Skip to main content
. 2023 May 15;18(5):e0285668. doi: 10.1371/journal.pone.0285668

Table 4. Carbon footprints and performance for different KD approaches.

Here, for image recognition, we use ResNet18 (teacher) and MobileNetV2 (student) models. For object detection, we use VGG16 (teacher) and MobileNetV2 (student). We report average results after running the same program five times. ↑ (↓) means higher (lower) is better.

CIFAR 10 CIFAR 10
Loss Method Accuracy (%) ↑ GFLOPs (M) ↓ Energy (kWh) ↓ CO2_eq (g) ↓ Accuracy (%) ↑ GFLOPs (M) ↓ Energy (kWh) ↓ CO2_eq (g) ↓
HKD [26] 91.78 ± 0.14 128.30 3.99 1173.44 69.70 ± 0.12 128.40 3.80 1170.40
Ours 91.67 ± 0.23 6.42 0.21 61.76 69.40 ± 0.37 6.42 0.20 61.60
CMC [44] 92.35 ± 0.24 128.30 3.93 1192.81 73.56 ± 0.17 128.40 3.92 1164.7
Ours 91.65 ± 0.13 6.42 0.21 61.17 72.23 ± 0.24 6.42 0.21 61.30
DML [80] 91.00 ± 0.04 128.30 4.01 1161.00 72.90 ± 0.04 128.40 3.74 1109.40
Ours 91.05 ± 0.13 6.42 0.20 58.05 72.56 ± 0.15 6.42 0.19 58.04
Tiny ImageNet PASCAL VOC
Loss Method Accuracy (%) ↑ GFLOPs (M) ↓ Energy (kWh) ↓ CO2_eq (g) ↓ mAP (%) ↑ GFLOPs (M) ↓ Energy (kWh) ↓ CO2_eq (g) ↓
HKD [26] 60.46 ± 0.07 975 19.09 5595.31 65.45 ± 0.07 1371 31.25 9235.39
Ours 60.53 ± 0.31 48.75 1.04 304.88 65.48 ± 0.15 72.17 1.69 499.21
CMC [44] 62.76 ± 0.17 975 20.21 5949.93 64.87 ± 0.13 1371 32.27 9527.55
Ours 59.84 ± 0.11 48.75 1.00 293.10 64.67 ± 0.12 72.17 1.70 501.45
DML [80] 63.30 ± 0.11 975 19.38 5748.64 65.10 ± 0.09 1371 30.24 8903.52
Ours 63.35 ± 0.07 48.75 1.02 302.56 64.98 ± 0.24 72.17 1.68 494.64