
Gene expression

BUSZ: compressed BUS files
Pétur Helgi Einarsson 1 and Páll Melsted 1,*
1Faculty of Industrial Engineering, Mechanical Engineering, and Computer Science, University of Iceland, Reykjav�ık, Iceland

*Corresponding author. Faculty of Industrial Engineering, Mechanical Engineering, and Computer Science, University of Iceland, Bjargargata 1, 102 Reykjav�ık,
Iceland. E-mail: pmelsted@hi.is

Associate Editor: Christina Kendziorski

Abstract
Summary: We describe a compression scheme for BUS files and an implementation of the algorithm in the BUStools software. Our compres-
sion algorithm yields smaller file sizes than gzip, at significantly faster compression and decompression speeds. We evaluated our algorithm on
533 BUS files from scRNA-seq experiments with a total size of 1TB. Our compression is 2.2� faster than the fastest gzip option 35% slower
than the fastest zstd option and results in 1.5� smaller files than both methods. This amounts to an 8.3� reduction in the file size, resulting in a
compressed size of 122GB for the dataset.

Availability and implementation: A complete description of the format is available at https://github.com/BUStools/BUSZ-format and an imple-
mentation at https://github.com/BUStools/bustools. The code to reproduce the results of this article is available at https://github.com/pmelsted/
BUSZ_paper.

1 Introduction

The Barcode-Umi-Set (BUS) file format (Melsted et al. 2019)
was designed to represent intermediate results from single-cell
RNA-sequencing (scRNA-seq) experiments. The goal was to
separate the process of alignment and downstream analysis
allowing for rapid analysis and adaptation to different
scRNA-seq technologies. The modular design of BUStools
(Melsted et al. 2021) allows for using various sub-commands
together to build pipelines tailored for various projects or
technologies, which is achieved by streaming or storing inter-
mediate BUS files.

The original BUS files are often smaller than the corre-
sponding FASTQ files containing the original sequences, espe-
cially after sorting. The speed of analysis makes it convenient
to store or archive the sorted BUS files for reproducibility or
future analysis. The BUS format was designed for fast and
modular processing, but still has room for compression. A
simple method would be to use gzip or zstd (Collet and
Kucherawy 2021) for compression, but the structured format
of the data allows for tailoring the compression method to the
needs of BUStools.

The first release of the Human Cell Atlas (The Tabula
Sapiens Consortium 2022) contained over 500 000 cells.
Advances in scRNA-seq technologies and increased se-
quencing throughput have already made it feasible for sin-
gle labs to generated datasets of several million cells. Just
the raw sequencing data can be estimated to be 2TB per
1 million cells. Thus, to contain the cost of storing and
transferring BUS files we propose a compression method
to efficiently compress and decompress BUS files and im-
plement it into BUStools.

2 Methods

Technologies for scRNA-seq experiments vary in how they
measure gene expression of isolated cells and capture infor-
mation about individual molecules. The BUS file abstracts
these technological differences by encoding the barcode of
each cell and the unique molecular identifier (UMI) as short
oligonucleotides encoded as integers. For each molecule, the
corresponding read from the cDNA is not stored, but rather
the transcript or set of transcripts it aligned to is stored as an
equivalence class (EC). The EC corresponds to a set of tran-
scripts, each set is encoded as a unique integer and the map is
stored alongside of the BUS file.

A BUS file consists of a header followed by a sequence of
BUS records (Melsted et al. 2019). Each BUS record occupies
exactly 32 bytes and consists of six fields; barcode, UMI, EC,
read count, flags, and padding. These fields are 8, 8, 4, 4, 4,
4 bytes in size, respectively. The barcodes and UMIs represent
nucleotide sequences and are two-bit encoded, allowing them
to be expressed as unsigned 64-bit integers. The fixed length
format of BUS records allows for fast loading of BUS files and
circumventing the need for parsing textual data.

The layout of records in BUS files is row-based, as shown
in Fig. 1A. To compress the BUS file we use a columnar layout
for the compression, where the columns correspond the fields
of the BUS records, similar to the CRAM format (Fritz et al.
2011).

Our compression algorithm assumes a sorted input, which
can be obtained using the bustools sort command. The
input is sorted lexicographically by barcodes first, then by
UMIs, and finally by the ECs. This can be seen as the first
level of compression, as records with the same barcode, UMI,

Received: December 19, 2022. Revised: March 29, 2023. Accepted: April 28, 2023

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(5), btad295
https://doi.org/10.1093/bioinformatics/btad295

Advance access publication 2 May 2023

Applications Note

https://orcid.org/0000-0002-1665-7459
https://orcid.org/0000-0002-8418-6724
https://github.com/BUStools/BUSZ-format
https://github.com/BUStools/bustools
https://github.com/pmelsted/BUSZ_paper
https://github.com/pmelsted/BUSZ_paper


and EC are merged. We split the input into blocks of N
records (by default N ¼ 10 000). Within each block, the col-
umns are compressed independently, each with a customized
compression-decompression scheme (codec). The padding col-
umn is not included in the compressed file.

The compression scheme of each column is as follows. To
simplify notation, we let RLE0 denote run-length-encoding
where zeros are compressed into runs whereas other values
are left as-is, and FRLE0 denote the Fibonacci encoding
(Fraenkel and Klein 1996) of the output of RLE0. Since
Fibonacci encoding does not encode zeros, we increment each
value by one before encoding. Similarly, we define RLE1 and
FRLE1 for compressing runs of ones. This does not require
incrementing the values.

When compressing the barcode column we expect that
many BUS records originate from reads captured from the
same cell, thus resulting in a repeat of barcodes. We take the
differences of adjacent barcodes, which are non-negative since
the barcode values are increasing. Since this list is expected to
contain a run of zero differences, we encode the differences
with FRLE0.

The UMIs are encoded in a similar manner as the barcodes.
However, they only increase within the same barcode so we
must modify how the differences are computed. The differ-
ence is only taken of adjacent records from the same cell.
Otherwise, the absolute value is used. We then continue with
FRLE0 on the modified differences.

The third column, containing the ECs, is not as well struc-
tured as the first two as it has higher entropy and is harder to
compress (Supplementary Material). To compress this column
we modified a variant of PForDelta (Zukowski et al. 2006)
called NewPFD (Yan et al. 2009). This codec splits the list of
ECs into sub-blocks of NPFD consecutive values (by default
NPFD ¼ 512). For each sub-block B we find two parameters, k
and b, so that f (default f ¼ 0:9) fraction of values fall in the
interval ½k;kþ 2b � 1�. We choose k to be the smallest value
in the sub-block, whereas b is computed as the number of bits
required to encode f�NPFD of the values ðx� kÞ; x 2 B. Any
value requiring more than b bits is considered an exception
and the remaining high bits are Fibonacci encoded. A

complete description of the encoding is in the Supplementary
Material.

The last two columns, count and flags, are compressed us-
ing RLE and Fibonacci encoding. The count values are strictly
positive and are most often equal to one, so we use run-length
encoding on ones (FRLE1). The flags column contains mostly
zeros so we use FRLE0.

Each compressed block is preceded by a block header, con-
taining the number of records contained in the block, as well
as the size in bytes of the compressed block.

The compressed file starts with a header containing a fixed
magic number to identify the file as a compressed BUS file,
the header values of the input file, and the parameters used
for the compression. Optionally, we output an indexing file,
which contains the first barcode of each block and the size of
the block, facilitating fast lookup of records for specific barc-
odes without decompressing the entire BUSZ file.

3 Results

To evaluate our compression algorithm, we measured the
time it took to compress and decompress 533 BUS files col-
lected as a part of a larger survey (Booeshaghi et al. 2022).
The total size of the dataset is 1010 GB of BUS files. All
experiments were performed using a single core on a Intel
Xeon CPU E5-2697 2.7 GHz processor. File sizes ranged
from 4MB to 10GB and were all sorted prior to compression.
The full list of results and data used are given in the
Supplementary Material. We compare the performance with
gzip, using the fastest compression (gzip -1) and the best
compression (gzip -9), and zstd using the fastest (zstd -1),
default (zstd -3) and best compression (zstd -19). To en-
sure that disk access patterns and caching would not affect
the results, we eliminate disk read latency by caching the in-
put files before running each compression method. Since com-
pressing the files using the best options (gzip -9 and zstd -
19) takes substantially more time than the other methods, we
only used those options to compress the 100 smallest BUS
files for both methods and the 50 largest for gzip -9.
The results in Fig. 1 were acquired using a block size of

Figure 1. (A) A general outline of the compression scheme for BUS files. (B) Comparing compression time between BUStools, gzip, and zstd. The best

(gzip -9) option is omitted due to extremely long compression time. (C) Comparing decompression time of the three methods. (D) Comparing

compression ratios using the three methods.

2 Einarsson and Melsted

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad295#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad295#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad295#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad295#supplementary-data


N ¼ 10 000 and a NewPFD sub-block size of NPFD ¼ 512.
Our method performed consistently better than the two gzip
methods and zstd -19, both in terms of speed and compres-
sion ratio. The zstd -1 and -3 methods were faster at both
compression and decompression but resulted in larger com-
pressed file sizes. For compression and decompression, all
methods have a running time roughly linear in terms of input
size up to 10GB. Fitting the data with a linear model shows a
speedup of 2.2�, 55�, and 126� compared to gzip -1, -9,
and zstd -19, respectively (Fig. 1B). The compression time
of zstd -1 and -3 was 35% and 15% faster than BUStools.
Similarly, BUStools’ decompression time is 1.6� faster than
both options for gzip (Fig. 1C). The zstd methods showed
consistently faster decompression speeds, 1.5�, 1.6�, and
1.2� for zstd -1, -3, and -19. The compression ratio is the
ratio of the uncompressed size to the compressed size of the
file and we estimate it using a linear model and find a com-
pression ratio of 8.3, 4.9, 5.4, 5.3, 5.5, and 5.8 for BUStools,
gzip -1, -9, zstd -1, -3, and -19, respectively (Fig. 1D).

Together these results show that the compression scheme,
as implemented in BUStools, is significantly faster and shows
better compression than gzip alone. zstd with the best com-
pression is too slow, but the default (-3) and fast (-1) options
are fast for compression and decompression. The compression
speed is 194 MB/s for BUStools versus 222–262 MB/s for the
two faster zstd options, however the resulting compressed file
is 50% larger when using zstd. This shows that the BUStools
compression method is superior for reducing the cost of stor-
age and results in higher throughput of data transfer due to
its smaller file size.

Acknowledgements

We thank Ángel Gálvez-Merchán and A. Sina Booeshaghi for
help with benchmarking. Atli Fannar Frankl�ın worked on an
initial prototype of the software. Lior Pachter provided valu-
able feedback on the design of the compression and use cases.

Supplementary data

Supplementary data is available at Bioinformatics online.

Conflict of interest

None declared.

Funding

This work was supported by the Icelandic Research Fund
Project [218111-051].

Data availability

All data used is publicly available, a list of accession ID is
given in the Supplementary Material.

References

Booeshaghi AS, Hallgr�ımsdóttir IB, Gálvez-Merchán Á et al. Depth nor-
malization for single-cell genomics count data. bioRxiv, 2022.

https://doi.org/10.1101/2022.05.06.490859.
Collet Y, Kucherawy M. Zstandard Compression and the ’application/

zstd’ Media Type. RFC 8878. 2021. https://www.rfc-editor.org/rfc/

rfc8478.
Fraenkel AS, Klein ST. Robust universal complete codes for transmis-

sion and compression. Discrete Appl Math 1996;64:31–55.
Fritz MH-Y, Leinonen R, Cochrane G et al. Efficient storage of high

throughput DNA sequencing data using reference-based compres-

sion. Genome Res 2011;21:734–40.
Melsted P, Booeshaghi AS, Liu L et al. Modular, efficient and constant-

memory single-cell RNA-seq preprocessing. Nat Biotechnol 2021;

39:813–8.
Melsted P, Ntranos V, Pachter L et al. The barcode, UMI, set format and

BUStools. Bioinformatics 2019;35:4472–3.
The Tabula Sapiens Consortium. The tabula sapiens: a multiple-organ,

single-cell transcriptomic atlas of humans. Science 2022;376:

eabl4896.
Yan H, Ding S, Suel T. Inverted index compression and query processing

with optimized document ordering. In: Proceedings of the 18th
International Conference on World Wide Web, WWW ’09. New
York, NY, USA. Association for Computing Machinery, 2009,

401–410.
Zukowski M, Heman S, Nes N et al. Super-scalar RAM-CPU cache

compression. In: 22nd International Conference on Data
Engineering (ICDE’06), Atlanta, GA, USA. 2006, 59–59.

BUSZ: compressed BUS files 3

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad295#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad295#supplementary-data
https://doi.org/10.1101/2022.05.06.490859
https://www.rfc-editor.org/rfc/rfc8478
https://www.rfc-editor.org/rfc/rfc8478

