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Abstract

Deep learning techniques have recently demonstrated remarkable success in numerous

domains. Typically, the success of these deep learning models is measured in terms of per-

formance metrics such as accuracy and mean average precision (mAP). Generally, a mod-

el’s high performance is highly valued, but it frequently comes at the expense of substantial

energy costs and carbon footprint emissions during the model building step. Massive emis-

sion of CO2 has a deleterious impact on life on earth in general and is a serious ethical con-

cern that is largely ignored in deep learning research. In this article, we mainly focus on

environmental costs and the means of mitigating carbon footprints in deep learning models,

with a particular focus on models created using knowledge distillation (KD). Deep learning

models typically contain a large number of parameters, resulting in a ‘heavy’ model. A heavy

model scores high on performance metrics but is incompatible with mobile and edge com-

puting devices. Model compression techniques such as knowledge distillation enable the

creation of lightweight, deployable models for these low-resource devices. KD generates

lighter models and typically performs with slightly less accuracy than the heavier teacher

model (model accuracy by the teacher model on CIFAR 10, CIFAR 100, and TinyImageNet

is 95.04%, 76.03%, and 63.39%; model accuracy by KD is 91.78%, 69.7%, and 60.49%).

Although the distillation process makes models deployable on low-resource devices, they

were found to consume an exorbitant amount of energy and have a substantial carbon foot-

print (15.8, 17.9, and 13.5 times more carbon compared to the corresponding teacher

model). The enormous environmental cost is primarily attributable to the tuning of the hyper-

parameter, Temperature (τ). In this article, we propose measuring the environmental costs

of deep learning work (in terms of GFLOPS in millions, energy consumption in kWh, and

CO2 equivalent in grams). In order to create lightweight models with low environmental

costs, we propose a straightforward yet effective method for selecting a hyperparameter (τ)
using a stochastic approach for each training batch fed into the models. We applied knowl-

edge distillation (including its data-free variant) to problems involving image classification

and object detection. To evaluate the robustness of our method, we ran experiments on vari-

ous datasets (CIFAR 10, CIFAR 100, Tiny ImageNet, and PASCAL VOC) and models

(ResNet18, MobileNetV2, Wrn-40-2). Our novel approach reduces the environmental costs
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by a large margin by eliminating the requirement of expensive hyperparameter tuning with-

out sacrificing performance. Empirical results on the CIFAR 10 dataset show that the sto-

chastic technique achieves an accuracy of 91.67%, whereas tuning achieves an accuracy

of 91.78%—however, the stochastic approach reduces the energy consumption and CO2

equivalent each by a factor of 19. Similar results have been obtained with CIFAR 100 and

TinyImageNet dataset. This pattern is also observed in object detection classification on the

PASCAL VOC dataset, where the tuning technique performs similarly to the stochastic tech-

nique, with a difference of 0.03% mAP favoring the stochastic technique while reducing the

energy consumptions and CO2 emission each by a factor of 18.5.

Introduction

Deep learning methods are making significant advancements in solving problems deemed

infeasible after years of tremendous effort by the artificial intelligence (AI) community [1].

The success obtained by the deep learning techniques has come in different substantial areas

of AI such as object detection [2–5], image classification [6–8], natural language processing

(NLP) [9, 10], medical imaging and processing [11–13] etc. Typically, models are fine-tuned to

increase performance by a small margin to achieve state-of-the-art results. However, the effi-

cacy of deep learning models endure substantial energy costs and produces a considerable car-

bon footprint that can contribute to climate change that is harmful to life on this earth. We

know that Carbon dioxide (CO2), a greenhouse gas, is a major contributor to global warming

[14] that has a direct detrimental effect on agriculture [15], forestry [16, 17], species loss [18],

sea-level rise [19], electricity demand [20], human amenity, human morbidity, natural disas-

ters [21], construction, water supply, urban infrastructure, infectious diseases [22] and so on.

Nevertheless, according to Strubell et al. [23], a basic NLP pipeline with tuning produces over

twice the amount of CO2 produced by the average American in one year. Being in oblivion,

deep learning researchers, focus more on creating better models and prioritize model perfor-

mance over the society and the environment. In this paper, we investigate the carbon footprint

associated with a deep learning strategy called knowledge distillation and suggest a plausible

solution to mitigate this problem.

Knowledge distillation is a well-known tool for model compression. Deep learning models

are generally large architectures containing millions of parameters (weights). Model compres-

sion aims to design a relatively lighter version of the original large version without compromis-

ing the overall performance [24]. From the literature, larger and lighter models are called the

teacher and student models, respectively [25]. Following the knowledge distillation process, a

teacher model shares its knowledge with student models so that the students not only learn

from the dataset but also directly from the teacher. In many real-life applications, especially in

mobile or edge devices with computational and hardware constraints, deploying the lighter

student model (instead of the larger teacher model) can be a pragmatic solution. At present,

Hinton’s knowledge distillation [26] can be considered the most widely used model compres-

sion technique due to its efficacy and simplicity. The distillation process softens output logits

of the teacher model to transfer information from the teacher to the student model. The stu-

dent model uses the logit distribution of the teacher model across all training instances as an

altered training set. Soft outputs of the teacher model act as the ground truth (supervision)

while learning the student model. This auxiliary information provided by the teacher (con-

tained in the soft outputs) is known as dark knowledge [26, 27]. Dark knowledge also contains

PLOS ONE Mitigating carbon footprint for knowledge distillation

PLOS ONE | https://doi.org/10.1371/journal.pone.0285668 May 15, 2023 2 / 22

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0285668


helpful information of class similarity in a dataset that is helpful for the model to learn [26].

For proper knowledge transfer from the teacher to the student, the softening process requires

tuning a hyperparameter named Temperature, τ. Hinton et al. [26] used a τ value between 2

and 20 inclusively. However, τ can still be increased to test with softer outputs. An improper

value of τ produces inefficient models with a lackluster performance. Therefore, to attain a

suitable student model, knowledge distillation frameworks must iterate several times with dif-

ferent values of the hyperparameter τ. Preparations and tuning around such frameworks raise

substantial financial and environmental costs by engaging longer training time and higher car-

bon footprint. In this paper, we estimate the overhead of existing methods and propose a miti-

gation process by using a stochastic process related to a hyperparameter instead of a grid

search [28] (see Fig 1).

To tackle these problems, this paper proposes a stochastic technique of assigning the hyper-

parameter τ. This process of assigning a stochastic temperature facilitates training while drasti-

cally reducing costs and preserving the performance of the assembled student model. This sys-

tem of training a model compression system can achieve comparable performance to a fine-

tuned system while reducing the time, power costs, and carbon footprint. In summary, our

contributions are as follows:

• We investigate the environmental costs (carbon footprints) for deep learning model com-

pression using knowledge distillation. It establishes that the cost is not insignificant, and

researchers should be aware of this matter considering the ongoing climate change

movement.

• We propose a stochastic approach to mitigate the carbon footprint issues related to the

knowledge distillation process. It helps to produce satisfactory performance (compressed

model without compromising accuracy), reducing energy consumption. One can easily inte-

grate the method with any knowledge distillation pipeline without high overhead costs.

• We perform extensive experiments on different student-teacher model combinations based

on ResNet18 [29], MobileNetV2 [30], and ShuffleNetV2 [31] architectures. We report results

on both object recognition and detection problems using CIFAR10 [7], CIFAR 100 [7], Tiny

Imagenet [32] and PASCAL VOC [33, 34] datasets. For all experiments, we compare carbon

footprints (GFLOPs count in millions, energy consumption in kWh, and CO2 equivalent in

grams) between existing and our proposed methods.

Fig 1. Illustration of carbon footprints used by different deep models while (a) training on CIFAR 100 (in log scale) and (b-c) inferring on evaluation

set. ResNet18 is a deeper model with 11.2M parameters, resulting in higher inference time (4.7 sec.) and CO2 emission (0.087 g). To minimize this,

using ResNet18 as a teacher, we train two student models, MobileNetV2 (student 1) and ShuffleNetV2 (student 2), following the traditional KD process.

This training costs significant carbon footprints (red and green dashed curves in (a)) with an accuracy increment from learning the teacher model

(black dotted curve in (a)). However, as expected, both students consume less time and CO2 during inference (red and green shaded bars in (b) and

(c)). We aim to reduce the training cost and CO2 production of the KD process while using the same students (red and green solid curves in (a)) and

maintain similar accuracy and inference costs (solid red and green bars in (b) and (c)) in comparison with the costly KD training.

https://doi.org/10.1371/journal.pone.0285668.g001
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Related works

Energy cost for deep learning

Recent technological advancements in hardware, model development, and training frame-

works have stimulated the rise of highly accurate deep learning models [9, 35–37]. Such mod-

els, however, are expensive in terms of computational resources and energy consumption,

resulting in a massive increase in their carbon footprint. Recent studies have investigated

energy usage and the environmental impact of deep learning models to raise awareness regard-

ing this situation. Strubell et al. [23] deduced that training large NLP frameworks trends

towards a hefty carbon footprint that is detrimental to the environment. Another study [38]

discovered that hyper-parameter tuning of large frameworks has a significant carbon footprint,

which has a negative impact on climate change. However, such factors are rarely considered

because most papers published in major venues aim for accuracy rather than computational

efficiency [39]. Parcollet and Ravanelli [40] estimated a huge carbon footprint related to train-

ing speech recognizers. Tamburrini [41] discussed the ethical implications for AI researchers,

manufacturers, and industries. Given the significance of this problem, very few studies have

been aimed at mitigating this issue. Schwartz et al. [39] identified the primary reasons contrib-

uting to a high carbon footprint and also proposed the efficiency metrics in deep learning

research for proper energy utilization. Anthony et al. [42] also tackled this problem and

developed a tool to track and estimate the carbon footprint produced by deep learning frame-

works. This study aims to assess student-teacher frameworks’ carbon footprint for model

compression.

Knowledge distillation methods for model compression

Buciluǎ et al. [43] first introduced the term ‘model compression’ to compress large complex

ensembles into smaller and faster models without significant performance loss. Knowledge

distillation (KD) is a popular strategy to address the model compression problem. KD trains a

smaller network with the help of larger models and ground labels. Lei and Caruana [44] dem-

onstrated that shallow feed-forward nets could learn the complex functions previously learned

by deep nets and achieve performances previously only achievable with deep models. Later,

Hinton et al. proposed a KD-based model compression method [26] that distills a teacher’s

knowledge using a special loss by softening the outputs of the teacher to a student model,

which is widely used for compression tasks. Further improvements in this line of investigation

followed Hinton’s distillation process. Liu et al. [45] improved novelty in Hinton’s distillation

approach by distilling pixel-wise and structure distillation schemes. Park et al. [46] have

resorted to a structured comparison of the teacher and student to improve Hinton’s distilla-

tion. In this paper, we investigate knowledge distillation in object classification and detection

in the context of model compression.

Applications of KD

Recently, knowledge distillation has been successfully applied to solve complex machine-

learning problems, mainly image classification. Li and Hoem [47] used knowledge distilla-

tion to make a unified vision system that utilizes the knowledge in models to add new capa-

bilities to the system without requiring training data. Liu et al. [48] focused knowledge

distillation on Multi-Label Classification, which focuses on creating a Weakly Supervised

Model (WSM) to distill its knowledge for better classification. Wang and colleagues [49] put

to use knowledge distillation to explain and interpret image classifiers by developing smaller

image classifiers that are easily explainable. Peng et al. [50] utilizes correlation between
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images to distill knowledge for improvement in image classification. Knowledge distillation

and model compression are currently being used for object detection, as models tend to be

large and require a costly runtime. Chen et al. [51] employed knowledge distillation to make

efficient object detection models with a similar performance by innovating model compres-

sion to suit object detection. Li and colleagues [52] distilled models for improving a photon-

limited object detection framework. Guo et al. [53] showcases a method of online knowledge

distillation where all DNNs are considered as students for a more effective distillation for

object detectors. Dai and his [54] team used an alternative form of knowledge distillation for

object detection that uses three knowledge distillations for proper knowledge transfer. The

routine unavailability of training data due to privacy issues has resulted in a recent increase

in the popularity of data-free knowledge distillation, where models are trained through dis-

tillation without the training data. Chawla et al. [55] utilizes knowledge distillation for data-

free object detection such that the generated data enables better distillation of knowledge.

Zhang and colleagues [56] developed a generator network for producing artificial training

data for image super-resolution using progressive knowledge distillation. In their work, Yin

and team [57] discussed their data production technique, Deep Inversion, which produces

training data from a trained network by inverting the model without prior knowledge of the

data. Choi et al. [58] utilizes meta-data from the teacher network to generate artificial data

using a generator that was not trained on training data for knowledge transfer to a smaller

network. Note that knowledge distillation is also readily used in n-shot learning techniques.

Nayak et al. [59] proposed techniques that allow zero-shot knowledge distillation without

data samples or meta-data. Michaeli and Storkey [60] also proposed a novel method to trans-

fer knowledge to students using a generative adversarial network for a zero-shot knowledge

transfer. In this paper, we propose a stochastic approach of assigning temperature to knowl-

edge distillation frameworks to eliminate the hefty requirement of the tuning hyper-parame-

ters temperature.

Methodology

Recently, various model compression techniques have been proposed for deep learning, pri-

marily utilizing information from the teachers to train a smaller student better (knowledge dis-

tillation) [26, 43, 44], modifying networks to reduce the model size (pruning) [61–63] or

trading precision for a smaller size (quantization) [64, 65]. In this section, we define the prob-

lem, the drawbacks of the current solution, a proposal for improvements, and relate carbon

footprint issues with AI ethics.

Problem formulation

Suppose, FmðX;WmÞ is a deep neural network model where X and Wm represent the input

image and model parameters/weights, respectfully. Let us consider, number of parameters,

|Wm| is relatively high, meaning a deeper model which obviously performs well in a recogni-

tion or detection tasks. However, computation cost during inference is high because of its

larger size. To reduce the computational cost, our aim is to design a compressed model,

F sðX;WsÞ where, number of parameters |Ws| is significantly smaller than |Wm|, i.e., |Ws|<<

|Wm| but performance (accuracy or mAP) of both Fmð:;WmÞ and F sð:;WsÞmodels are simi-

lar. The architecture of F sð:;WsÞ and Fmð:;WmÞ can be same or different. To train F sð:;WsÞ,

we can use logits of the model Fmð:;WmÞ for knowledge transfer. Therefore, in this setup,

Fmð:;WmÞ and F sð:;WsÞ are called teacher and student models, respectively.

PLOS ONE Mitigating carbon footprint for knowledge distillation

PLOS ONE | https://doi.org/10.1371/journal.pone.0285668 May 15, 2023 5 / 22

https://doi.org/10.1371/journal.pone.0285668


Solution using Knowledge distillation (KD) [26]

KD is a well-known tool to compress a possibly larger (teacher) model, FmðX;WmÞ to a

smaller (student) model F sðX;WsÞ. Here, the input space X belongs to label space y 2 Rn
,

where n represents input the number of classes available in the dataset. We assume a

supervised classification setting where model outputs are am ¼ FmðX;WmÞ; as ¼

F sðX;WsÞ; fam; as 2 R
ng before activation such that am and as represent the un-activated

output of teacher and student models, respectively. The student model outputs are acti-

vated using the softmax function [66] to produce a hard embedding hs such that hs(i) >>

hs(j), {1 <= i, j <= n, i 6¼ j} where the logits are probability distributions
Pn

i¼1
hsðiÞ ¼ 1; hsðiÞ 2 R

þ
. However, transfer of knowledge is done through proper

softening of the output of the teacher am and student model as, which is done by a

modified softmax activation containing a hyper-parameter τ:

oz ¼ sðazÞ ¼
eaz ðiÞ=tPn

j¼1
eaz ðiÞ=τ where; azðiÞ; azðjÞ 2 az � R; jazj ¼ n; 1 <¼ i; j <¼ n. Here the

variable τ is a hyper-parameter crucial for softening of logits os, which theoretically

ranges from 1 < τ <1. The activation provides softened outputs (probability

distribution) for os (student) and om (teacher) using z = s or z = m. Here, os ¼
½osð1Þ; osð2Þ; osð3Þ; . . . ; osðnÞ�; where;

Pn
i¼1

osðiÞ ¼ 1; osn 2 R
þ and

om ¼ ½omð1Þ; omð2Þ; omð3Þ; . . . ; omðnÞ�;where;
Pn

i¼1
omðiÞ ¼ 1; omðnÞ 2 R

þ
.

The acquisition of soft labels helps utilize the dark knowledge stored in the teacher model

for proper knowledge transfer to the student model. The outputs hs, os, om and label y are used

to provide gradient information for the student to learn better using the distillation loss which

is back-propagated to update model parameters. The distillation loss (LDL) consists of the

weighted union of the softmax Cross Entropy (LCE) [67] and the Kullback-Liebler Divergence

(LKLD) [68] loss with an added weight.

LCEðy; hsÞ ¼ �
Xn

c¼1

yðcÞ log hsðcÞ; LKLDðos; omÞ ¼ t
2
Xn

c¼1

omðcÞ log
osðcÞ
omðcÞ

ð1Þ

Knowledge distillation varies from a traditional classification because of LKLD, which facilitates

the student to learn. The hyper-parameter τ usually gets a value within the range τ = 2 to 20. τ
contributes to softmax distributions with different levels of softness. Proper softening of the

logits enables better distribution of information to the student, S. As a result, the hyperpara-

meter temperature is essential in knowledge distillation for proper knowledge transfer. For

instance, a larger model might require more softening, i.e., a higher value of τ is expected.

Additionally, knowledge distillation requires another hyper-parameter α which is used to

assign weights to the Cross-Entropy and Kullback-Liebler loss functions for proper parameter

tweaking by gradient descent. Fine-tuning is required in some cases for perfect model distilla-

tion. Finally, the distillation loss is formulated as follows:

L ¼ a LKLDðos; otÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
t¼2 to 1

þ ð1 � aÞ LCEðy; hsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
t¼1

ð2Þ

The process of knowledge distillation is briefly shown schematically in Fig 2.

Issues with knowledge distillation

The Kullback-Liebler loss provides additional gradient information to the distillation loss that

transfers a teacher’s knowledge to a student. Properly softening the hyper-parameter Tempera-

ture, τ, is required to produce the softening effect that introduces dark knowledge for the

PLOS ONE Mitigating carbon footprint for knowledge distillation

PLOS ONE | https://doi.org/10.1371/journal.pone.0285668 May 15, 2023 6 / 22

https://doi.org/10.1371/journal.pone.0285668


student to consume. An unsuitable value of τ might harm students’ training. In contrast, Fig

3(a) shows that adjusting/tuning a temperature for knowledge distillation may lead to perfor-

mance enhancement. Therefore, hyper-parameter τ requires fine-tuning through grid search

[69]. Fine-tuning such a hyper-parameter requires additional time and bears huge computa-

tion and energy costs. To facilitate this tuning, KD training may produce a huge carbon foot-

print, especially for a vast dataset. In this way, model tuning contributes to climate change and

becomes a concern for ethical AI.

Fig 2. Block diagrams of KD architectures while training teacher, Fmð:;WmÞ and student, F sð:;WsÞmodels. (a) Given input X, trainable

Fmð:;WmÞ (indicated as green) learns to produce logits hm after a softmax activation. Cross-Entropy loss (LCE) is used to train the teacher model.

(b) Trainable student model, F sð:;WsÞ (indicated as green) leanrs from a frozen (indicated as red) teacher, Fmð:;WmÞ. The teacher and student

produce unactivated logits am and as, respectively. as are activated using a softmax containing the hyperparameter τ producing soft logits om. Similarly,

os is produced for the teacher. The soft logits are used to calculate KLD loss (LKLD). The hard logits from the student hs are further used to calculate LCE.

LKLD acts as additional supervision for the student to learn better.

https://doi.org/10.1371/journal.pone.0285668.g002

Fig 3. Impact of using different τ for ResNet18 (teacher) and MobileNetV2 (student) models using (a) Tiny ImageNet datasets. We notice a significant

performance variance across different τ values. (b) The impact of using different batch sizes for our proposed stochastic solution. Similar performance

across different batch sizes shows that our proposal does not depend on training batch sizes.

https://doi.org/10.1371/journal.pone.0285668.g003
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Carbon footprint for knowledge distillation

In this subsection, we discuss the carbon footprint estimation process used in this paper and

analysis the energy consumption of the traditional KD process.

Measurement criteria. We use three criteria [42] to measure the carbon footprints of the

KD process: FLOPs count in millions, energy consumption in kWh, and CO2 equivalent in

grams. Now, we briefly summarize those criteria below.

FLOPs count. FLOPs (Floating-point Operations) estimate the number of additions and

multiplications a model performs for a singular instance that the model receives. FLOPs count

for a model is a vital efficiency measure since it showcases the number of calculations needed

for a prediction. It also determines the sophistication of the model and the time it consumes.

Large models tend to make more calculations, i.e., higher FLOPs count.

Energy. Energy consumption directly correlates an experiment with the amount of carbon

footprint it produces. The power collected in the study is the total power of the computer com-

ponents, mainly CPU, GPU, and DRAM. The total power consists of the overall power used

by the computer components and not the power consumed by a deep learning experiment. As

a result, energy/power consumption may vary for a similar experiment. Accurately attaining

dynamic power or power for particular work is challenging and, at times, infeasible. Due to

limited components tracked for power, the consumed is multiplied by the Power Usage Effec-

tiveness (PUE). The PUE is the ratio of the total power used by the data center to the energy

used to make a computation. We use PUE = 1.67, the global average for the year 2019 [70],

because of the infeasibility of calculating the PUE in the locality where experiments are

conducted.

First, the instantaneous power, pi, or the power consumed per second, is measured in kWh

for a duration of one training epoch. We denote te as total number of epochs. Using the instan-

taneous power, the average power pavg, can be calculated as follows:

pavgðkWhÞ ¼
1

te

Xte

i¼1

pi ð3Þ

Next, the total power consumed by the computer components for one singular epoch e on

device d is summed over the total number of training epochs E. The consumption for all the

computational devices D, using the average power pavg, requiring te time for one training

epoch, and multiplied with the PUE shown in Eq. below:

ptðkWhÞ ¼ PUE�
X

e2E

X

d2D

pavg � te ð4Þ

CO2 equivalent. To estimate the carbon emission, we calculate CO2 equivalent (ct) by the

product of the carbon intensity ci of the area where the experiment is being carried out, and

the energy consumed pt, of that experiment.

ctðgÞ ¼ pt � ci ð5Þ

Energy estimation. In Table 1, we report the carbon footprints of the KD process. Large

learning models (like the teacher) have a better learning capacity (Acc. 95%) due to many

trainable parameters. However, such models usually have a large model size and take longer

time for prediction, producing a vast carbon footprint. In contrast, lightweight models (like

the student) are relatively small in architecture and faster during inference. However, such

models lack performance (Acc. 90.6%) compared to large models. Model compression tech-

niques such as KD are used to train lightweight models to mimic large models’ performance.
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A student model taught using a good teacher model performs surprisingly better when fine-

tuned (Acc. 91.8%). However, the KD technique has disadvantages because it consumes about

25 times more energy and produces substantial carbon footprints than training a similar base

model (see Table 1). For instance, image classification with KD on a standard Tiny ImageNet

dataset using a ResNet18 teacher and a ShuffleNetV2 student produces 5595.31g of CO2 (see

Table 4). It consumes 19.09 kWh of energy for a fully tuned experiment, equivalent to a car

traveling 46.5km. Even smaller datasets regularly used as benchmarks, such as CIFAR 10, pro-

duce a considerable carbon footprint, about 1170.21g, and consume about 3.99 kWh of power

(see Table 4) for a tuned experiment using a prominent teacher, small student combination.

Modern usage of knowledge distillation, such as in data-free knowledge distillation, also pro-

duces a hefty amount of CO2 in both data production and model compression. Data-free

knowledge distillation using the Contrastive Model Inversion technique produces 1353.7g of

CO2 (see Table 6) on the small and standard CIFAR 10 dataset. It yields a nearly similar

amount of CO2 (1369.46g) (see Table 6) when using Deep Inversion as the data-generating

technique. Recently, knowledge distillation is also prevalent in object detection settings. Sin-

gle-Shot Multibox Detection (SSD) with a VGG16 teacher and MobileNetV2 student con-

sumes 1.69 kWh energy for a perfectly tuned model. It produces 9235.39g of CO2 (see

Table 4), estimated to be equal to a car traveling for 78.66km.

Stochastic solution. As discussed earlier, the KD process is costly because of the hyper-

parameter τ selection that ranges theoretically 2<= τ<=1. We now discuss different strate-

gies to select τ efficiently and propose our recommendation.

Grid vs. random search. Grid search is a hyperparameter tuning process that iterates over

every combination of pre-defined hyperparameter values. Its search space is relatively high,

which can contribute to carbon footprints significantly. In contrast, random search randomly

selects a combination of hyperparameters from a search space. Nonetheless, random search

has shown better performances in some cases where increasing the search space finds a better

combination when the important hyperparameter is unknown [28]. However, hyperparameter

τ controls the level of softening during KD, which is sensitive to performance. As a result, ran-

dom search is unsuitable in this scenario. τ is usually tuned through costly grid search.

Dynamic temperature, τ. Several works attempt to find dynamic τ for better performance.

Jafari et al. [71] use a dynamic temperature, but the training procedure consists of two stages

which are computation heavy. It also requires choosing a max temperature at the beginning of

the training that can be treated as another hyperparameter. Liu et al. [72] employ dynamic

hyperparameters by using another model/network to update parameters according to valida-

tion performance which helps to improve accuracy. Li et al. [73] also use a two-layer MLP for

the same reason. All these techniques focus on maximizing performance. With the cost of con-

siderable energy for training, they achieve a minuscule rise in performance. We argue that

such a process is not green computation friendly.

Table 1. Carbon footprints of Teacher (ResNet18) and Student (MobileNetV2) model before KD (top two rows), traditional KD [26] and Ours approach on three

different datasets. " (#) means higher (lower) is better.

CIFAR 10 CIFAR 10 Tiny ImageNet

Method Accuracy (%) " Energy (kWh) # CO2_eq (g) # Accuracy (%) " Energy (kWh) # CO2_eq (g) # Accuracy (%) " Energy (kWh) # CO2_eq (g) #

Teacher 95.04 0.28 74.25 76.03 0.25 65.55 63.39 1.43 413.60

Student 90.52 0.16 45.02 67.80 0.16 44.23 59.64 0.68 182.53

KD [26] 91.78 3.99 1173.44 69.70 3.80 1170.40 60.46 19.09 5595.31

Ours 91.67 0.21 61.76 69.40 0.20 61.60 60.53 1.02 304.88

https://doi.org/10.1371/journal.pone.0285668.t001
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Our proposal. Deep networks are trained using random batches, which produce hard output

vectors (hm for teacher or hs for student). Hyperparameter, τ controls the softening of each ele-

ment inside hm or hs. Knowledge distillation utilizes dark knowledge for information transfer

which is the information in the soft outputs. The logit information is blurred or smoothed out

if the temperature is too high. If the temperature is too low, the embedding becomes sparse

[74]. As a result, stronger models usually need higher temperatures since they produce sparse

logit embeddings (high probability for target class) and vice versa. For better knowledge trans-

fer, this softening should vary from instance to instance. Considering the random instances

inside a batch and different batches should produce random levels of embedding sparsity,

different τ is expected to match instances’ diversity. A constant temperature throughout the

training cannot model such randomness during the learning process. Grid/random search

considers a single τ for the entire training. Similarly, dynamic τ use the same value from many

consecutive epochs. For this reason, they must repeat the train-validation loop employing mul-

tiple τ, which increases the training cost. Therefore, we recommend using a random τ for each

batch within a range (say [2, 20]). It will also exclude the necessity of tuning τ. The random τ
works with random batches since every random batch requires random softening. In Fig 3(b),

we show the impact of using different batch sizes considering random τ within [2, 20]. We

notice that our stochastic proposal works consistently across batch sizes. It proves the necessity

of using random τ during training. Evidently, through empirical evidence, we establish that

the stochastic temperature performs similarly or, at times, better in the case of traditional

knowledge distillation in comparison to tuning. Along with a similar performance, the sto-

chastic technique is efficient as it produces significantly less carbon footprint and consumes

less energy than classical grid-search or random-search (see Table 1).

Considering a sample input with its label, (X, y) which is an element in dataset D, a student

model F sðX;WsÞ produces soft logits os from unactivated logits as. The training objective is to

match the soft logits os to the soft logits om, of a large teacher FmðX;WmÞ, from the teacher’s

own unactivated logits am, softened by a temperature τ, using an altered softmax

oz ¼ sðazÞ ¼
eaz ðiÞ=tPn

j¼1
eaz ðjÞ=t

where; azðiÞ; azðjÞ 2 az � R; jazj ¼ n; 1 <¼ i; j <¼ n. Knowledge

distillation uses a KL divergence loss as additional information from the teacher given by

LKLDðos; omÞ ¼ t2
Pn

c¼1
omðcÞlog

osðcÞ
omðcÞ

(as shown in Eq 1) softened and weighted by τ. Consider-

ing the model is learning for ω epochs and with a constant τ as in traditional KD, the teacher

output om, remains the same but the student model output os changes to optimize towards

LKLDðos; omÞ½op� < LKLDðos; omÞ½oq�; such that op > oq. In this setting, for the input X the tar-

get om is constant throughout the training cycle of the student due to a fixed τ. In our proposed

stochastic approach, the value of τ is varied stochastically for every batch, thus ensuring that

the target om for an input sample X remains varies. This variety in om may prevent F sðX;WsÞ

from learning to optimize from a single om and therefore likely providing a regularizing effect.

This may eliminate the need to search for a fixed validated τ.

Green computing and ethical AI. Along with its benefits, AI’s usage and development

pose severe ethical concerns regarding multiple individual/societal and environmental issues.

Deep learning often requires the distribution of sophisticated hardware that requires expensive

materials to develop that are running out [75]. Moreover, AI and its development require a lot

of computation-hungry methods, which consume substantial computational power and lead

to the depletion of natural resources and valuable materials. Furthermore, energy consump-

tion is very high and increasing steadily in the case of computer vision and NLP [23, 39]. Addi-

tionally, the power consumption for such AI methods adds up to a large global carbon

footprint that is highly harmful to the environment and contributes heavily to climate change.
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AI development is increasingly unsustainable due to the significant usage of these natural

resources. To tackle these problems, developers and researchers should have equitable access

to resources, figure out or use techniques concerned with Green AI, and report the cost for

training and tuning deep learning models [23]. This paper may assist in developing strategies

that deal with making the hyper-parameter tuning in knowledge distillation and adding to

Green AI. Here are some recommendations concerning knowledge distillation and green

computing: (1) KD method-related papers should report carbon footprint metrics (FLOPs

count, energy consumption, and CO2 equivalent) regarding model training. (2) In addition to

performance (accuracy/mAP score), the research community should establish some green

index to start a healthier competition and promote energy-efficient methods.

Experiment

Setup

Dataset. We investigate our approach based on object recognition and detection tasks.

We present a summary of the used dataset in Table 2 and discuss them below.

Image classification setup. The image classification setup consists of a traditional image clas-

sification framework. The experiments are carried out on three popular standard classification

datasets: CIFAR 10 [7], CIFAR 100 [7] and Tiny Imagenet [32]. The CIFAR 10 and CIFAR

100 datasets contain 50,000 training images and 10,000 validation images, with a 32 × 32 reso-

lution, over 10 and 100 individual classes respectively. The Tiny Imagenet dataset is made up

of 100,000 training images and 10,000 validation images with a resolution of 64 × 64. This

dataset is made up of 200 individual classes. Classes in the datasets are all mutually exclusive.

Object detection setup. For object detection, we follow conventional object detection frame-

works that leverage knowledge distillation. We use the combination of the PASCAL VOC

2007 [33] and the PASCAL VOC 2012 [34] dataset for training. The PASCAL VOC 2007 data-

set consists of 5011 training/validation images and the PASCAL VOC 2012 contains 11530

training/validation images over the same 20 classes in the PASCAL VOC 2007 dataset. For

model evalutation we used the PACAL VOC 2007 test set which consists of 4952 images over

20 different class for evaluating model performance.

Student-teacher models. We used three different learning models, e.g., ResNet18 [29],

MobileNetV2 [30] and ShuffleNetV2 [31] for the image classification framework. In Table 3,

we include details of those architectures and how we use those in our work. We evaluate these

models on different loss functions, datasets, and teacher-student combinations. This includes

strong teacher strong student, strong teacher weak student, weak teacher strong student, and

weak teacher weak student. In this paper, we follow strong/weak definitions from [76]. Strong

models are usually larger than weak models containing many trainable parameters. Because of

this, strong models are expected to perform better than weak models. We first train a teacher

model, and after that, we train a student model leveraging the output of the teacher model. In

a real-life application, a teacher model is supposed to be strong (heavier model) having higher

accuracy, and our goal is to train a lighter student model that can perform similarly to the

Table 2. Summary of datasets used in the study.

Dataset Training Images Test Images Classes Pixel Size Train Images Per Class Test images Per Class

CIFAR 10 [7] 50000 10000 10 32x32 5000 1000

CIFAR 100 [7] 50000 10000 100 32x32 500 100

Tiny ImageNet [32] 100000 10000 200 64x64 500 50

PASCAL VOC [33, 34] 16541 4952 20 - - -

https://doi.org/10.1371/journal.pone.0285668.t002
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strong teacher model. Therefore, the computational cost/time of inference will reduce in the

student model compared to the teacher model.

Data-free knowledge distillation (DFKD). For DFKD, we investigate two prominent

DFKD techniques: Contrastive Model Inversion (CMI) [77] and Deep Inversion (DI) [57]. For

both CMI and DI, we used Wrn-40-2 [78] as the teacher model to train a Wrn-16-1 [78] stu-

dent model on synthetic CIFAR 10 and CIFAR 100 data.

Object detection setup. Object detection looks into classifying multiple classes in a partic-

ular image and localizing the class area using a bounding box. Recent development in object

detection has brought about new state-of-the-art techniques, Single-Shot Multibox Detector

(SSD) [3]. As a result, this study looks into using the stochastic technique on SSD using knowl-

edge distillation. For experiments on object detection, we used VGG16 [3, 79] SSD teacher on

a MobileNetV2 SSD lite student [3, 30]. The paper looks into the PASCAL VOC 2007 and

PASCAL VOC 2012 training subsets as the dataset for training, and we use PASCAL VOC

2007 as the testing set.

Evaluation metric. For classification and detection problems, we evaluate all methods

with accuracy and mean average precision (mAP) in percentage, respectively. Accuracy: We

employ testing accuracy to gauge the performance of various datasets as an evaluation crite-

rion for classification and data-free knowledge distillation. The percentage (%) of accurately

predicted instances in a testing/evaluation set over the total number of instances in the set is

used to determine test accuracy. We also report other performance metrics such as Precision,

Recall, Kappa, Specificity, Prevalence, and F1 Score to determine the overall performance.

mAP. For detection issues that need classification and localization, mAP is the most well-

known evaluation technique. The IoU (Intersection Over Union) metric, which measures the

intersection of the labeled localization area and the predicted localization area over the union

of the labeled localization area and the expected localization area, is used to assess a model cre-

ated for a detection problem. We consider the prediction accuracy when the IoU is greater

than or equal to a predefined threshold. Then, we can determine the precision (the proportion

of positives successfully predicted among all positive predictions) and recall (the ratio of posi-

tives correctly predicted among all positives labeled) for every class. This calculation uses the

calculated IoU for every instance of that class from the area of the predicted and group truth

bounding box. The precision and recall values are then plotted as a function of the IoU thresh-

old. Lower IoU values predict higher positive predictions. However, not all positive predictions

are correct. As a result, recall increases, and precision decreases. So the curve gets a downward

slope. Integrating the curve returns the area under the precision-recall curve, referred to as AP

(Average Precision). The average of the AP across all the classes is called mAP, which is used

to evaluate detection models.

Implementation details. For all experiments, we start with a learning rate of 0.1 and use

min-batch gradient descent for parameter training. We run knowledge distillation for

Table 3. Information about different architecture models used in this study.

Model Number of Parameters (M) Used as Teacher Used as Student Used for classification Used for DFKD Used for detection

ResNet18 11.2 ✓ ✓ ✓ × ×
ShuffleNetV2 1.5 ✓ ✓ ✓ × ×
MobileNetV2 3.4 × ✓ ✓ × ×

Wrn-40-2 2.2 ✓ × × ✓ ×
Wrn-16-1 0.2 × ✓ × ✓ ×

VGG16 SSD 26.2 ✓ × × × ✓

MobileNetV2 SSD lite 3.4 × ✓ × × ✓

https://doi.org/10.1371/journal.pone.0285668.t003
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classification, DFKD, and object detection experiments for 100, 200, and 70 epochs, respec-

tively. The learning rate is divided by 0.2 to decay at the 40th, 60th, and 80th epoch for the classi-

fication setup. The learning rate was similarly decayed by 0.2 at 120th, 160th, and 180th epoch

for the data-free knowledge distillation setup. We run the models on an Adam optimizer. The

data go through some basic augmentation, such as a random horizontal flip, random rotation

of 15 degrees, and a random crop of the image size after 4-pixel padding. We implement the

models according to their related papers [3, 29–31, 78, 79]. Also, we train teacher models for

100 epochs and then use them during the knowledge distillation process to learn the student

model. We train the teacher models using the cross-entropy loss for both the classification,

detection, and DKFD frameworks. We used datasets CIFAR 10, CIFAR 100, Tiny ImageNet,

and PASCAL VOC to train the teacher models. For training the student model, we use three

loss functions to show the extensiveness of the stochastic technique: distillation loss, L2 loss,

and DML loss. To train the student models, we use the output of the teacher model on the loss

function to teach the student model. For all experiments, we use an α value of 0.95 and a tuned

temperature or the stochastic technique when appropriate. We ran experiments on DKFD and

object detection knowledge distillation on official implementation [51, 77]. We have used

PyTorch (v1.13 and CUDA 11.3) deep learning framework. We have experimented using a

workstation with a single NVIDIA RTX 3070 Ti GPU and 32GB of RAM.

Main results

Compared methods. This paper explores three of the most widely used knowledge distil-

lation methods: Hinton’s knowledge distillation (HKD) [26], Caruana’s model compression

(CMC) [44] and the Deep Mutual Learning Loss (DML) [80]. The CMC and DML loss are

enhanced with a temperature hyper-parameter such that a tuned temperature produces better

performance than the original loss function. The CMC loss calculates the squared difference

between the output and the target logits. The CMC loss does not require additional hyperpara-

meters for softening or weight distribution. However, it does work better with a temperature

hyperparameter and is prone to outliers. The DML loss calculates the probabilistic differences

between the target and output. The DML loss also does not require softening and weight distri-

bution parameters like the CMC loss. However, it does work better with a temperature hyper-

parameter. Here, we summarise all loss equations together.

• CMC loss: LCMCðhs; hmÞ ¼
1

N

Pn

c¼1

ðhsðcÞ � hmðcÞÞ
2

• Altered CMC loss: LCMCðhs; hmÞ ¼
1

N

Pn

c¼1

hsðcÞ
t
�

hmðcÞ
t
Þ

2
�

• DML loss: LDMLðhs; hmÞ ¼
Pi

c¼1

hmðcÞ log
hsðcÞ
hmðcÞ

• Altered DML loss: LDMLðos; omÞ ¼
Pi

c¼1

omðcÞ log
osðcÞ
omðcÞ

Classification. Table 4 demonstrates results obtained for image classification standard

classification datasets (CIFAR 10, CIFAR 100, and Tiny ImageNet) using a tuned temperature

and the stochastic technique. (1) Performance obtained for the stochastic technique is similar

to a tuned temperature for the HKD loss and DML loss. The CMC loss performs better using a

tuned temperature than the stochastic temperature. This is because the CMC loss does not use

softening to transfer knowledge. Nonetheless, the power consumption and CO2 production
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when using the stochastic technique are drastically low compared to tuning for knowledge dis-

tillation. (2) The FLOPs count on every dataset is similar for its respective losses as the models

used are identical for all the losses. The losses do not add to the FLOPs count of the model.

The FLOPs of the models increase for larger datasets due to pixel size and instances. The

results of the CIFAR 100 dataset are similar in energy consumption and carbon footprint pro-

duction compared to the CIFAR 10 dataset, as both datasets have the same number of

instances in their train and validation set and the same pixel size. (3) The performance mea-

sure for every dataset is a test side performance of the evaluation set of the dataset, which con-

sists of unseen images. The efficiency metrics (FLOPs, Energy, CO2_eq) are measured during

training to estimate the training efficiency of tuning instead of using the stochastic technique.

(4) The stochastic technique outperforms tuning heavily in terms of efficiency and produces

similar results in comparison. Using the CMC loss on the CIFAR 10 dataset, the tuned temper-

ature performs significantly better, achieving an accuracy of 92.35% compared to the stochastic

technique at 91.65%. However, tuning the framework for the CMC loss consumes about 20

times more energy and produces CO2 equal to a car running for 9.91km. On the CIFAR 10

dataset, the stochastic technique performs similarly to a tuned temperature. However, the sto-

chastic approach consumes 0.20kWh of energy and produces a negligible carbon footprint of

58.05g, whereas tuning requires 4.0kWh of energy. The same trend can be seen across all the

datasets. HKD loss on the Tiny Imagenet data performs almost equally for both the tuned and

stochastic temperature, with a difference of 0.06% favoring the stochastic technique. Addition-

ally, the stochastic approach consumes 1.04kWh of energy and produces 304.88g of CO2,

which is negligible compared to tuning, which consumes 19.09kWh of energy and produces

5595.31g of CO2. The CMC loss for Tiny ImageNet performs very well compared to the sto-

chastic technique. For the DML loss on the Tiny ImageNet dataset, the stochastic approach

performs better by 0.05% against a tuned temperature. Moreover, tuning produces 19.38g of

CO2 and consumes 1.02kWh of energy which is significantly lower than tuning, which

requires 19.38kWh to be tuned and makes 5748.64g of CO2 that is comparable to driving a car

for 47.8km. (5) Performance of the stochastic technique and tuned temperature are pretty

Table 4. Carbon footprints and performance for different KD approaches. Here, for image recognition, we use ResNet18 (teacher) and MobileNetV2 (student) models.

For object detection, we use VGG16 (teacher) and MobileNetV2 (student). We report average results after running the same program five times. " (#) means higher

(lower) is better.

CIFAR 10 CIFAR 10

Loss Method Accuracy (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) # Accuracy (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) #

HKD [26] 91.78 ± 0.14 128.30 3.99 1173.44 69.70 ± 0.12 128.40 3.80 1170.40

Ours 91.67 ± 0.23 6.42 0.21 61.76 69.40 ± 0.37 6.42 0.20 61.60

CMC [44] 92.35 ± 0.24 128.30 3.93 1192.81 73.56 ± 0.17 128.40 3.92 1164.7

Ours 91.65 ± 0.13 6.42 0.21 61.17 72.23 ± 0.24 6.42 0.21 61.30

DML [80] 91.00 ± 0.04 128.30 4.01 1161.00 72.90 ± 0.04 128.40 3.74 1109.40

Ours 91.05 ± 0.13 6.42 0.20 58.05 72.56 ± 0.15 6.42 0.19 58.04

Tiny ImageNet PASCAL VOC

Loss Method Accuracy (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) # mAP (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) #

HKD [26] 60.46 ± 0.07 975 19.09 5595.31 65.45 ± 0.07 1371 31.25 9235.39

Ours 60.53 ± 0.31 48.75 1.04 304.88 65.48 ± 0.15 72.17 1.69 499.21

CMC [44] 62.76 ± 0.17 975 20.21 5949.93 64.87 ± 0.13 1371 32.27 9527.55

Ours 59.84 ± 0.11 48.75 1.00 293.10 64.67 ± 0.12 72.17 1.70 501.45

DML [80] 63.30 ± 0.11 975 19.38 5748.64 65.10 ± 0.09 1371 30.24 8903.52

Ours 63.35 ± 0.07 48.75 1.02 302.56 64.98 ± 0.24 72.17 1.68 494.64

https://doi.org/10.1371/journal.pone.0285668.t004
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similar across the HKD loss as the HKD loss primarily uses temperature for knowledge trans-

fer. Quite a similar trend can also be seen for DML loss on all the datasets, as the DML loss can

also be used with a temperature for knowledge transfer. For the CMC loss, performance is

higher with a tuned temperature. This is because the CMC loss is generally not used with a

temperature hyperparameter. It is worth noting that the CMC loss performs better with a

tuned temperature than with its base form. The DML loss serves better with a tuned tempera-

ture and the stochastic technique against the base DML loss. (6) The stochastic technique con-

tributes towards Green AI by replacing the requirement of tuning in model compression

frameworks. The efficiency of the stochastic technique is considered as opposed to tuning and

a commendable alternative to use.

In Table 5, we further report Precision, Recall, Kappa, Specificity, Prevalence, and F1 Score

for ResNet18-MobileNetV2 teacher-student combination on the CIFAR 10 dataset. The

teacher model has an accuracy of 94.8% and produces average precision and recall of 0.95,

exhibiting that the models have learned all the classes properly. Similarly, the student models

achieve nearly equal recall and precision (0.92), corresponding to the accuracy of 91.67%

(Tuned) and 91.78% (Ours). We also compute the F1 score which is the harmonic mean of

precision and recall. Here, F1 scores of the Teacher model (0.95), KD model (0.92), and Our

model (0.92) effectively show that the training is not biased. The Kappa score of our model

(0.91) also establishes that the performances and outputs produced are highly agreeable with

the labels of the dataset.

In Fig 4, we further visualize the output of No compression, KD [26], and Ours methods.

The output logit shown in Fig 4(a) indicates that all methods have correctly classified a sample

bird image input because the class bird gets the highest score. Fig 4(b) showcases Grad-Cam

images from the last layer of the MobileNetV2 architecture. Ours and KD [26] methods pro-

duced similar Grad-cam visualization, suggesting that both have learned from the same

teacher. High values at the diagonal positions of the confusion matrices in Fig 4(c) demon-

strate that Ours method is equally successful with No compression and KD [26] methods.

Detection. The PASCAL VOC dataset results in Table 4 (second row) show performances

for object detection. For the HKD loss, our proposed stochastic technique is similar to a tuned

temperature with a minor accuracy difference of 0.03%. However, traditional tuning uses

31.25 kWh of energy. Tuning such an object detection framework produces 9235.39g of CO2,

equivalent to a car running for 78.66 Km. Comparatively, our stochastic technique minimizes

the CO2 consumption by about 18 times and requires only 1.69 kWh of energy. For the CMC

loss, the tuned temperature performs better (64.87% accuracy) compared to the 64.67% accu-

racy of the stochastic technique. However, the cost of tuning is similarly high, requiring 1.70

kWh of energy and producing 9527.55g of CO2 as opposed to the stochastic approach. Our

method requires a reduced consumption of energy and CO2 production of 1.70kwh and

9527.55g, respectively. Similarly, the DML loss performs quite similarly in terms of perfor-

mance compared to the stochastic technique. Still, the traditional KD approach is costly in

energy and carbon footprint compared to the stochastic approach.

Table 5. Different performance metrics of ResNet18-MobileNetV2 as teacher-student model combination using CIFAR 10 dataset. In addition to maintaining low

carbon footprints, Ours method performs similarly to the KD [26] method.

Model Accuracy Precision Recall Specificity Kappa Prevalence F1

Teacher 94.80 0.95 0.95 0.95 0.94 0.09 0.95

KD [26] 91.67 0.92 0.92 0.92 0.90 0.09 0.92

Ours 91.78 0.92 0.92 0.92 0.91 0.09 0.92

https://doi.org/10.1371/journal.pone.0285668.t005
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Data-free knowledge distillation (DFKD) results

Knowledge distillation can be a useful model compression technique. However, it also brings

about data requirement constraints, which might be unavailable due to privacy concerns [56,

58, 81]. As a result, DFKD is widely popular since it removes training data constraints by gen-

erating synthetic/artificial training images/instances [82] for many computer vision [83] and

natural language processing [84] tasks. Due to the significance of DFKD, this paper also looks

into the implementation and performance of DFKD frameworks. For experiments on DFKD,

we use two prominent DFKD techniques: Contrastive Model Inversion (CMI) [77] and Deep

Inversion (DI) [57]. The CMI looks into inverting a model to create a diverse distinguishable

group of synthetic images using data diversity as an optimization objective. DI also produces

artificial images by inverting learning models but optimizing inputs and regularizing feature

maps using information stored in batch normalization. Table 6 represents experimental results

obtained on the CMI and DI data-generation techniques on CIFAR 10 and CIFAR 100 data-

sets using a tuned temperature against our proposed stochastic approach. For DI, using the

stochastic temperature on CIFAR 10 dataset had a similar performance to fine-tuning (83.09%

compared to 83.04%). Nonetheless, fine-tuning produces a massive carbon footprint of

1369.46g of CO2 compared to 72.07g of CO2 produced by the stochastic technique. The sto-

chastic process performs similarly to the tuned temperature, with a difference of 0.25% for

CIFAR 10 and 0.31% for CIFAR 100. The stochastic approach produces results higher than the

Fig 4. Visual illustration of output produced by No compression, KD [26] and Ours methods. (a) Output logits for a sample ‘bird’ image from the

CIFAR 10. (b) Grad-Cam visualization of four sample images from the CIFAR 10 using the MobileNetV2. ResNet18 is used as. (c) Confusion matrices

of prediction.

https://doi.org/10.1371/journal.pone.0285668.g004
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second most optimum temperature yet consumes 19 times less power and produces likewise

less CO2 than the tuned technique. The stochastic design optimizes hyperparameters for data-

free knowledge distillation without a costly tuning process and delivers performance similar to

the tuning method with lower cost, time, and carbon production.

Varying student-teacher models. To prove the robustness of our proposed method, in

Table 7, we experiment with different teacher-student combinations using the Tiny ImageNet

dataset. Our proposed stochastic method can work satisfactorily irrespective of strong (large

models) or weak (light models) students and teachers. When using a strong teacher and a

weak student for model compression, the experiment using a stochastic temperature has a

0.07% increase in accuracy compared to a tuned approach. When using self-knowledge distil-

lation using two light models, the tuned experiments have a test accuracy of 60.32%, and the

stochastic process has a test accuracy of 60.38%. Even such light model combinations can pro-

duce the same amount of CO2 as an average car if it travels for 37.3 Km. Table 7 also showcases

that with an increase in the number of model parameters for the student or teacher, there is an

increase in performance. The change in FLOPs on the same dataset is due to using different

student-teacher architectures. The stochastic technique produces satisfactory results and out-

weighs tuning in efficiency significantly.

Model compression using quantization

In addition to KD, model quantization can be another way of model compression. In Table 8,

we compare a quantization method named quantization-aware-training [85] with the KD

methods used in this paper. Deep learning models store parameters as floating points (32 bits

or 64 bits) to achieve high precision and accuracy. However, quantization-based methods

quantize the precision of input and parameters by reducing bit-width to integers (8-bit),

reducing the model size, inference time, and performance. Table 8 showcases that the KD tech-

nique consumes 3.99kWh of energy and produces 1173.44g of CO2, and performs with an

Table 7. Performance of different student-teacher combinations using Tiny ImageNet dataset. Our stochastic method consistently performs a lower carbon footprint

than the tuned KD approach, keeping similar accuracy. " (#) means higher (lower) is better.

Weak Teacher: ShuffleNetV2 (1.5M parameters) Strong Teacher: ResNet18 (11.2M parameters)

Weak Student: ShuffleNetV2 (1.5M parameters) Weak Student: ShuffleNetV2 (1.5M parameters)

Method Accuracy (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) # Accuracy (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) #

Tuned 60.32 ± 0.08 155.48 15.26 4489.89 60.46 ± 0.07 975.23 19.09 5595.31

Ours 60.38 ± 0.11 7.77 0.81 238.41 60.53 ± 0.31 48.75 1.04 304.88

Weak Student: ShuffleNetV2 (1.5M parameters) Strong Student: ResNet18 (11.2M parameters)

Strong Student: ResNet18 (11.2M parameters) Strong Student: ResNet18 (11.2M parameters)

Method Accuracy (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) # Accuracy (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) #

Tuned 63.66 ± 0.12 1057 32.30 9503.34 63.69 ± 0.06 1877.63 34.47 10143.34

Ours 63.38 ± 0.23 52.85 1.58 466.17 63.45 ± 0.17 93.83 1.85 544.94

https://doi.org/10.1371/journal.pone.0285668.t007

Table 6. Accuracy and carbon footprints obtained on different data-free knowledge distillation (DFKD) techniques. " (#) means higher (lower) is better.

CIFAR 10 CIFAR 10

DFKD Method Accuracy (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) # Accuracy (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) #

CMI Tuned 87.38 149.18 4.56 1353.66 57.91 149.18 4.94 1390.8

Ours 87.13 ± 0.21 7.85 0.24 71.24 57.60 ± 0.31 7.85 0.26 73.20

DI Tuned 83.04 149.18 4.75 1369.46 61.34 149.18 4.75 1393.08

Ours 83.09 ± 0.14 7.85 0.25 72.07 61.24 ± 0.21 7.85 0.25 72.32

https://doi.org/10.1371/journal.pone.0285668.t006
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accuracy of 91.62%. The MobileNetV2 model produced by quantization-aware training builds

a smaller and faster model but lacks performance with an accuracy of 89.97%. The quantized

model consumes significantly lower energy as opposed to KD. Nonetheless, our proposed sto-

chastic technique consumes lower power (0.21kWh), produces a smaller carbon footprint

overall, and performs similarly to both methods.

Conclusion

The deployment of large models is infeasible to mobile and edge computing devices. Knowl-

edge distillation provides a solution to this issue by generating a significantly lighter and

deployable model on mobile and edge computing devices. However, we demonstrate that

this suitability often comes at the expense of substantial environmental costs, largely ignored

in deep learning literature. The objective of this article is threefold: (1) to investigate environ-

mental costs for deep learning model compression using knowledge distillation, (2) to pro-

pose a stochastic approach as a means to mitigate carbon footprints for the knowledge

distillation process, and (3) to conduct extensive experiments that demonstrate the suitability

of the proposed stochastic approach. We propose that deep learning research should not be

measured only by performance metrics such as accuracy and mAP, rather the performance

metrics should also include environmental costs. Extensive experiments were conducted

using various student-teacher model combinations (based on ResNet18, MobileNetV2, and

ShuffleNetV2) to solve image classification and object detection problems. We estimated the

carbon footprints of the overall computation process for each student-teacher model combi-

nation in terms of FLOPs count in millions, energy consumption in kWh, and CO2 equiva-

lent in grams. Based on our empirical findings, KD consumes 13 to 18 times more carbon

than the heavier teacher model. The repetitive tuning of hyperparameters is primarily

responsible for such astronomical environmental costs. This article investigates the environ-

mental impact of model compression techniques based on knowledge distillation and pro-

poses a stochastic approach that requires less computation without sacrificing performance.

Empirical results demonstrate that the proposed stochastic approach applied on CIFAR 100

dataset consumes 0.20kWh of energy and emits 61.60g of CO2 while the tuning approach

consumes 3.80kWh of energy and emits 1170.40g of CO2 with a performance difference

favoring the tuning approach of 0.30%. Similarly, for the Tiny ImageNet dataset, the perfor-

mance accuracy of the stochastic approach is 60.53 percent, compared to tuning’s perfor-

mance accuracy of 60.46 percent. However, the stochastic technique only consumes 1.04kWh

of energy and emits 304.88g of CO2, whereas tuning approach emits a massive amount of

carbon footprint (5,595.31g) and uses a tremendous amount of energy (19.09kWh). In future,

we intend to investigate the carbon footprint of additional deep-learning tasks, such as con-

tinuous learning, domain adaptation, and meta-learning, in which the same model undergoes

multiple training rounds.

Table 8. Comparison among quantization and KD methods for model compression. Experiments are done on MobileNetV2 architecture on the CIFAR 10 dataset. KD

techniques use ResNet18 as the teacher. Ours method achieves the best performance in both accuracy and carbon footprint metrics.

Method Accuracy (%) " GFLOPs (M) # Energy (kWh) # CO2_eq (g) #

No compression/KD 90.52 2.16 0.16 45.02

Quantization [85] 89.97 2.46 0.40 124.42

KD [26] 91.62 128.30 3.99 1173.44

Ours 91.78 6.42 0.21 61.76

https://doi.org/10.1371/journal.pone.0285668.t008
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