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For three years, a large amount of manufactured pollutants such as plastics, antibiotics and disinfectants has been re-
leased into the environment due to COVID-19. The accumulation of these pollutants in the environment has exacer-
bated the damage to the soil system. However, since the epidemic outbreak, the focus of researchers and public
attention has consistently been on human health. It is noteworthy that studies conducted in conjunction with soil pol-
lution and COVID-19 represent only 4 % of all COVID-19 studies. In order to enhance researchers' and the public
awareness of the seriousness on the COVID-19 derived soil pollution, we propose the viewpoint that “pandemic
COVID-19 ends but soil pollution increases” and recommend a whole-cell biosensor based new method to assess the en-
vironmental risk of COVID-19 derived pollutants. This approach is expected to provide a new way for environmental
risk assessment of soils affected by contaminants produced from the pandemic.
1. Introduction

In the past three years, the whole world has been strongly affected by
the outbreak of COVID-19 with severe economic and humanitarian cost
(Ciotti et al., 2019, 2020; Goudoudaki et al., 2023; Sadiqa, 2023). The
pandemic-induced damages include not only the decline of the global econ-
omy, but also a global death toll of 6,790,506 human reached by 18 Febru-
ary 2023 (Worldometer, 2023). The global economic damages and death
numbers are tremendous, but a serious attention should have also been
paid to the environmental pollution as a result of COVID-19 control mea-
sures (Khan and Imran, 2023; Nguyen et al., 2023). Globally, massive
amounts of discarded masks, medical protection products, pharmaceuti-
cals, disinfectants, and hand sanitizers have entered into the environment,
rocesses and Pollution Control,
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which aroused an unprecedented pressure on the environment (Lal et al.,
2020; Ekanayake et al., 2023; Idowu et al., 2023; Nanehkaran et al.,
2023; Ren et al., 2022). In addition, more people are ordering food online
due to the lifting of restrictions and the temporary closure of restaurants,
which has also led to a significant increase in the use of plastic packaging
materials (Fronde, 2021). Soil is a major sink for pollutants, and thus soil
pollution by the pandemic-induced (in)organic wastes is expected to be in-
creased in the years after the pandemic has subsided and it is likely that a
large portion of these pollutants may persist for long periods of time in
the environment (Farnese, 2022).

Scientific research on the effects of COVID-19 on human health and en-
vironmental pollution increased in the past three years (Fig. S1). As shown
in Fig. S1A, when searching “COVID-19” as a keyword in the web of science
database, the results were mainly research works focusing on human
health. Among environmental pollutants, air pollution and plastic pollution
were the main focus and results when search was set to “COVID-19” and
“pollution” keywords (Fig. S1B). It is noteworthy that the number of
3
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articles retrieved by using the keywords of “COVID-19” and “soil pollution”
accounted for 4% only of those articles retrieved by searchingwith the key-
word of “COVID-19”, which further proves the neglection of the impact of
COVID-19 control measures on soil pollution. In addition, the decrease of
published articles on COVID-19 (Fig. S1C) in 2022 compared to 2021,
and the consequent impact soil pollution indicates a shift in the public at-
tention (Fig. S1E). However, the pandemic-induced pollutants that entered
into the soil systemwill not disappear with the end of the pandemic, partic-
ularly with the decrease in the public attention, as these pollutantsmay per-
sist and endanger soil ecosystem and human health. In view of this
situation, there is an urgent need for relevant articles to summarize the
soil pollution problems caused by COVID-19, so as to guide researchers to
conduct relevant studies. Therefore, we aim to increase the awareness con-
cerning the side impacts of COVID-19 on soil pollution by discussing the
types and sources of pandemic-induced pollutants, whichmay have entered
into soils and assessing the potential associated risks using new approaches
mainly based on the potential use of whole-cell biosensors.

2. Sources, types, and impacts of COVID-19 derived pollutants in soils

Soil pollution derived from COVID-19 control measures mainly origi-
nates from the discard of various protective products and/or chemicals re-
lease during the pandemic. These include masks (made of materials such as
polypropylene, polyester, vinyl strips with acrylic adhesive; Patrício Silva
et al., 2021), medical gloves (rubber, chloroethene polymers, neoprene,
and vinyl; Benson et al., 2021), disposable plastic gowns, disinfectants
(quaternary ammonium compounds, hydrogen peroxide, bleach and alco-
hols; Dewey et al., 2022), hand sanitizers (povidone‑iodine, benzalkonium
chloride, triclocarban and ethanol; Marumure et al., 2022) and pharmaceu-
ticals (arbidol, chloroquine phosphate, hydroxychloroquine sulfate, and
acyclovir; Mohamed et al., 2022). These pollutants can be classified into
solid particulate pollutants (microplastics, rubber particles) and novel enti-
ties (disinfectants, hand sanitizers and pharmaceuticals), which belongs to
one of nine planetary boundaries and has not been quantified (Steffen et al.,
2015). As described by a paper published in Science, the environment is
under unprecedented pressure from artificial chemicals (Wang et al.,
2021b).

Globally, the estimated amount of face masks discarded from each con-
tinent and plastic waste generated per day was 1.6 million tons (Fig. 1;
Fig. 1. Estimated global share of face masks discarded and plastic waste genera
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Benson et al., 2021). The main solid contaminants arising from protective
products are plastic particles, which enter the soil environment through im-
proper disposal (Al-Tohamy et al., 2023). For example, the decomposition
of masks, medical gloves and protective clothing produces micro- and/or
nano-sized plastic particles (Xu et al., 2020). The release of these plastic
particles into soil system may alter soil pH, electrical conductivity, organic
matter and nutrient effectiveness, affecting soil structural composition and
capacity (Chia et al., 2021; de Souza Machado et al., 2019; He et al., 2023;
Wang et al., 2022). These changes also pose (in)direct effects on soil micro-
bial community (bacteria, fungi, protozoa and other organisms; Liang et al.,
2019; Yang et al., 2018), further affecting the whole soil ecosystem. In ad-
dition, microplastics can absorb other contaminants such as heavy metals
and organic pollutants in soil, creating a secondary contamination problem,
and thus a complex contamination situation in soil (Wang et al., 2021a).
The pandemic-induced soil pollution through microplastics is alarming as
there is still no standard separation method of microplastics from the soil
matrix and their measurement is still far from being standardized
(Ekanayake et al., 2023; Idowu et al., 2023). Even the status itself of soil
microplastics contamination and the level of risk microplastics pose to
soil and plants are rather unclear. However, it is well established that
microplastics induce health damage to organisms higher in the food
chain, including humans, although the exact effects and mechanisms are
yet to be fully elucidated.

Liquid COVID-19 derived pollutants, such as disinfectants, hand
sanitizers, and pharmaceuticals, could enter into the soil system through di-
rect spraying and/or application of contaminated municipal sewage. Dur-
ing the COVID-19, disinfectants were widely used as a control measure;
for example, 2000 tons of disinfectants were estimated to have been used
in Wuhan City alone, according to the data reported in April 2020 by Guo
et al. (2021). According to United States Environmental Protection Agency
(U.S. EPA) report, there are 545 products that have been used as disinfec-
tants for COVID-19 control, among which quaternary ammonium com-
pounds (QACs) accounted for 1/2 of all the products (Bureš, 2019; Dewey
et al., 2022). Being cationic surfactants, QACs can be strongly adsorbed
by soil (DeLeo et al., 2020) and induce damage to soil and plant growth.
These damages include degradation of soil fertility, reducing seed germina-
tion and relative growth rate (Agnelo et al., 2020), damaging plant root mi-
crobial populations, thus, inhibiting plant root and shoot growth (Parveen
et al., 2022), and reducing plant water uptake when soil contains
ted per day (tons) from each continent (adapted from Benson et al., 2021).
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disinfectants at high concentrations (Parveen et al., 2022). These com-
pounds can enter into animal and human bodies though soil and plant
and provoke adverse effects on themucosal lining of the respiratory system,
resulting in inflammation, irritation, swelling, or ulcer (Dhama et al.,
2021). In addition, other disinfectants like alcohols and hydrogen peroxide
have also been used for their oxidative nature and capacity to target intra-
cellular components, it is crucial to study their effects on soil quality when
excessively used.

Hand sanitizers have been recommended by The World Health Organi-
zation since the early stages of the COVID-19 outbreak, and this inevitably
led to their excessive use during the past three years. For example, in com-
parison to the usual need of 1200 tons of hand sanitizers, an increase in
hand sanitizer demand of up to 3000 tons has been reported in Pakistan
(Butt et al., 2022). Likewise, in Italy, hand sanitizer sales at supermarkets
increased by 561 % in the first three weeks of the pandemic (Berardi
et al., 2020). This significant increase has also occurred in other countries
around the world. Alcohol-based hand sanitizers like ethanol and isopropyl
alcohol may harm living microorganisms (Dhama et al., 2021). Studies
showed that as a hand sanitizer, chloroxylenol may cause changes in the
structural composition of soil microbial communities (Capkin et al., 2017;
Sreevidya et al., 2018). Therefore, it is critical to study the impact of
hand sanitizers on the health of the soil environment.

A large number and amount of pharmaceuticals have been applied to
target viral infections and related diseases over the past three years. It has
been reported that the pharmaceutical sales in the United States reached
over 530 billion in 2020, with an overall increase of 8 % over the same
amount in 2019 (Statista, 2022). In the treatment of COVID-19 and conse-
quences, a large number of antibiotics were used, which further pose enor-
mous pressure on the environment. Antibiotics as soil pollutants require
great attention as they can cause growth inhibition and biomass reduction
of crops, including inhibition of stem, root and shoot growth (Gomes et al.,
2017; Zainab et al., 2020), depression of plant hypocotyls, cotyledons, leaf
number and length (Eggen et al., 2011). Antibiotics can also affect microor-
ganisms activity in soil and disrupt their functions and structure. For in-
stance, tetracycline can affect negatively the activity of urease, acid
phosphatase and dehydrogenase in soil (Wei et al., 2009). Also, chlortetra-
cycline, tylosin, sulfamethoxazole and sulfamethoxazole could inhibit the
activity of soil phosphatase (Cycoń et al., 2019).Moreover, these antibiotics
may persist for a long period of time and induce antibiotic resistance genes
in soils (Girardi et al., 2011), which may enter into the human body
through food thereby increasing the resistance of human body to specific
drugs (Zainab et al., 2020). However, so far, there are no control measures
for the above-mentioned emerging pollutants. The detection and risk as-
sessment standards for these pollutants are also not uniform, which poses
a challenge for managing soil pollution problems caused by emerging pol-
lutants. Therefore,more research on themanagement of soil contamination
by emerging pollutants should be conducted in the future.

3. A new approach for assessing the risk of soil pollution by pollutants
derived from COVID-19

The bioavailability and bio-toxicity of pollutants in soils are the main
parameters that determine their environmental risk, which can be influ-
enced by various soil factors, like soil pH, redox potential, dissolved organic
carbon,microbial community and activities (Chien et al., 2018;Wang et al.,
2020). Moreover, plant root secretions can also impact the pollutants mo-
bility and transformation in soil and also uptake by, and translocation
into, plants (Lu et al., 2017). However, research on the risk of COVID-19 re-
lated pollutants entering soils is still lacking; therefore, it is urgent to assess
the environmental risk and enact reasonable management for different
COVID-19 derived pollutants. For instance, for the environmental risk as-
sessment of plastics in soil, most researchworks have focused on the toxico-
logical effect of plastics on different target organisms in laboratory trials,
especially of microplastics with concentrations far exceeding environmental
background. Therefore, these studies do not accurately predict the environ-
mental risk of microplastics in soil. In contrast, toxicological studies on
3

emerging pollutants, such as plastic additives and antibiotics, are relatively
well established, but toxicological experiments are usually time-consuming
and complex, which requires certain level of technology and professionalism.

In recent years, there has been a growing interest in the use of whole-
cell biosensors to assess the bioavailability and toxicity of contaminants
in the environment (Zhang et al., 2020; Zhang et al., 2022; Zhu et al.,
2022), which promises a streamlined approach for environmental risk as-
sessment.Whole-cell biosensors are genetically modified prokaryotic or eu-
karyotic cells that function as sensor for hazardous substances and
environmental pollutants (Li et al., 2022; Zhang et al., 2017). Whole-cell
biosensors can be divided into three categories depending on the constitu-
tive principle (Fig. 2). Biosensors that give a dose-dependent signal based
on the bioavailability of a specific pollutant are called Class I biosensors,
those that output a signal based on the stress caused by pollutants are called
Class II biosensors, and those that exhibit a non-specific reduction in signal
output due to the toxicity of a pollutant are called Class III biosensors
(Fig. 2, Zhang et al., 2021; Zhu et al., 2022).

Previous studies have shown that these three types of biosensors have
been successfully used to detect different organic pollutants such as antibi-
otics (Aga et al., 2016) and hydrogen peroxide (Rogers, 2006) in the envi-
ronment. In addition, whole-cell biosensors have been recommended as
approaches for evaluating toxicity of microplastic and their breakdown
products (Lv et al., 2022). Compared to traditional toxicology experiments,
whole-cell biosensor technology is simple, cheap and fast; therefore, it may
provide new ideas for future soil pollution risk assessment, such as that
from the COVID-19 derived soil pollutants. For example, tetracycline, a
drug component commonly used in the clinical management of COVID-
19, can be accurately and rapidly detected in soil by whole-cell biosensor
with detection limits of 5.21–35.3 μg/kg (Ma et al., 2020b). In contrast, typ-
ical high-performance liquid chromatography (HPLC) method requires 7
times longer analysis time and higher cost (Ma et al., 2020a). In addition,
the whole-cell biosensor for the detection of acrylic acid, a plastic mono-
mer, inwater has been developed (Meyer et al., 2019), while further studies
have shown that the whole-cell biosensor can screen for acrylic acid mono-
mers from polyacrylic acid in water body (Puhakka and Santala, 2022).

However, contaminated soil is one of the most difficult matrices for
quantifying hazardous chemicals (van der Meer and Belkin, 2010). There
are currently no uniform standards in most countries, which can be a limi-
tation to the commercialization of whole-cell biosensors. Since contami-
nants in soil systems are often complex, the construction of whole-cell
biosensors for simultaneous detection ofmultiple contaminantsmaybe a re-
search direction in the future.

4. Conclusions

The threat posed by COVID-19 to human health is gradually
diminishing, and so is the public concern about it. However, the effect of
the contaminants produced and deposited into soil during the pandemic,
due to the unpreceded use of protective substances (all of which may be
identified as contaminants of emerging concern for soil), is not an issue
that will disappear any time soon, and the subsequent soil pollution caused
will likely be of primary scientific concern over a long period of many de-
cades. Currently, there is a lack of relevant studies and reports on the effects
of COVID-19 derived pollutants on soil. Pollutants in soil will continue to
put a threat to ecosystem services and ultimately to human health. We an-
ticipate that governments and environmental protection agencies will real-
ize, through this paper, the seriousness of COVID-19 derived soil
contamination. In turn, effective environmental risk assessment and soil
contamination remediation studies should be carried out as COVID-19 sub-
sides, due to the fact that soil pollution problems induced by itwill sadly not
disappear.
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