orthologs by lifting over 

human exon intervals to the target species. Synonymous, missense and loss-of-function 

variants were then estimated in the program SnpEff v.5.0e(64). We also examined mutations 

in single-copy genes with associated viability phenotypic data in knockout mice as classified 

by the International Mouse Phenotyping Consortium (IMPC)(23), using IMPC categories 

(e.g. lethal or viable) as a proxies for gene essentiality and the potential fitness impacts of 

mutations in these genes(23).

Predicting threat from genomic variables

To predict whether a species is threatened (NT, VU, EN, and CR categories) or non-

threatened (LC category), we modeled conservation status across species from genomic 

variables using both regression and machine learning models.

We took two main approaches in our regression models of conservation status across 

species, using 1) phylogenetic logistic regression to model threatened versus non-threatened 

status, which allowed us to test the significance of predictor variables, but not make 

predictions for species with unknown threat status, and 2) ordinal regression models of 

specific IUCN categories, which allowed us to test significance and make predictions for 

species with unknown threat status. Unlike logistic regression, ordinal regression did not 

inherently incorporate the phylogeny, so we included taxonomic order as a factor in the 

models. We tested 13 genomic variables (table S2), modeled individually and as principal 

components, and included taxonomic order and dietary trophic level, a previously described 

correlate of extinction risk(65). We estimated model error by fitting parameters on 80% 

of the data and testing the remaining 20% of the data across 100 runs with different data 

subsets.

We used random-forest based classification to estimate the likelihood that a species 

is threatened from 13 genome-wide summary statistics of heterozygosity, demographic 

history, and genetic load, and from 5 genomic metrics within homologous 50KB windows 

(table S4). We trained models using the two genomic data types (windows-based and 

genome-wide) separately and combined, and incorporated 39 ecological variables from the 

PanTHERIA database (table S4). We used the scikit-learn 1.0.2 package for fitting all the 

models(66).

We first split our dataset into a 75% training set and a 25% test set. For each model, we 

performed preprocessing and imputation steps using only the training data, then trained the 

model on the training set and evaluated it on the test set. We ran 5-fold cross validation 

on the training set to determine the optimal set of hyperparameters, tuning the number of 

decision trees, the maximum depth of the trees, and the number of features used at each 

decision to optimize a performance metric. We used AUROC to estimate how well a model 

predicts the correct output class. AUROC is designed to be more robust to class imbalance in 

comparison to a metric such as accuracy.

To leverage all available data, we first ran models using all species with data for a given data 

type (table S5). The number of species with values for ecological, genome-wide summary 

statistics, and window-based metrics differed however, which may impact the results. To 
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compare the performance of ecological and genomic variables and their combination across 

the same set of species, we also trained and tested models in the set of species for which 

both data types were available (table S6).

The Zoonomia alignment included three species classified as “Data Deficient” by the 

IUCN, the Upper Galilee Mountains blind mole rat (Nannospalax galili), the Java lesser 

chevrotain (Tragulus javanicus), and the killer whale (Orcinus orca). The blind mole rat 

lacked ecological data on PanTHERIA. We used the within-order and across-order ordinal 

regression models and all random forest models to predict the probability that these species 

are threatened.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Demographic history across mammalian orders and IUCN Red List categories.
(A) Estimates of effective population sizes (Ne) over time displayed by taxonomic order. 

Lines represent individual species, colored by IUCN status (LC= Least Concern, NT=Near 

Threatened, VU=Vulnerable, EN=Endangered, CR=Critically Endangered, DD=Data 

Deficient). Colored dots correspond to the taxonomic order of species depicted in (B) 
and (C). For visualization, only species with Ne estimates under 200,000 for every time 

point are shown. (B) Harmonic mean Ne was significantly lower in threatened IUCN 

categories relative to non-threatened (phylolm, p<3.3e-5). (C) The ratio of historical Ne 

to contemporary census population size (Ne/Nc) can identify species with smaller Nc than 

expected from historical Ne (phylolm, p=0.012). Points in (B) and (C) show individual 

species, colored by taxonomic order.
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Fig. 2. Historically small populations have more deleterious genetic load in protein-coding genes.
Proportion of homozygous missense substitutions (A-B), heterozygous missense variants 

(C-D) and heterozygous loss-of-function variants (E-F) in genes as a function of historical 

Ne across species. Genes were classified by associated lethal or viable phenotypes 

in knockout mice. Proportions of heterozygous and homozygous missense mutations 

were negatively correlated with Ne (all p<0.052), whereas heterozygous loss-of-function 

alleles were not consistently correlated with Ne. Phylogenetically corrected p-values and 

coefficients (phylolm) are reported.
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Fig. 3. Prediction of conservation status of species using genomic information.
(A) Principal components (PCs) that significantly predict threatened status. PC1 describes 

heterozygosity, Ne and deleterious variation, and PC3 distinguishes types of deleterious 

variation. Loadings of genomic variables (arrows; table S3) are labeled as described in 

table S2 (L=IMPC lethal genes; V=IMPC viable genes). Points indicate species, colored 

by IUCN status as shown in (B). (B-C) Probability of assignment to IUCN categories by 

diet and scaled values of historical Ne (B), and by taxonomic order and historical Ne of 

species (C). Decreased historical Ne is consistently associated with increased risk, but the 

magnitude varies by diet and taxonomic order. (D) Conservation status predictions for three 

data deficient species using random forest models with window-based metrics (windows), 

ecological variables (ecological), and/or genome-wide summary variables (summary), and 

predictions from regression models within and across taxonomic orders. Nannospalax galili 
lacked ecological data and adequate within-order data, so only predictions from across-order 

regression and windows models are shown for this species.
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