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Abstract
Motivation: Allostery enables changes to the dynamic behavior of a protein at distant positions induced by binding. Here, we present APOP, a
new allosteric pocket prediction method, which perturbs the pockets formed in the structure by stiffening pairwise interactions in the elastic net-
work across the pocket, to emulate ligand binding. Ranking the pockets based on the shifts in the global mode frequencies, as well as their
mean local hydrophobicities, leads to high prediction success when tested on a dataset of allosteric proteins, composed of both monomers and
multimeric assemblages.

Results: Out of the 104 test cases, APOP predicts known allosteric pockets for 92 within the top 3 rank out of multiple pockets available in the
protein. In addition, we demonstrate that APOP can also find new alternative allosteric pockets in proteins. Particularly interesting findings are
the discovery of previously overlooked large pockets located in the centers of many protein biological assemblages; binding of ligands at these
sites would likely be particularly effective in changing the protein’s global dynamics.

Availability and implementation: APOP is freely available as an open-source code (https://github.com/Ambuj-UF/APOP) and as a web server
at https://apop.bb.iastate.edu/.

1 Introduction

Allosteric regulation of function is commonly observed in
proteins, ranging from the small G proteins (Mott and Owen
2018) to larger assemblies such as GroEL during its chaperon-
ing of folding (Lin and Rye 2006) and even to microtubules
during transport (Amos and Löwe 2014). Conformational
transitions, such as those between open/closed and on/off
states of proteins, routinely occur during allosteric events of
regulation, i.e. activation, inhibition, or more subtle control
of function. Binding of ligands (small or large) at an allosteric
site alter protein conformations and/or dynamics, can thereby
control binding events at distant, functional site(s) (Zhang
et al. 2020). The current understanding of allostery is based
on conformational dynamics and selection mechanisms. In
this perspective, allosteric regulation can take place even in
the absence of significant changes to the protein conformation
(Popovych et al. 2006; Daily and Gray 2007; Tsai et al.
2008), in which case the change in protein dynamics becomes
the main mechanism for regulation. In particular, the so-
called global or collective motions that are essential for
protein function have been shown to be significantly altered
during ligand binding and allosteric events (Kaynak and
Doruker 2019; Kaynak et al. 2020).

The large-scale transitions observed over long times
(Leioatts et al. 2012; Gur et al. 2013) are not so readily acces-
sible by molecular dynamics simulations, and this means there
is a need for computationally efficient approaches facilitated
by the use of coarse-grained models. From this perspective,
the elastic network models (ENM) (Bahar et al. 1997; Atilgan
et al. 2001) are appropriately used to efficiently represent the
functional protein dynamics (Yang et al. 2007; Katebi and
Jernigan 2014; Zimmermann et al. 2016; Mishra et al. 2017;
Mishra and Jernigan 2018; Kumar and Jernigan 2021), espe-
cially for large assemblages. Specifically, the low-frequency or
global modes obtained from the ENM vibrational spectra are
known to guide the large-scale allosteric transitions (Tama
and Sanejouand 2001; Yang et al. 2007; Katebi and Jernigan
2014; Zimmermann et al. 2016; Mishra et al. 2017). ENMs
applied to a large dataset of small ligand-protein complexes
have shown that ligand binding introduces new constraints
on the global modes (Kaynak and Doruker 2019). Based on
this insight an ENM-based methodology, named Essential
Site Scanning Analysis (ESSA), was recently introduced for
identifying the so-called essential sites that can significantly
modify global modes, at allosteric ligand-binding sites and
hinges (Kaynak et al. 2020). In addition, Kaynak et al. (2020)
and Song et al. (2017) showed that the allosteric pockets
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within a protein tend to have a higher hydrophobicity com-
pared to other pockets in the same protein. The hydrophobic
nature of allosteric pockets plays a role in the binding of
small, hydrophobic molecules, which can modulate the pro-
tein’s activity. This characteristic helps to create a specific and
favorable environment for the binding of allosteric ligands,
leading to changes in the protein’s conformation and func-
tion. Therefore, it allows for the identification of highly prob-
able allosteric pockets with greater hydrophobicity, which is
also crucial for drug targeting. Other diverse computational
approaches have been utilized for allosteric site prediction
and signal transfer, ranging from molecular dynamics simula-
tions (Hacisuleyman and Erman 2017; Singh and Bowman
2017), to normal mode analyses (Zheng et al. 2007; Balabin
et al. 2009; Mitternacht and Berezovsky 2011; Panjkovich
and Daura 2012; Rodgers et al. 2013) and graph theory
(Amor et al. 2016), as well as machine learning approaches
(Greener and Sternberg 2015; Song et al. 2017; Mishra et al.
2019; Ferraro et al. 2021; Marchetti et al. 2021).

In this study, we simulated the impact of ligand binding on
the global mode of proteins by considering pockets identified
by the Fpocket algorithm (Le Guilloux et al. 2009). While
binding of substrate to active sites can also lead to large
change in the global modes of proteins, these pockets gener-
ally tend to have relatively more polar residues. Previous stud-
ies showed that allosteric pockets are relatively more
hydrophobic than other pockets in a protein. This distinction
helps to differentiate allosteric pockets from all other pockets,
including active site pockets. However, not all hydrophobic
pockets have the ability to alter global motions. With this in
mind, we developed a new Allosteric Pocket Prediction
method (APOP) that considers a combination of frequency
shifts in the global modes obtained from perturbations ap-
plied to Gaussian network models (GNM) (Bahar et al. 1997;
Haliloglu et al. 1997) for protein dynamics, and the local hy-
drophobic density obtained from Fpocket to accurately iden-
tify allosteric pockets in proteins. APOP is a pocket-based
algorithm, which utilizes Fpocket (Le Guilloux et al. 2009)
for locating existing pockets in a protein structure. Results of
applying APOP to a diverse set of 104 proteins, both mono-
meric and multimeric, indicates a high success rate, where the
known allosteric pockets are predicted within the top 3 in the
rank of the 92 proteins. APOP outperforms machine learning
methods Allopred (Greener and Sternberg 2015) and Passer
(Tian et al. 2021), which have been shown to predict known
allosteric pockets with relatively high accuracy (see Section 3).

Larger numbers of important allosteric pockets are found.
In several cases, we show that APOP can predict alternative
allosteric pockets, as well as successfully utilize alternative
conformers, such as apo or holo structures. Other important
allosteric pockets discovered are the large pockets commonly
found at the centers of multimeric assemblies.

2 Materials and methods
2.1 Dataset

The allosteric proteins used in this study are taken from the
test set of Allopred (Greener and Sternberg 2015), together
with the apo/holo structures used in ESSA (Kaynak et al.
2020), as well as some additional cases from a recent litera-
ture search (see Supplementary Tables S1–S5). Multi-chain
protein assemblages are generated with PyMol (Schrödinger)
according to the information provided in the Protein

Databank (PDB) (Berman et al. 2000). In total, we have a set
of 61 monomers and 43 multimeric structures (see
Supplementary Tables S1–S5). The number of pockets in this
set ranges from 10 to 242 (Supplementary Table S1). We con-
sider ranks 1, 2, and 3 as successes in predicting known allo-
steric pockets across the large range of known pockets in
proteins (see Supplementary Tables S1–S5).

2.2 APOP

Our new allosteric pocket prediction algorithm APOP is com-
prised of three steps: (i) Pocket hunting. Pockets in the input
protein structure are identified by Fpocket protein cavity
detections (Le Guilloux et al. 2009), which uses Voronoi tes-
sellation and alpha shapes to identify each pocket. This step is
carried out using the default parameters of Fpocket. (ii)
Perturbation of pockets. Each pocket in the protein elastic
network (GNM) is perturbed by inserting stiffer springs be-
tween the residues lining the pocket under consideration. (iii)
Scoring. The pockets are scored and ranked according to the
computed eigenvalue shifts in the global GNM modes to-
gether with their local hydrophobic densities (a feature from
Fpocket). More details about the 2nd and 3rd steps are pro-
vided next.

2.2.1 Perturbation of pockets

GNM is the underlying dynamics model used here to obtain a
measure of the impact of perturbations at a given pocket on
the protein’s characteristic motions, i.e. the global modes
(Bahar et al. 1997). GNM has recently been shown to yield
the essential residues that affect the global modes and was
previously shown to be adept at predicting the allosteric pock-
ets (Kaynak et al. 2020) for monomeric proteins. GNM uses a
coarse-grained approach, where the alpha carbon (CaÞ atoms
in a structure are chosen as the nodes in the elastic network.
Here, the total potential energy is the sum over the harmonic
potentials connecting residue pairs i and j, with any displace-
ments from the original structure considered to be higher in
energY

V ¼ 1

2
c
XN

i; j
Cij DRi � DRj

� �2
h i

1ð Þ

where N is the total number of residues/nodes in the protein.
DRi and DRj represent the corresponding displacements of
residues i and j from their equilibrium positions. There is a
uniform spring constant, c ¼ 1:0 kcal mol�1 Å

�2
; between all

pairs of i and j nodes.
The connectivity matrix or contact map, C, determines the

placement of springs between neighboring residue pairs if
they lie within a cutoff distance of 10 Å.

Cij ¼
�1 if i 6¼ j and Rij � 10 Å
0 if i 6¼ j and Rij > 10 Å
�
P

i; i 6¼jCij if i ¼ j
2ð Þ

8><
>:

Here, Rij is the distance between residues i and j at their
equilibrium positions in the reference structure. The eigenvec-
tors (u) and eigenvalues ðkÞ of the contact map of this refer-
ence structure are obtained by singular value decomposition
of C following removal of the rigid body mode of motion.

To mimic the effect of ligand binding to a specific pocket,
we increase the spring constant between all residues
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participating in that pocket, where c is set to 10.0 kcal
mol12 Å�2 regardless of the distances between those pairs of
residues. For each perturbed pocket, the eigenvalues, and
eigenvectors are calculated for the whole new structure
network.

2.2.2 Scoring

After perturbing each pocket one-by-one, we score the con-
straining effect thereof on protein global motions by adopting
a similar measure that was developed for ESSA (Kaynak et al.
2020). This measure is based on a comparison between the
eigenvalues of the perturbed and unperturbed structures. This
comparison requires a prior matching between the global
modes as possible shifts in the mode indices may occur due to
perturbations. For this purpose, we first calculate the overlap
matrix between the slowest 5 eigenvectors of the unperturbed
structure (vm) and the first 15 eigenvectors of the perturbed
structure (vp

n) aS

overlapmn ¼
vm:v

p
n

�� ��
vmj jj j vp

n

�� ���� �� 3ð Þ

where m and n refer to the indices of the modes. The paired
indices of the perturbed modes are reassigned based on the
best overlaps. This gives a set of reordered first 5 most impor-
tant modes for the perturbed structure.

Once we have the matching modes, we can evaluate the
percentage shift in k for these matched modes in response to
the perturbation of a specific pocket p

Dkp
k ¼

kp
k � kk

� �

kk
� 100; 4ð Þ

Here kk is the kth eigenvalue obtained for the unperturbed/
reference structure and kp

k is the corresponding eigenvalue
obtained for the perturbed structure. Changes in global modes
are determined by the mean percentage eigenvalue shifts over
the first five modes (1� k� 5), Dkph i: This part of the scoring
was originally developed in our ESSA method (Kaynak et al.
2020). Afterwards, a z-score zp is assigned to each pocket to
assess the effect of ligand binding at that specific pocket p on
the global dynamics bY

zp ¼
Dkph i � l

r
5ð Þ

Here, l and r denote the respective mean and the standard
deviation of Dkph i over all pockets.

Allosteric pockets were previously shown to have higher lo-
cal hydrophobic density (Song et al. 2017), Hp, which is also
a feature calculated by Fpocket. Use of Hp was shown to im-
prove allosteric pocket prediction in ESSA (Kaynak et al.
2020). The z-scores of the pocket local hydrophobic densities
(zhp), are calculated usinG

zhp ¼
Hp � lh

rh

6ð Þ

Here, lh and rh are, respectively, the mean and standard
deviation of Hp over all pockets in the protein. These z-scores
are then combined to define a pocket allostery score, giving
equal weight to each of the two considerations as,

sp ¼
zp þ zhp

2
7ð Þ

Then, the pockets are ranked based on this combined score
sp, which characterizes the relative allosteric propensity of
each pocket.

2.3 Allopred and passer

For benchmarking, we use two machine learning-based meth-
ods, Allopred (Greener and Sternberg 2015), and Passer (Tian
et al. 2021), which had significant successes in allosteric
pocket predictions. Both Allopred and Passer pocket features
are obtained from Fpocket. In addition, Allopred combines
dynamics information from ENM (changes in the deforma-
tion of active site residues resulting from the perturbation in
the pockets).

2.4 Success criteria

For each structure, we report the highest-ranked pocket that
is known to have bound allosteric ligand(s). In the multimeric
assemblages, the same allosteric ligand(s) can be bound to
each subunit. Among those occurrences, we report the
highest-ranking pocket observed in the multimer. If this
pocket is among the top-ranked three predicted pockets, we
count it as a success. To cross-validate our results for APOP,
Allopred, and Passer performance, we visually check whether
the known allosteric ligand resides within the three top-
ranked pockets reported by each method.

2.5 Statistical analysis

A one-sided Wilcoxon signed-rank test (Obremski and
Conover 1981) was applied to test if there is a significant dif-
ference between known allosteric pocket ranking performance
between APOP and Allopred. Here, the Null hypothesis H0 is:
The median difference between rank of known allosteric
pocket predicted using Allopred and APOP is zero. The con-
trasting Alternate hypothesis H1 is: The median difference be-
tween rank of known allosteric pocket predicted using
Allopred and APOP is positive. A positive difference indicates
that the predicted rank of known allosteric pocket with
Allopred is greater than APOP. A thorough statistical com-
parison between APOP and Passer was not conducted since
the Passer web server provides only the top three ranking
pockets, which leads to many unranked pockets.

3 Results and discussion
3.1 APOP successfully predicts allosteric pockets in

holo-structures

APOP’s performance in predicting allosteric pockets is first
tested on a dataset of 50 protein structures with bound allo-
steric ligands (Supplementary Table S1). Our allosteric pocket
predictions are based on holo-structures formed simply by re-
moving any ligand(s). We apply both APOP and Allopred to
each crystal structure and report the ranks in Supplementary
Table S1. Allopred requires active site residue information for
allosteric pocket prediction; thus, pockets located at the active
site(s) are removed from the rankings to permit a more direct
comparison between APOP and Allopred. Our results indicate
that APOP outperforms Allopred and Passer in predicting the
known allosteric pockets in the dataset. APOP is able to detect
the allosteric pockets at first rank for 35 proteins in contrast
to 19 proteins for Allopred and 29 for Passer (Supplementary
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Table S1). If we consider the top 3 ranked pockets, the overall
success rate for APOP is 84% (42/50), surpassing that of
Allopred at 68% (34/50) and Passer at 76% (38/50).
Furthermore, the P-value of 0.00088 obtained from the one-
sided Wilcoxon signed-rank (Obremski and Conover 1981)
results indicate the ranking of known allosteric pocket
obtained with APOP to be significantly better than with
Allopred.

We emphasize that APOP does not require prior knowledge
of active site residues for predictions, unlike Allopred.
Specifically, Allopred could not be applied to the Acyl-
coenzyme A thioesterase 11 protein crystal structure (PDB ID:
6VVQ) nor to Nuclease SbcCD subunit D (PDB ID: 6ASC),
since the active site residues were not resolved for these crystal
structures, because of missing residues. In contrast, APOP
predicts the allosteric pockets at the number one place for
both cases. Furthermore, APOP was only able to rank 32%
(16/50) of the active site pockets as top ranked pockets
(Supplemental Table S1), indicating that the APOP score-
based pocket ranking does prioritize allosteric pockets over
active site pockets.

3.2 Allosteric pockets can be predicted in different

states including apo

We also assess the performance of APOP on apo structures,
with the ligand-binding pockets either formed or stabilized by
the ligand. For this purpose, we consider another dataset, of
15 proteins taken from Kaynak et al. (2020) and added struc-
tures from an additional literature search, where both apo
and holo structures are available (Supplementary Table S2),
so that we can detect the allosteric pockets in the apo struc-
tures. APOP successfully predicts allosteric pockets in all
holo-structures (15/15) and 11 out of 15 pockets in apo struc-
tures in this set within the top 3 rank. Although conforma-
tional rearrangements seem to affect the success rate of our
predictions for apo structures, we still achieve a satisfactory
prediction rate of 86% (11/14), excluding one cryptic pocket
(PDB ID: 1ZG4). For only the top-ranked pockets, APOP is
successful in 12 holo and 8 apo structures.

Figure 1 shows two results from the apo/holo-structure
dataset. Uridylate kinase is an essential enzyme for pyrimidine
biosynthesis, adding a phosphate to uridine monophosphate
(UMP) to form uridine diphosphate (UDP) (Tu et al. 2009). It
forms a homo-hexameric assembly, where six GTP molecules
bind to its central cavity and act as allosteric effectors, causing
a long-range allosteric response (Tu et al. 2009). APOP pre-
dicts the large central cavity as the top-ranked allosteric
pocket in both the apo (PDB ID: 3EK6) and holo (PDB ID:
3EK5) structures (Fig. 1a and b). Moreover, APOP ranks all
four allosteric ligand-binding pockets as top ranked pockets
in both the apo and the holo conformational states for
Glucose-1-phosphate thymidylyltransferase (Fig. 1c and d).

To further test APOP performance, a combination of na-
tive, mutant, open, and closed states, as well as apo and holo
states of Tyrosine-protein phosphatase non-receptor type 1
protein are explored. Our results show that APOP is able to
predict the known allosteric pocket as the top rank 1 pocket
in 12, rank 2 in one case, and rank 5 in one structure from the
set of 14 different conformational states (Supplementary
Table S4).

3.3 Central cavities in protein assemblies often have

a high proclivity to be allosteric

Large central cavities are observed to act as allosteric pockets
in multimeric assemblages in our dataset, especially in homo-
oligomeric cases, such as the top-ranked pocket just shown
for uridylate kinase (Fig. 1a and b). Other top-ranked central
pockets are illustrated in Fig. 2 for glyceraldehyde-3-
phosphate dehydrogenase (ranked 7), arginine repressor
(ranked 1), uracil phosphoribosyltransferase (ranked 1), and
purine nucleotide synthesis repressor (ranked 1)
(Supplementary Table S1). Perturbation of these central pock-
ets often has a major effect on the global modes, limiting the
large-scale inter-subunit motions and probably imposing par-
ticularly strong allosteric control. As central cavities are phys-
ically connected with many protein assembly subunits, they
have a potential for being especially important effectors of the
global motions of the assembly and would have significantly
larger effects than other pockets. We should also note that
considering these in druggability simulations could help to
guide drug design and pharmacophore modeling studies.

We next focus on Pyruvate kinase M2, where binding of
two identical activators to its central pocket were shown to
aid in suppressing tumor growth (Anastasiou et al. 2012).
APOP ranks the central allosteric activator binding pocket as
the top pocket (Fig. 2e) in six human Pyruvate kinase M2
structures (Supplementary Table S3), as well as in two
Trypanosoma cruzi Pyruvate kinase structures.

Hemoglobin (Fig. 2f) binds to the allosteric ligand 2,3-di-
phosphoglyceric acid in a region, which is not a central cavity
as in the other cases presented here. In fact, the position of
this ligand is stabilized by loops, which does not correspond

Figure 1. Validation by APOP for known allosteric pockets in uridylate

kinase and glucose-1-phosphate thymidylyltransferase structures, for both

apo and holo conformations. (a) apo form of uridylate kinase (PDB ID:

3EK6) where a known allosteric pocket is predicted as the rank 1 pocket

by APOP from among a total of 88 pockets in the structure, (b) holo form

of uridylate kinase (PDB ID: 3EK5) where the known allosteric pocket is

predicted as rank 1 pocket by APOP from among the 84 pockets in the

structure. (c) apo state of glucose-1-phosphate thymidylyltransferase

(PDB ID: 1FZW) where the known allosteric pocket is predicted as the rank

1 pocket by APOP from among the total of 66 pockets in the structure, (d)

holo state of glucose-1-phosphate thymidylyltransferase (PDB ID: 1H5T)

where the known allosteric pocket is predicted as the rank 1 pocket by

APOP from the total of 60 pockets in the structure. Allosteric ligands are

shown in red, and the corresponding allosteric pockets predicted by APOP

are shown in yellow. Substrates are colored green.
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to a cavity. Therefore, Fpocket fails to predict this as a pocket,
and leads to failure by APOP and other methods
(Supplementary Table S1) to predict it as an allosteric site.
The closest pocket to the ligand is shown in blue mesh.
However, there is another pocket located in the central cavity
of hemoglobin tetramer (magenta mesh, shown from the
side), which has the top rank excluding the top pockets that
correspond to the heme ligand-binding regions in the struc-
ture. ATP phosphoribosyl transferase binds to histidine,
which acts as an inhibitor, regulating histidine biosynthetic
pathway through a feedback mechanism (Cho et al. 2003).
Here, Fpocket fails to predict pocket in ATP phosphoribosyl
transferase where histidine binds, and therefore APOP fails to
rank the known histidine binding region as an allosteric
pocket (Fig. 2g). Interestingly, similar to other assemblages
shown in Fig. 2, APOP predicts a central pocket as rank 1
pocket (Fig. 2g, shown in yellow) in ATP phosphoribosyl
transferase which can be an allosteric pocket.

3.4 APOP can predict alternative allosteric pockets

Different allosteric pockets can be resolved in complexes of
the same or homologous protein(s) bound with alternative al-
losteric ligands and APOP can predict such alternative pock-
ets. The first example is ABL kinase, which plays an
important role in cell growth and survival through a wide
range of molecular functions such as cell motility, autophagy,
apoptosis, remodeling of cytoskeleton, and receptor endocy-
tosis (Umezawa and Kii 2021). Thus, ABL kinase has been

widely studied for the design of selective allosteric inhibitors.
Figure 3 shows three crystal structures in complex with differ-
ent inhibitors (see details in Supplementary Table S5). In
Fig. 3a, the first and second ranked pockets have bound imati-
nib, whereas a smaller inhibitor (PHA-739358) is bound to
the top-ranking pocket in Fig. 3b. In another structure, imati-
nib again is bound to the same pockets (at first and second
rank) and a second inhibitor (GNF-2) is shown in an alterna-
tive pocket (third rank). Thus, APOP can predict these alter-
native allosteric pockets in ABL kinase.

The second example is fructose-1,6-bisphosphatase
(F16Pase), which catalyzes the hydrolysis of fructose-1,6-
bisphosphate (F16P) to fructose-6-phosphate (F6P). This
homo-tetrameric enzyme plays an important role in regulating
gluconeogenesis as a primary control point and helps main-
tain blood glucose levels. Figure 4 shows two homologous
F16Pase structures bound to allosteric inhibitors. F16Pase is
known to be regulated by adenosine monophosphate (AMP),
which acts as an allosteric inhibitor (Zarzycki et al. 2011). In
human F16Pase (Fig. 4a and b), APOP ranks the AMP-
binding allosteric pockets at ranks 2, 3, 4, and 5 (shown in
yellow mesh, with one pocket in each subunit). Next, we fo-
cus on a homologous F16Pase structure from Sus scrofa (PDB
ID: 1KZ8) (Wright et al. 2002) (Fig. 4c and d), which is
bound to AMP and another allosteric inhibitor (PFE, an anili-
noquinazole). We observe a similar ranking of the central
pocket (rank 1), followed by the AMP-binding pockets (ranks
2–5, green). Interestingly, the next two pockets (ranks 6 and
7) in both species correspond to the PFE- binding site ob-
served in S.scrofa. Even though we concentrate on the top
three-ranked pockets in our analysis, additional pockets with
high rank may also have allosteric potential in multimeric
structures that bind to multiple ligands. Notably, in some
cases, there are more than 100 pockets detected by Fpocket in
large assemblies. The total number of pockets found in
F16Pase is 84 (PDB ID: 3IFA) and 69 (PDB ID: 1KZ8)—so
that concentrating on the top 10% ranking pockets would in-
clude all of the allosteric pockets mentioned above. APOP
also predicts the top-ranked pocket at the center of the assem-
bly (blue mesh) in both species. In line with other cases dis-
cussed (see Fig. 2), this central pocket has the potential to
serve as an allosteric pocket for drug design. Prediction of
such novel pockets may help to design more effective alloste-
ric ligands to regulate protein function in a species-specific

Figure 2. Allosteric pockets at the centers of molecular assemblages

predicted by APOP. Resolved allosteric ligands are shown in red, and the

corresponding allosteric pockets predicted by APOP are shown in yellow.

Substrates are colored green. (a) In tetrameric glyceraldehyde-3-

phosphate dehydrogenase (PDB ID: 1UXV), there are four identical

allosteric ligands bound, among which the top-ranking allosteric pocket is

ranked 7 among the total of 114 pockets in the tetrameric structure, (b)

arginine repressor (PDB ID: 3LAJ) (allosteric pocket rank 1), (c) uracil

phosphoribosyl transferase (PDB ID: 1XTU) (allosteric pocket rank 1), (d)

Escherichia coli purine nucleotide synthesis repressor (PDB ID: 1QP0)

(allosteric pocket rank 1), (e) pyruvate kinase M2 (PDB ID: 3H6O)

(allosteric pocket rank 1), (f) hemoglobin (PDB ID: 1B86), where the

known allosteric ligand-binding region was not predicted as a pocket by

Fpocket, and therefore it was not ranked by APOP. Here, the central

pocket (magenta mesh) has rank 1. The pocket, shown as blue mesh, is

the closest to the allosteric ligand but does not include it. (g) ATP

phosphoribosyl transferase (1NH8), where the Fpocket fails to detect a

pocket where allosteric ligand binds. Here, Fpocket predicts a pocket

(shown as blue mesh) near the ligand-binding region, but it does not

enclose the ligand.

Figure 3. The three allosteric pockets are predicted as top-ranked pockets

with APOP for ABL kinase (pockets shown in yellow). Three ABL kinase

crystal structures are shown that are in complexes with: (a) imatinib (PDB

ID: 2HYY) where the known allosteric ligand-binding pocket is predicted

as rank 1 and rank 2 pocket by APOP among the total of 14 pockets in the

structure, (b) the inhibitor PHA-739358 (PDB ID: 2V7A) where known

allosteric ligand-binding pocket is predicted as rank 1 pocket by APOP

from among the total of 15 pockets in the structure, (c) imatinib and GNF-

2 (PDB ID: 3K5V) where the three known allosteric ligand-binding pockets

are predicted as the ranked 1, 2, and 3 pockets by APOP among the total

of 14 pockets in the structure.
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way since these pockets might not have all details fully con-
served across all species.

3.5 Implementation

APOP is available as an open-source Python package (https://
github.com/Ambuj-UF/APOP), as well as on a user-friendly
web interface (https://apop.bb.iastate.edu/). Here, the user
can choose either to provide a PDB id or upload a protein
structure and can add a specific chain id of interest, where
APOP uses all chains present in the structure. APOP uses the
default optimal GNM distance cutoff of 10.0 Å (see Section
3), but the web interface allows users to select the cutoff
value.

4 Conclusion

The extent of dynamic changes to global modes upon perturb-
ing the identified pockets, together with their local hydropho-
bicity scores, have demonstrated a high efficiency in
predicting allosteric pockets across many proteins. Here,
APOP is demonstrated to predict known allosteric pockets
within the top ranked 3 pockets in a total 92 out of 104
(88.5%). APOP can predict allosteric pockets in both apo and
holo structures, as well as in various mutant conformational
states. We also show that APOP can accurately predict allo-
steric pockets in monomers as well as large macromolecular
assemblages. Moreover, APOP can also detect alternative al-
losteric pockets as high-ranked pockets, indicating its poten-
tial utility for designing ways to alter protein activity by
targeting newly identified ligand-binding pockets. Prediction
of alternate allosteric pockets can facilitate the effective drug
targeting of enzymes such as Phosphofructokinase,
Glyceraldehyde-3 phosphate dehydrogenase, and Pyruvate ki-
nase (Ayyildiz et al. 2020). APOP can also predict the known
allosteric ligand-binding pockets as the top-ranked pockets in

different protein conformational states. It is a useful tool to
identify the most relevant allosteric pocket(s) for drug design
and will reduce the time and investment required for drug de-
sign. One interesting result from this study is the finding that
large central pockets are likely to be particularly effective allo-
steric binding sites since they are sites where ligand binding
could have especially largest effects on protein dynamics.
Also, the discovery of significant numbers of allosteric bind-
ing sites for many proteins reveals the complexity and the
high potential for multiple levels of control, revealing possible
details of multiple modes of control with the potential to regu-
late control in many different ways.

By comparing the APOP-predicted pockets to annotated
pockets in the literature, we found that pockets that ranked
high in our predictions were likely to be allosteric, even if they
were not previously annotated as such. This is illustrated by
the examples of fructose-1,6-bisphosphatase and pyruvate ki-
nase (Fig. 4), where APOP was able to predict the central
pocket as the top-ranked allosteric pocket, despite some of
the crystal structures not having this pocket annotated as allo-
steric pocket in the corresponding literature. Furthermore,
our analysis of false negatives showed that the known alloste-
ric pockets that were not ranked among the top three were,
but typically ranked within top 10 in large multimeric
assemblages, are also known allosteric pockets, indicating
that these pockets are also worth exploring. Our method’s de-
pendence on the Fpocket algorithm may be a limitation in
some cases, such as in the ATP phosphoribosyltransferase
(PDB ID: 1NH8) and Hemoglobin (PDB ID: 1B86) structures,
where Fpocket failed to predict a pocket in the allosteric
ligand-binding region. Nonetheless, our results suggest that
APOP has the potential to be a valuable tool for future allo-
steric ligand discovery.
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Figure 4. APOP finds allosteric pockets as top-ranked pockets in two

homologous structures. (a and b) Human fructose-1,6-bisphosphatase

structure (PDB ID: 3IFA) with a total 84 pockets in the assemblage. Here,

APOP rank 2, 3, 4, and 5 pockets overlap with known allosteric pockets

shown in yellow, rank 6 and 7 pockets are in green, and the rank 1 pocket

is in blue. (c and d) S.scrofa fructose-1,6-bisphosphatase structure (PDB

ID: 1KZ8) has a total of 69 pockets in its assemblage. APOP ranked 2, 3,

4, and 5 pockets overlap with known allosteric pockets reported in the

structure and are shown in yellow, rank 6 and 7 pockets are shown in

green, and rank 1 pocket in blue. The known allosteric ligands are in red.
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